
A Net-based Formal Framework for Causal
Loop Diagrams

Guillermina Cledou and Shin Nakajima

Abstract Causal Loop Diagrams (CLDs) are a modeling tool employed in Business
Dynamics. Such a diagram consists of many tightly coupled loops to capture dy-
namic behavior of systems. Intuitive operational semantics, describing how changes
are propagated among the loops, provide a basis for model animation or manual
inspection. They are, however, not precise enough to enable automated property
checking. This paper proposes and defines a net-based formal framework, allowing
true concurrency, so that automated analysis is made possible.

1 Introduction

Smart transportation is a strategic area to focus on enabling sustainable societies.
Managing such large-scale complex systems is mandatory, which needs their model-
ing from various viewpoints. Ontology captures common vocabulary with its focus
on structural aspects of domain concepts (e.g. [2]). System Dynamics (SD) approach
is elucidating dynamic behavior (e.g. [9]). The two approaches are complementary,
and dynamics are often complex and tightly coupled implicitly, leading to unknown
deficiencies. Removing vulnerabilities is essential to avoid normal accidents [8]. For
example, safety analysis in Aerospace engineering [5] is one successful application
of SD to study how to prevent disastrous accidents.

Modeling dynamic behavior of systems may start with qualitative causal loop
diagrams (CLDs) followed by a quantitative Stock-Flow approach [10]. A CLD il-
lustrates causal links between concepts, and brings out mental images of various
stakeholders involved, describing system structure and a hypothesis on its dynamic
behavior. A modeling goal is representing complex systems, and thus a straight for-

Guillermina Cledou
HASLab INESCTEC & University of Minho, Portugal, e-mail: mgc@inesctec.pt

Shin Nakajima
National Institute of Informatics, Tokyo, Japan, e-mail: nkjm@nii.ac.jp

1

2 Guillermina Cledou and Shin Nakajima

ward style of constructing a whole CLD is infeasible. Building a CLD is a part
of an iterative modeling process, and involves trial-and-error steps, interleaving of
description and analysis, before obtaining a satisfactory CLD. Because a CLD is
basically representing dynamic behavior, manual inspection is cumbersome as a
CLD becomes large. Automated analysis tools can bring great benefits at reduced
cost, which is recognized well in modeling of software at an abstract level [3]. Un-
fortunately, definitions of CLD [10] are not precise enough to enable systematic
automated analysis such as model checking [1][7]. This hinders from adapting a
tool-supported iterative process of building CLDs.

The present paper proposes a new net-based formal framework, causal loop net
(CLN), as a basis of formal representation and analysis of CLD. CLN is inspired by
Petri-nets [6], especially CP-nets [4], because of their true concurrency characteris-
tics, but introduces notions of abstractions to take into account the qualitative nature
of CLD. Main contributions of this paper are introducing a new net-based formal
framework CLN, and demonstrating the ideas with a proof-of-concept (PoC) tool
written in Scala.

The reminder of the paper is organized as follow. Section 2 and 3 recall CLDs and
Petri-nets. Section 4 summarizes issues and our approach to solving them. Section
5 proposes a formal definition of CLN, and then Section 6 discusses ways to specify
properties to check. Section 7 demonstrates example cases. Section 8 concludes the
paper.

2 Causal Loop Diagrams

2.1 Diagram Representation

Causal loop diagams (CLDs) are a modeling tool to qualitatively represent feedback
control systems of non-linear dynamics (Chapter 5 in [10]). A CLD illustrates vari-
ables connected via causal links to form loops. Each causal link refers to a fact that
a source variable affects a variable at a destination end. Causal links are annotated
with either a positive (+) or negative (−) polarity.

CLD offers three basic components. Figure 1 (a) is a loop in which two con-
nected variables reinforce each other; if Var1 increases, then Var2 increases, and

Var1 Var2

+

+

Var

Action

+

+

Difference
+

Criteria

Var

Action

+

+

Difference
+

Criteria

(delay)

(a) Reinforcing (b) Balancing (c) Balancing with Delay

Fig. 1 Three Basic Components

A Net-based Formal Framework for Causal Loop Diagrams 3

Calendar
Time (CT)

Due Date (DD)

Time
Remaining

(TR)

Assignment
Rate (AR)

Work
Pressure (WP)

Workweek
(WW)

Effort Devoted
to Assignments

(EDA)

Assignment
Backlog (AB)

Productivity (PD)

Work
Completion

Rate (WCR)

+
+

+

+

+

+

Fig. 2 An Example Composed Loop (Figure 5-21 in [10])

similarly for cases of decreasing. Figure 1 (b) illustrates a situation where two vari-
ables Difference and Var are balancing; if Var increases, then Difference
decreases because of the negative polarity on the link, and similarly for cases of
decreasing Var. A balancing loop represents a negative feedback. Figure 1 (c) is an
example component to have a delay annotation on a causal link between Action
and Var. Changes are not propagated immediately, but deferred, which gives sys-
tems inertia, posing much effects on dynamics. These basic components are com-
bined to form large loops to represent complex system dynamics. Figure 2 is an
example to have feedback control on a variable WP via two loops.

2.2 Informal Semantics

Structural aspects of a CLD are basically captured by a four-tuple 〈V, I, `, τ〉. V is
a finite set of variable names, and I is an initialization relation. ` and τ , representing

causal links, are transfer relations of V×Polarity×V where Polarity
de f
= {+,−}. `

are simple causal links while τ are those with a delay annotation. They are disjoint;
` ∩ τ = /0. Elements of Polarity are sign(∂vd/∂vs) when a causal link directs toward
a destination vd from a source vs (vd ,vs ∈ V).

Dynamic behavior of a CLD is a set of possible sequences of fired transfer re-
lations. Let St be a set of enabled transfer relations at a time point t in a global
time-line. Enabled transfer relations can be fired to propagate changes in a source
variable to a destination. Get such a relation r from St . If r ∈ `, r is fired immedi-
ately to propagate changes according to the above mentioned rules on the polarity.
If r ∈ τ , r is rewritten to an ` form, and is added to St+d for a certain d (d > 0). It
effectively makes r to be fired after passing d ticks; namely r is delayed.

CLD defines a notion of being fired in an intuitive manner. Tentatively we may
have a naive view of starting with initialized terminal source variables and tracing
changes in all the variables along causal links. As a number of causal links together
with variables becomes large, inspecting these changes manually is cumbersome.
Although, for example, the CLD of Figure 3 in [9] is not large, how the variables

4 Guillermina Cledou and Shin Nakajima

change their values is not intuitively clear. Some automated analysis methods are
desirable.

3 Net-based Formal Frameworks

Petri-nets [6] is a net-based formal framework for modeling concurrent systems.
A Petri-net is a weighted directed bipartite graph, 〈P,T,F,W,M0〉. P is a finite set
of places, and T is a finite set of transitions, both of which constitute nodes of a
graph. F is a flow, a subset of (P×T)∪(T×P), describing edges between nodes. W
is a weight function1 F−→N . M0 is an initial marking discussed below. A place
can hold more than one token and thus is a multi-set or a bag of tokens. Tokens are
indistinguishable with each other. Figure 3 illustrates a simple example Petri-net,
actually a Place/Transition net (PT-net), in which • refers to a token.

Dynamic behavior of a PT-net is defined in terms of markings. Let M(p) rep-
resent a multi-set of tokens at a place p. Informally, a transition t is fired when its
input places contain enough number of tokens to enable the transition. Furthermore,
more than one transition can be fired at the same time. It is referred to as true con-
currency, which can be compared with interleaving semantics adapted in most of
concurrent computation models.

Figure 3 shows a simple example PT-net2 shows that an initial marking M0 =
{p0 7→ {| • |}}. Transitions of markings, starting from M0, constitute reachabil-
ity graphs, which are basis of analyzing dynamical aspects of PT-net. Reachability
graphs are graphs of markings, and thus are called marking graphs in this paper.

In the example PT-net in Figure 3, starting with M0, the transitions t0 and t1 can
fire consecutively. A resulting new marking (M2 = {p2 7→ {| • |}}) may enable two
transitions t2 and t3. The two are in conflict; namely, only one of them can fire even
if both are enabled. Assume that t3 is fired, which leads to M4 = {p2 7→ {| •,• |}}
after firing t4 whose output edge has a weight annotation of 2. As this M4 has two
tokens, two enabled transitions t2 and t3 can fire at the same time, showing true con-
currency. This results in M5 = {p1 7→ {| • |}, p3 7→ {| • |}}. A transition sequence

1 N is a set of Natural Number and N0 includes 0.
2 This is an infinite capacity net, in which each place can hold any number of tokens.

t2

t1 t4

t3

p1 p2 p3
p0

t0

2

Fig. 3 Petri Net

A Net-based Formal Framework for Causal Loop Diagrams 5

may continue to a situation where M9 = {p2 7→ {| •,•,• |}}. The number of tokens
is increasing. This PT-net is unbounded, and its reachability graphs are infinite.

Apart from the basic PT-net, various high-level Petri-nets have been proposed
so far, including Coloured Petri Nets (or CP-nets) [4]. CP-nets can work on col-
ored tokens. Tokens with different colors are distinguishable, and transitions may
have guard conditions on token colors; only tokens with a certain color can en-
able such transitions. Intuitively, a marking in CP-nets M is partitioned into color-
indexed markings Mc. Occurrence graphs of CP-nets are defined similar to reacha-
bility graphs of PT-nets.

Note that analysis methods using either reachability graphs or matrix-equations
are studied for PT-nets [6]. Flow of tokens can be represented uniformly with
matrix-equations, because tokens are indistinguishable. However, analyzing CP-
nets is possible only with occurrence graphs [4] because tokens with different colors
are distinct.

4 Abstractions Qualitatively

CLD represents system dynamics qualitatively, and introducing qualitative abstrac-
tions is one of key issues. We will study abstractions from three viewpoints.

4.1 Qualitative Values

As presented in Section 2, variables do not take values, but represent qualitatively
an increase or a decrease. We, however, introduce a notion of values that a variable
can take, to make defining operational semantics easy.

Firstly, we view that a variable vX in CLD may stand for δX of an accompanying
hypothetical variable X . Secondly, we introduce a set Q to be {up, down}, and an

extension Q̂
de f
= Q ∪ {none}. The values up and down refer to an increase and a

decrease respectively, and none stands for being unknown or no change. A func-
tion rev , of Q̂ −→ Q̂, is defined such that rev(up)=down, rev(down) = up, and
rev(none) = none.

For a variable v ∈ V , [[]] is a dereference function, of V−→Q̂. An element in
an initialization I specifies an initial value of a variable vi ([[vi]] ∈ Q). Variables not
appeared in I take none as their initial values. Transfer relations specify how a value
in a source vs is transferred to a destination vd , and an annotated polarity affects the
transferred values. With [[vs]] ∈ Q, the equations below illustrates how the polarity
acts in the transfer.

[[vd]] = [[vs]] if `(vs,+,vd), [[vd]] = rev([[vs]]) if `(vs,−,vd)

Each element of Q̂ may be encoded as a distinct color if we use CP-nets as a formal
framework to encode CLDs. CLD may be encoded as a kind of CP-nets.

6 Guillermina Cledou and Shin Nakajima

4.2 True Concurrency and AMAN Strategy

As presented in Section 3, Petri-nets, either CP-nets or PT-nets, can represent true
concurrency in a faithful manner. However, the example scenario of Figure 3 illus-
trates a situation that places may have an infinite number of tokens, which is clearly
not desirable from a view point of automated analysis methods. This infiniteness
comes from characteristics of tokens in Petri-nets.

Tokens in Petri-nets can have more than one role. Firstly, a token is representing
a computation thread, and thus multiple tokens can refer to multi-threaded compu-
tations. Secondly, a token is a single computing resource, and moving a token from
a place to another illustrates a situation where an existing resource is consumed at a
source place and a new one is produced at a destination.

CLD is abstract, and does not have any notion of computing resources, but its
true concurrency aspects are essential. This observation leads to an idea that we
duplicate tokens as many as needed, which might be called an AMAN strategy in
this paper, so as to satisfy desirable degrees of concurrency. While a place in Petri-
nets is a multi-set of tokens, we use a set of tokens instead. In addition, we adapt an
AMAN strategy to duplicate tokens in a place (p) to fire all transitions connected
outwards from p. Note that with an AMAN strategy, no conflict occurs (cf. Figure 3).
We abstract multi-sets of tokens to be sets of tokens, which ignores the computing
resource aspects of tokens. CLN is different from CP-nets.

4.3 Non-deterministic Delay

Delay is quantitative in nature (Chapter 11 in [10]). A delayed causal link in qualita-
tive CLD is an abstraction of stock of quantitative Stock-Flow models. Introducing
a delay distinguishes an event of writing values to a stock from another event of
reading values. Because these two events are distinct, not occurred at the same time,
CLD adapts an abstraction such that transfer values is delayed, but a delay is not
accompanied with any quantitative amount of time.

Delay makes much effects on a possible transition sequences, and thus on dy-
namic behavior of CLD [10]. Intuitively, when a particular causal link td is annotated
with delay (τ), the link is not fired immediately even if true concurrency semantics
allow firing the transition transfer of td . Now, compare two cases where a particular
transition t is in τ (delay) and it is in ` (simple). Possible transition sequences of
the second simple case is different from the first. Firing t, in the first delay case,
appears later in transition sequences than the second. Furthermore, such transition
sequences involving delayed td might be different for different quantitative amount
of delay times. As CLD does not refer to quantitative values, we are not able to
specify particular situations selectively.

We introduce a notion of non-deterministic delay time as an abstraction. Given
an arbitrary upper bound dupper ∈ N , we choose a delay time d (d < dupper) in a
non-deterministic manner when constructing marking graphs. Marking graphs ob-

A Net-based Formal Framework for Causal Loop Diagrams 7

tained in this way are different for different chosen values of d. Covering all pos-
sible cases is impossible, and thus their dynamic behavior is under approximation,
namely searching in a part of all possible sequences only.

5 Causal Loop Nets

Causal loop net (CLN) is a directed bipartite graph that we propose in this paper as
a formal framework of CLD. CLN is structurally isomorphic to CLD (Figure 4), in
which places of CLN correspond to variables of CLD. We may consider CLN as an
internal representation of CLD; modelers need not care about CLN.

5.1 Formal Definitions

A CLN is a six-tuple D over Token, D = 〈P,T,F,τ,ν ,M0〉. P and T are finite sets
of places and transitions respectively, and F⊂(P×T)∪(T×P). τ is a polarity an-
notation, T−→{+,−}. ν is a delay annotation, T−→N0. M0 stands for an initial
marking, which will be explained below. For a transition t, a set of input places •t
and a set of output places t• are defined.

•t = { p | (p, t)∈F }, t• = { p | (t, p)∈F }

Tokens in CLD are either basic tokens or delay tokens; BasicToken = {↑, ↓} and
DelayToken = {↑d , ↓d} for d∈N , where ↑ is up and ↓ is down. We introduce a
whole set of tokens Token to be BasicToken ∪ DelayToken ∪ { }, where is none. d
in ↑d or ↓d refers to an amount of delay if d > 0. For a technical reason, we assume
the relationships that x0 = x for a token x; namely, ↑0 = ↑ and ↓0 = ↓. Intuitively, a
delay token xd decreases its amount one as ticks proceed, reaching x0 to contribute
enabling of transitions because x0 = x. Now, Token can be simplified to be {↑e,↓e, }
for e∈N0. A marking M is P 7→ 2Token.

Given a marking M, a transition t is enabled if its all input places have tokens
other than (none). Thus, a set of enabled transition is

T (M) = { t∈T |
∧

p∈•t M(p)∩{↑e,↓e} 6= /0 }

Var1 Var2

+

Var3

+

+

Var0

+

+ +

+

Var1 Var2 Var3

Var0
+

(a) CLD Example (b) Translated CLN

Fig. 4 CDL and CLN

8 Guillermina Cledou and Shin Nakajima

T (M) may have more than one transition, which ensures that CLN is a formal
framework allowing true concurrency.

5.2 Dynamic Behavior

Dynamic behavior of a CLN is captured by an associated marking graph, which

changes in markings (M
T (M)−→ M′) define. Given a set of enabled transitions T (M),

M′(p) for all places p in P is defined below,
⊕

denoting overriding.

M′(p) = M(p)
⊕

(
⋃

t∈T (M)
•∆(p, t) ∪

⋃
t∈T (M)∆

•(t, p))

where •∆ and ∆ • are of F −→ 2Token. Recall that F ⊂ (P×T)∪(T×P).
•∆(p, t) removes all the tokens in M(p) and leaves delay tokens whose residual

time is decremented by one.

•
∆(p, t) =

⋃
x∈M(p)

Decr(x)

Decr(x) makes use of the relation that ↑= ↑0 and ↓= ↓0.

Decr(xe) : Token −→ 2Token =

{
{ xe−1 } if e > 0

/0 if e=0

∆ •(t, p) adds tokens calculated according to the polarity τ(t), where M(•t) is an
abbreviation of

⋃
p′∈•tM(p′).

∆
•(t, p) =

⋃
x∈M(•t)

Xfer(x)

Xfer(x) assumes, for simplicity, that ν(t) = 0 if a causal link is not marked delay.

Xfer(x) : Token −→ 2Token =

{
{ xν(t) } if τ(t) = +
{ rev(xν(t)) } if τ(t) =−

The transition relationship M
T (M)−→ M′ may lead to a situation where, for a certain

p, {p 7→ ↑, p 7→ ↓} ∈ M′ occurs. Such a marking is inconsistent in that it assigns
two tokens ↑ and ↓ to a place p at the same time. PNG is a subset of P to contain

those inconsistent places; PNG
de f
= { p | {↑,↓} ⊆M(p) }.

The inconsistency demonstrates a situation where both cases, p with ↑ and p
with ↓ are possible for ∀p∈PNG. Therefore, two cases are to be explored non-
deterministically3. An auxiliary function Nr constructs consistent markings by di-
viding an inconsistent marking into two cases.

3 This makes it difficult to define matrix-equations for CLN.

A Net-based Formal Framework for Causal Loop Diagrams 9

Nr(M) =

{
Nr(M[p 7→ D(p,↑)]) ∪ Nr(M[p 7→ D(p,↓)]) if p ∈ PNG
{ M } if PNG = /0

where D(p,x) = (M(p)∩{↑d , ↓d})∪{x}(d>0). Now that Post(M) is a set of consis-
tent markings reached directly from M when inconsistent markings are considered.

Post(M) = { M′ |MT (M)
=⇒M′′ ∧ M′ ∈ Nr(M′′)}

Given a CLD D, a marking graph G D of a CLN is a tuple 〈Node,n0,Edge〉, where
n0 is an initial node representing the initial marking M0, Edge is a set of transition
relations M=⇒M′ for M′ ∈ Post(M), and Node consists of all markings reached
from M0 via Edge. G D is finite in particular.

6 Formal Analysis

Once a marking graph is obtained for a given CLN or CLD equivalently, we can
conduct formal analyses to study the CLN from various ways.

6.1 Verification Problems

As explained before, a place of CLN represents a variable in CLD. Since a node n in
G D is a marking, [[n.v]], a value of variable v at node n, is M(v) and [[n.v]]∈Q̂. Delay
tokens, ↑d or ↓d , are identified with (none) as values, because they are transient
and do not any definite values.

Let TraceD be a set of all possible transition sequences σi generated by G D

starting from n0; TraceD = { σi }. σi(r) is an r-th node in σi, and σi(r..s) is a
transition sequence starting with σi(r) and ending with σi(s). In particular, σi(0) is
n0 for any sequence.

A verification problem is to check whether at least one transition sequence exists
in TraceD to satisfy a given property Φ taking into account simulation relations ∼.

∃σi ∈ TraceD : Φ(σi) mod ∼

The simulation relation ∼ is either ∼1 or ∼2 below.

∼1 :Q̂N ←→ Q is q(q|none)N−1 ∼1 q for q∈Q,
and ∼2 :Q̂N ←→ Q̂ is qN ∼2 q for q∈Q̂.

Adapting simulation relations makes it easy to write properties to be checked. Tran-
sition sequences σi are of seq(Q̂). Because q∈Q̂ does not refer to a quantitative,
concrete value, identifying N consecutive q (qN) with just a q does not make much

10 Guillermina Cledou and Shin Nakajima

effects on qualitative characteristics of sequences. Namely, q can be a summary of
qN . Simulation relation of the first type (∼1) provides a way to use Q as a basis
for this summary, while the second (∼2) is using Q̂ instead. We will see how two
simulation relations are effective in Section 7.

6.2 Some Query Patterns

We introduce a few typical properties to be checked, all of which take a form of
queries on TraceD. A finite mapping f of [0,k−1]−→Q for a k∈N is called a sum-
mary function when f describes desired sequences of a CLD variable. A predicate
ϕ0(i,r,v, f) becomes true if there is at least one transition sequence σi in TraceD

whose subsequence starting with r and ending with s satisfies the condition that a
sequence of values generated by a variable v in D is simulated by a given summary
function f .

ϕ0(i,r,v, f) =
∧k−1

j=0 ∃s j+1. (σi(s j .. s j+1).v ∼ f (j))

where k = | f | (length of f), r = s0 and s = sk.
Some properties employ ϕ0(i,r,v, f) to define themselves. Firstly, ϕ1(v, f) returns

true if there is a transition sequence σi to have a subsequence of a certain length in
which the specified variable v is simulated by a given summary function f .

ϕ1(v, f) = ∃i,r : ϕ0(i,r,v, f)

Secondly, Φ3(ϕ1(vm, f),v`,g`) is true if a summary function of a variable v` (m6=`)
is simulated by g` in a transition sequence that ϕ1(vm, f) satisfies;

g`(X) = ∃s. σi(r .. s).v`.

Intuitively, Φ3 extracts a sequence of v` values along a transition sequence that vm

satisfies f . Therefore, we can compare how two variables, vm and v`, change their
values in an obtained interval of r and s.

7 Examples

Figure 5 shows two marking graph examples generated with a Scala-based PoC tool
using Graphviz4 for preparing graphical images. Figure 5(a) is the one for the CLD
in Figure 4. Figure 5(b) is simple because of no inconsistent marking (PNG = /0). In
these graphs, 1, 0 and -1 stands for ↑, and ↓ respectively.

Each node in the graph of Figure 5(a) refers to variable values in a form of
〈Var1, Var2, Var3, Var0〉. The graph is the one starting with an initial mark-
ing of M0 = {Var0 7→ ↑}. The prototype PoC tool accepts a CLD in a textual
form. The CLD in Figure 4 is, for example, entered as below.

4 http://viz-js.com

A Net-based Formal Framework for Causal Loop Diagrams 11

n
0

n
1

n
4

n
5

n
7

n
9

n
2

n
3

n
6

n
8

n
0

n
1

n
2

n
3

n
4

n
5

(a) CLD in Figure 4 (b) CLD in Figure 2

Fig. 5 Marking Graphs

var netF4 = newclpn ++ (
4 |>+ 1,
1 |>+ 2,
2 |>- 1,
2 |>+ 3,
3 |>+ 2

) initMark((4, Set(1))

The numbers are representing CLD variables. 4 stands for Var0 whose initial value
is 1 (namely ↑) as specified by initMark((4, Set(1)).

We check whether G D satisfies ϕ1(Var2, f Var2) modulo∼1 where f Var2 = (↑ ↑).
For this, ϕ1(Var2, f Var2) is f alse because the graph does not have any sequence
with consecutive ↑s. Alternatively, if we choose f Var2 to be (↓ ↑), we actually find
transition sequences σi(5 ..), some of which are shown here. Var3 changes its value
along each transition sequence.

σ1(5 .. 8) = n4 n5 n2 n3 (σ1(5..8)).vVar3 = ↓ ↑
σ2(5 .. 10) = n4 n5 n4 n5 n2 n3 (σ2(5..10)).vVar3 = ↓ ↓ ↑
σ3(5 .. 10) = n4 n5 n2 n3 n2 n3 (σ3(5..10)).vVar3 = ↓ ↑ ↑
σ4(5 .. 12) = n4 n5 n4 n5 n2 n3 n2 n3 (σ4(5..12)).vVar3 = ↓ ↓ ↑ ↑

A summary function gVar3 modulo ∼1 for all the above will be (↓ ↑), which pro-
vides little information. On the other hand, if we use ∼2, the summary function
gVar3 becomes ((↓)n1(↑)n2) for n1,n2∈[1, 2]. This scenario illustrates that the
∼1 is appropriate when we extract transition sequences by means of f Var2, and
that the ∼2 is useful in searching for summary functions of gVar3 because the ob-
tained sequences has detailed information. We may choose gVar3 as (↓)n1(↑)n2

for Φ3(ϕ1(Var2, (↓ ↑)), Var3, gVar3) to be satisfied modulo ∼2.

12 Guillermina Cledou and Shin Nakajima

8 Concluding Remarks

Petri-nets have a large body of work [6], from introducing high level Petri-nets such
as CP-net, to studying subclasses of PT-nets in view of behavioral or structural char-
acteristics. Causal Loop Net (CLN) is unique in that our approach is introducing
qualitative abstractions into a Petri-net family of formal frameworks. CLN provides
a formal basis of Causal Loop Diagrams (CLD) to enable formal analysis in terms
of marking graphs. Query patterns, although not general enough, are useful in tool-
assisted inspections as demonstrated with our PoC tool. The proposed CLN enables
adapting a tool-supported iterative process of building CLDs.

Our future plan includes developing a robust tool that can work on large CLDs,
studying pros and cons of the proposed abstraction method for delay, and adapting
logic model checking methods [1] for formal analyses.

Acknowledgements

The first author conducted the reported work at NII under NII-Internship Pro-
gram 2017-1 call. This work is a result of project “SmartEGOV/NORTE-01-0145-
FEDER-000037”, supported by Norte Portugal Regional Operational Programme
(NORTE 2020), under the PORTUGAL 2020 Partnership Agreement, through the
European Regional Development Fund (EFDR). Additional support is provided by
the PT-FLAD Chair on Smart Cities & Smart Governance. The second author is
partially supported by JSPS KAKENHI Grant Number JP17H01726.

References

1. E.M. Clarke, O. Grumberg, and D.A. Peled : Model Checking, The MIT Press, 1999.
2. G. Cledou and L. Barbosa : An Ontology for Licensing Public Transport Services, In Proc.

9th ICEGOV, pp.230-239, 2016.
3. D. Jackson and J. Wing : Lightweight Formal Methods, IEEE Computer, 29(4), pp.21-22,

1996.
4. K. Jensen : Coloured Petri Net, Springer 1996.
5. N.G. Leveson : Engineering a Safer World: Systems Thinking Applied to Safety, The MIT

Press 2011.
6. T. Murata : Petri Nets: Properties, Analysis and Applications, In Proc. IEEE, 77(4), pp.541-

580, 1989.
7. S. Nakajima : Model Checking of Energy Consumption Behavior, In Proc. 1st CSD&M-Asia,

pp.3-14, 2014.
8. C. Perrow : Normal Accidents: Living with High-Risk Technologies, Princeton University

Press 1999.
9. S.P. Shepherd : A Review of System Dynamics Models Applied in Transportation, Transport-

metrica B: Transport Dynamics, 2(2), pp.83-105, 2014.
10. J.D. Sterman : Business Dynamics: Systems Thinking and Modeling for a Complex World,

Irwin McGraw-Hill 2000.

