Relations among Notions of Complete Non-Malleability: Indistinguishability
Characterisation and Efficient Construction without Random Oracles

M. Barbosa! and P. Farshim?

! CCTC/Departamento de Informatica, Universidade do Minho,
Campus de Gualtar, 4710-057 Braga, Portugal.
mbb@di.uminho.pt
2 Information Security Group, Royal Holloway, University of London,
Egham, Surrey, TW20 OEX, United Kingdom.
Pooya.Farshim@rhul.ac.uk

Abstract. We study relations among various notions of complete non-malleability, where an adversary can tamper with both
ciphertexts and public-keys, and ciphertext indistinguishability. We follow the pattern of relations previously established for
standard non-malleability. To this end, we propose a more convenient and conceptually simpler indistinguishability-based
security model to analyse completely non-malleable schemes. Our model is based on strong decryption oracles, which
provide decryptions under arbitrarily chosen public keys. We give the first precise definition of a strong decryption oracle,
pointing out the subtleties in different approaches that can be taken. We construct the first efficient scheme, which is fully
secure against strong chosen-ciphertext attacks, and therefore completely non-malleable, without random oracles.

Keywords. Complete Non-Malleability. Strong Chosen-Ciphertext Attacks. Public-Key Encryption. Provable Security.

1 Introduction

BACKGROUND. The security of public-key encryption schemes has been formalised according to various goals
and attack models. Extensive work has been done in establishing relations between these security notions, and
converging towards a core set of standard security definitions. Well-studied goals include semantic security, in-
distinguishability, and non-malleability; whereas chosen-plaintext and (adaptive) chosen-ciphertext are the most
common attack scenarios considered in literature.

An important criterion for selecting security models is the guarantee of necessary security for a class of ap-
plications with practical relevance. Conversely, it is also expected that one can select a security model that is only
as strict as required by a specific application. Otherwise, one might rule out valid solutions without justification,
possibly sacrificing other important factors such as set-up assumptions, computational cost or communications
bandwidth. Another important criterion is the conceptual simplicity and ease of use of a model.

Indistinguishability of ciphertexts is the most widely used notion of security for public-key encryption schemes.
This notion was proposed by Goldwasser and Micali [GM&84]] as a convenient formalisation of the more intuitive
notion of semantic security. Other notions of security have been proposed in different contexts. Of particular interest
to this work is non-malleability, initially proposed by Dolev, Dwork, and Naor [DDNOO]. Roughly speaking, an
encryption scheme is non-malleable if giving an encryption of a message to an adversary does not increase its
chances of producing an encryption of a related message (under a given public key). This is formalised by requiring
the existence of a simulator that performs as well as the adversary but without seeing the original encryption.

The relations between different notions of security for public-key encryption schemes were examined in a
systematic way by Bellare et al. [BDPROS]]. There, the authors compare indistinguishability of ciphertexts and non-
malleability under chosen-plaintext and chosen-ciphertext attacks. In doing so, they formalise a comparison-based
definition of non-malleability and establish important results based on this: non-malleability implies indistinguisha-
bility for an equivalent attack model, there is an equivalence between these notions for adaptive chosen-ciphertext
attacks, and there are separations between the two notions for intermediate attack models.

Bellare and Sahai [BS06] established a cycle of equivalence between three definitions of non-malleability: a
simulation-based definition similar to that of Dolev, Dwork and Naor, a comparison-based definition as introduced

in [BDPR9S]], and a new definition called indistinguishability of ciphertexts under parallel chosen-ciphertext at-
tacks. These equivalence relations essentially establish that the three definitions are alternative formulations of the
same notion. Pass, Shelat, and Vaikuntanathan [PSVO7]] revisit this equivalence result, and clarify several technical
aspects in the known equivalence proofs. They consider the important question of composability of definitions, and
establish a separation between the simulation-based and comparison-based non-malleability definitions, showing
that the former is strictly stronger for general schemes.

Besides being theoretically interesting, the above results are also relevant in practice. They permit designers of
encryption schemes to base their analysis on the simpler and better understood IND-CCA2 security model. This
facilitates the presentation of conceptually simpler proofs, which are less prone to errors, as well as the direct
application of a well-known set of proof techniques.

COMPLETE NON-MALLEABILITY. Fischlin [FisO5] introduces a stronger notion of non-malleability, known as
complete, which requires attackers to have negligible advantage, even if they are allowed to transform the public
key under which the related message is encrypted. Put differently, the goal of an adversary is to construct a related
ciphertext under a new public key pair, for which the attacker might not even know a valid secret key.

Fischlin shows that well-known encryption schemes such as Cramer-Shoup [[CS98] and RSA-OAEP [FOPS04]
do not achieve even the weakest form of complete non-malleability. Furthermore, he proves a negative results with
respect to the existence of completely non-malleable schemes for general relations: there is a large class of relations
for which completely non-malleable schemes do not exist with respect to black-box simulators. On the other hand,
Fischlin establishes a positive result for a modified version of RSA-OAEP, with respect to a restricted class of
adversaries, in the random oracle model.

Ventre and Visconti [VVOS] later propose a comparison-based definition of this security notion, which is more
in line with the well-studied definitions proposed by Bellare et al. [BDPR9SIBS06]. For chosen-plaintext attacks the
authors prove that (a restricted version of) their definition is equivalent to that of Fischlin. They also establish equiv-
alence for chosen-ciphertext attacks, for a well-defined class of relations that do not depend on the challenge public
key (known as lacking relations). The authors also provide additional feasibility results by proposing two con-
structions of completely non-malleable schemes, one in the common reference string model using non-interactive
zero-knowledge proofs, and another using interactive encryption schemes. Therefore, the only previously known
completely non-malleable (and non-interactive) scheme in the standard model, is quite inefficient as it relies on
generic zero-knowledge techniques.

MOTIVATION. The initial motivation for complete non-malleability resided on constructing non-malleable com-
mitment schemes. A commitment scheme can be constructed from an encryption scheme in the following way.
To commit to a message, one generates a key pair and encrypts the message under the generated public key. The
resulting public key/ciphertext pair forms the commitment. To de-commit, one reveals a valid secret key or the mes-
sage/randomness pair used in encryption. In this setting, it is clearly desirable that the encryption scheme should
be completely non-malleable in order to guarantee non-malleability of the associated commitment scheme.

Furthermore, new notions of security of high practical relevance have been emerging in the literature that closely
relate to different flavours of complete non-malleability. The pattern connecting these notions is that adversaries
are allowed to tamper with the keys, under which they are challenged, in order to gain extra advantage. Robust
encryption [ABN10]] is one such notion, and it is pitched at applications where ciphertext anonymity is relevant.
This notion requires it to be infeasible to construct a ciphertext which is valid under two distinct public keys.
Another such notion is security under related-key attacks [BKO3|], where cipher operations can be executed over
perturbed versions of the challenge secret key. This model is of particular relevance in the symmetric encryption
setting. Also worth mentioning are concrete attacks on key-agreement protocols and public-key signature schemes,
where attackers are able to introduce public keys of their choice in the protocol execution [Fis05].

The relations between these new notions of security are understudied and constitute a novel challenge in the-
oretical cryptography. A deeper understanding of the relations between these notions of security should permit
identifying a core set of security models that facilitate the design and analysis of strongly secure schemes with

2

practical relevance. The main motivation of this work is, therefore, to take an important step in this direction. We
aim to expand the current understanding of complete non-malleability, by establishing relations among notions of
complete non-malleability and ciphertext indistinguishability that are akin to those already known for standard non-
malleability. To this end, we introduce a new indistinguishability based notion, and demonstrate its applicability by
constructing an efficient and completely non-malleable scheme.

STRONG CHOSEN-CIPHERTEXT ATTACKS. Our search for a suitable indistinguishability-based definition of com-
plete non-malleability resulted in a natural extension of the standard IND-CCA2 security model, in which the
adversary can get decryptions of ciphertexts under arbitrary public keys of its choice. We call this a strong chosen-
ciphertext attack scenario, and say that the adversary is given access to a strong decryption oracle. This, in
turn, brings together two fields which previously remained unrelated in provable security, namely complete non-
malleability and certificateless cryptography [ARPO3IDLPOS]|. Indeed, strong chosen-ciphertext attacks can be seen
to model multi-user scenarios where public keys might not be authenticated, and were initially proposed as a natural
attack model for certificateless schemes that aimed to do away with public-key certificates.

The question of whether the weakness captured by such a strong model should be seen as a real vulnerability of
public-key encryption schemes has caused some discussion [DLPOS|]. Arguments against this approach are based
on the fact that such an attack model is not realistic, since it is highly unlikely that the adversary is able to get
such assistance in a practical scenario. Another way to put this objection is that security models should be defined
through experiments that are guaranteed to execute in polynomial time: providing decryptions under unknown
secret keys assists the adversary through a super-polynomial time oracle.

The results we present in this paper show that the strength of the complete non-malleability notion is comparable
to that of the strong chosen-ciphertext attack scenario. This connection allows us to take a more constructive view
of strong decryption oracles, and argue that they can indeed be useful to analyse the security of practical schemes.
To support this view, we show that indistinguishability under strong CCA attacks is a convenient formalisation to
establish that a scheme is completely non-malleable. Furthermore, by proposing a concrete scheme, we also show
that both notions are realisable without random oracles.

Finally, we note that strong decryption oracles are closely related to the recently proposed paradigm of adaptive
one-way functions [PPVO0§]], which can be used to construct a number of cryptographic protocols that previously
remained open in the literature. Indeed, the assumptions that underlie the proposed constructions of adaptive one-
way functions rely on similar “magic” oracles. It would be interesting to investigate whether the techniques that
we use can be useful in constructing adaptive one-way functions based on standard assumptions. Conversely, the
public-key encryption scheme given in [PPV08] seems to achieve strong chosen-ciphertext security. The relation-
ship between adaptive one-way functions and strong security models are left for future work.

CONTRIBUTIONS. The first contribution of our paper is a general definition of a strong decryption oracle, which
unifies previous definitional approaches. Our definition is flexible and expressive in the sense that it allows identi-
fying the exact power of the decryption oracle that is provided to an adversary in security analysis. We also show
that variants of the strong decryption oracle definition map to interesting properties of encryption schemes. We
establish a connection with the validity checks that an encryption scheme performs (message validity, ciphertext
validity, public key validity, etc.). More precisely, we identify a simple and very convenient definition of the strong
decryption oracle, which can be used to analyse schemes that incorporate a well-defined and natural set of validity
checks. For schemes that fail to perform these checks, care must be taken to identify the exact strength of the strong
decryption oracle under which the scheme can be proven secure.

We then extend the standard indistinguishability and non-malleability models using strong decryption oracles,
and examine the relations between the resulting notions. Our approach is consistent with that proposed by Bellare et
al. [BSO6/BDPRYS]], which allows us to naturally describe the relation between these stronger models and the more
established ones. We also identify the relation between the strong chosen-ciphertext models we propose and the
existing notions of complete non-malleability. To the best of our knowledge, this relation was not previously known.
It permits fully characterising how these independently proposed models relate to the more standard definitions

3

of non-malleability. The relation we establish between strong decryption oracles and complete non-malleability
provides the first convincing argument that the strong CCA models are useful in analysing the security of practical
encryption schemes.

Finally, we propose a concrete scheme that efficiently achieves strong chosen-ciphertext security based on
the decisional bilinear Diffie-Hellman assumption. The scheme is secure under a very general definition of the
strong decryption oracle, which is made possible by the insights regarding validity checks we described above. The
scheme is derived from Waters’ identity-based encryption scheme [Wat05]] using techniques previously employed
in constructing certificateless public-key encryption schemes [DLPOS]. Our equivalence result also establishes our
scheme as the first efficient completely non-malleable scheme without random oracles. We stress that our scheme
is based on a standard and well-known problem and does not rely on interactive assumptions or “magic” oracles.

ORGANISATION. In the next section we fix notation by defining public-key encryption schemes and various algo-
rithms associated to them. In Section [3] we discuss different approaches in defining strong decryption oracles and
propose a new generic definition. In Section 4] we look at indistinguishability and non-malleability security models
for encryption schemes where adversaries have access to strong decryption oracles. We establish relations between
these models and also to models existing literature. Finally, in the last section we give the first practical completely
non-malleable scheme without random oracles.

2 Preliminaries

NOTATION. We write z < y for assigning value y to variable x. We write x <—g X for sampling = from set
X uniformly at random. If X is empty, we set x <L, where L¢ {0, 1}* is a special failure symbol. If A is a
probabilistic algorithm we write x <—g A([3, I, . ..) for the action of running A on inputs Iy, Io, ... with random
coin chosen uniformly at random, and assigning the result to . Sometimes we run A on specific coins 7 and write
x « A(l1,Ia,...;7r). We denote boolean values, namely the output of checking whether a relation holds, by
T (true) and F (false). For a space Sp C {0, 1}*, we identify Sp with its characteristic function. In other words,
Sp(s) = Tifand only if s € Sp. The function Sp(-) always exists, although it may not be computable in polynomial
time. We say s is valid with respect to Sp if and only if Sp(s) = T. When this is clear from the context, we also
use Sp for sampling uniformly from Sp. Unless stated otherwise, the range of a variable s is assumed to be {0, 1}*.
The symbol : is used for appending an element to a list. We indicate vectors using bold font.

GAMES. We will be using the code-based game-playing language [BRO6]|. Each game has an Initialize and a
Finalize procedure. It also has specifications of procedures to respond to an adversary’s various oracle queries. A
game Game is run with an adversary A as follows. First Initialize runs and its outputs are passed to .A. Then A
runs and its oracle queries are answered by the procedures of Game. These procedures return | if queried on L.
When A terminates, its output is passed to Finalize which returns the outcome of the game y. This interaction
is written as Game™ = y. In each game, we restrict attention to legitimate adversaries. Legitimacy is defined
specifically for each game.

PUBLIC-KEY ENCRYPTION. We adopt the standard multi-user syntax with the extra Setup algorithm [BBMOO],
which we believe is the most natural one for security models involving multiple public keys. A public-key encryp-
tion scheme 1 = (Setup, Gen, MsgSp, Enc, Dec) is specified by five polynomial-time algorithms (in the length
of their inputs) as follows. Setup is the probabilistic setup algorithm which takes as input the security parameter
and returns the common parameters | (we fix the security parameter implicitly, as we will be dealing with concrete
security). Although all algorithms are parameterised by |, we often omit | as an explicit input for readability. Gen(l)
is the probabilistic key-generation algorithm. On input common parameters |, this algorithm returns a secret key SK
and a matching public key PK. Algorithm MsgSp(m, PK) is a deterministic message space recognition algorithm.
On input m and PK this algorithm returns T or F. Enc(m, PK; r) is the probabilistic encryption algorithm. On input
a message m, a public key PK, and possibly some random coins r, this algorithm outputs a ciphertext c or a special
4

failure symbol L. Finally, Dec(c, SK, PK) is the deterministic decryption algorithm. On input of a ciphertext c and
keys SK and PK, it outputs a message m or a special failure symbol L. The correctness of a public-key encryption
scheme requires that for any | <—g Setup(), any (SK, PK) <—¢ Gen(), all m € MsgSp(PK), and any random coins
r we have Dec(Enc(m, PK;), SK, PK) = m.

REMARK. We note that the multi-user syntax permits capturing in a single framework schemes that execute in the
plain model, in which case the global parameters are empty, as well as those which execute in the CRS model. The
relations that we establish between different models hold in both cases.

VALIDITY CHECKING ALGORITHMS. The following spaces (and associated functions) will be used throughout the
paper. All of these spaces are parameterised by | and are subsets of {0, 1}*.

MsgSp(PK) := {m : MsgSp(m, PK)}

KeySp := {(SK, PK) : 3r (SK, PK) = Gen(r)}

PKSp := {PK : 3r,SK (SK, PK) = Gen(r)}

SKSp := {SK : 3r, PK (SK, PK) = Gen(r)}

VALIDITY ASSUMPTIONS. We assume throughout the paper that the encryption and decryption algorithms check
if m € MsgSp(PK) and return L if it does not hold. Often the algorithm MsgSp does not depend on PK in the
sense that for any PK, PK" € PKSp and any m € {0, 1}* we have MsgSp(m, PK) = MsgSp(m, PK’). For general
schemes, case one can consider the infinite message space MsgSp(PK) = {0, 1}*. However, given that in this paper
we will often consider the set of all valid messages and sample from it, we restrict our attention to schemes with
finite message spaces. As pointed out by Pass et al. [PSVQ7], this means that to avoid degenerate cases we must also
restrict our attention to schemes for which all the elements in the range of decryption can be efficiently encrypted,
including the special failure symbol L. A distribution M on messages is valid with respect to a public key PK if it
is computable in polynomial time and its support contains strings of equal length which lie in MsgSp(PK). We also
assume that key-pair validity KeySp is efficiently implementable and require that decryption returns L if this check
fails on the keys passed to it (note that this can easily be achieved for general public key encryption schemes, by
including the input randomness to Gen in SK). We also assume various algorithms check for structural properties
such as correct encoding, membership in a group, etc.

3 Defining strong decryption oracles

The idea behind a strong chosen-ciphertext attack is to give the adversary access to an oracle that decrypts cipher-
texts of the adversary’s choice with respect to arbitrary public keys. There are a number technicalities involved in
defining such an oracle precisely, which we now discuss.

procedure SDecrypt, y(c, PK,R):
WitSp < {(m,r) : V(c,PK, m, r,st[V])}
(m,7) ¢ {(m,r) € WitSp : R(m)}
st[V] < U(c, PK,R, m, 7, st[V])

Return m

Fig. 1: Generic definition of a strong decryption oracle. In the first step the search is performed over sufficiently long bit strings and, for
messages, it also includes the special symbol L. The state st[V] is initialised to some value sto.

We will base our presentation on the generic definition of a strong decryption oracle presented in Figure
which we thoroughly explain and justify in the discussion that follows. The oracle proceeds in three steps. The first
step models the general procedure of constructing a set of candidate (valid) decryption results. The second step
consists of choosing one of these candidate solutions to return to the adversary. The final step updates the state of
the oracle, if it keeps one.

5

More precisely, in the first step, the oracle constructs a set of possible decryption results WitSp using a
polynomial-time validity relation \/ﬂ Note that the search for messages includes the special failure symbol L.
This permits making the subtle distinction of returning 1 when a candidate decryption result has not been foun(ﬂ
or when it has been established that the oracle may return L. when queried on a given (c, PK) pair. In the second
step, it selects the message to return from WitSp. To make sure the security model is not restricting the adversary
by choosing the decryption result in a particular way, we allow the adversary to provide a polynomial-time relation
R to characterise a set of messages of interest to her. The oracle then samples a message at random from this set and
returns it to the adversary. In the third and final step, the oracle updates any state it may have stored from previous
queries. We require that the update procedure to be polynomial in the size of its inputs, excluding the stateﬂ

Although we have constrained the algorithms in our definition (i.e. V, R and U) to be polynomial-time, the
calculations carried out in the first two steps may not be computable in polynomial time and may require an
exponential number of executions of these algorithms. Nevertheless, we emphasise that the search space must be
finite. This is guaranteed by the assumption that the message space of the encryption scheme is finite, and by the
fact that the algorithms associated with the scheme run in polynomial time in their inputs.

The motivation for having such a general definition is that the notion of the message encapsulated by the
ciphertext can be defined in various ways. For concreteness, let us fix U so that st[V] is empty throughout the
game execution, and look at two alternative definitions of V. These derive from two interpretations as to which
message(s) might be encapsulated in a public key/ciphertext pair: they can be seen as alternative witnesses to the
validity of the public key/ciphertext pair. Concretely one can define validity via the encryption operation, in which
case a message/randomness pair is the witness or via the decryption algorithm, in which case the natural witness is
a message/secret key pairﬂ

V(c,PK,m,r) :=c L Enc(m, PK;r) (1)
V/(c,PK,m, 7) := (SK, PK) = Gen(r) A m = Dec(c, SK, PK).)

The first observation to make on these validity criteria is that neither of them guarantees that if a message is found
to be a valid decryption result, it will be unique. This is because the correctness restriction only guarantees unique
decryptability for correctly constructed (c, PK) pairs: it says nothing about the result of decryption when an invalid
public key and/or an invalid ciphertext are provided as inputs. In particular, the validity criterion in Equation[I|could
accept multiple messages as valid, when run on an invalid public key. Ambiguity can also occur for the validity
criterion in Equation 2] when multiple valid secret keys correspond to the queried public key, and decrypt an invalid
ciphertext inconsistently. This discussion justifies the need for the second step in the definition we propose: there
could be many valid decryption results to choose from, and it is left to the adversary to control how this is done. In
the simplest scenario, where there is only one candidate decryption result, one can assume without loss of generality
that the adversary will choose to retrieve that result by passing in the trivial relation T.

The need for the first step of the definition is justified by observing that the two witness sets associated with
the above validity algorithms do not always coincide. To see this, consider an encryption scheme where decryption
does not necessarily fail when run on a ciphertext that falls outside the range of the encryption algorithm. Then the
first witness set will be empty whereas the second may not be. A concrete example is the Cramer-Shoup [CS98]]
encryption scheme. For other schemes, such as RSA-OAEP [FOPS04], it may happen that the encryption algorithm
produces apparently valid ciphertexts for invalid public keys. When this is the case, the first witness set may not be
empty, whereas the second one will surely contain no messages, given that no valid secret key exists.

We note that the above issues do not arise in the standard definition of a decryption oracle, in which decryption
is always carried out with a fixed secret key. In other words, the decryption oracle is stateful. To allow capturing

3 This constitutes an NP-relation for the language of valid decryption results.

Recall that we assume that sampling from an empty set returns L.

3 Discarding the state size ensures that the run-time of this procedure does not increase exponentially with queries.

® Note that we have assumed Dec always performs the key-pair validity check, and so this is redundant in V. We include it for the sake of
clarity: for schemes which do not perform the key-pair validity check, this issue must be considered.

6

this sort of behaviour in strong decryption oracles, we add the last step to the oracle definition. This manages the
decryption oracle state, and ensures that the validity checking algorithm can access it in each query.

SPECIFIC DEFINITIONS. Previous attempts to define strong decryption oracles have been introduced for certificate-
less public-key encryption, where public keys are not authenticated [ARPO3!/DLPOS]|. These definitions implicitly
adopt validity criteria which are adequate only for the concrete schemes discussed in the referred works.

In the definition proposed in [ARPO3] the authors simply describe the oracle as providing “correct decryptions”
even though the secret key could be unknown. A close analysis of the presentation in this work indicates that
“correct decryption” is defined through a search for a message/randomness pair in the domain of the encryption,
similarly to the first validity criterion presented above. However, the unique decryptability issue is implicit in the
definition, since the concrete scheme the authors consider ensures that the encryption algorithm fails when queried
with an invalid public key. Extending this definition to encryption schemes in general results in the following
validity criterion, which explicitly checks for public key validity:

Vpk(c, PK, m,7[[r") := ¢ = Enc(m, PK;7) A (%, PK) = Gen(r").

Note that this is equivalent to the validity relation in Equation |1| for schemes which check for public key validity
in the encryption algorithm. Alternatively, a solution adopted in literature [FisO5] is to restrict the class of adver-
saries to those which query only valid public keys. In our view, such a restriction on the adversary’s behaviour is
unjustified, and we will look for alternatives which guarantee stronger security.

In a more recent work [DLPOS], the strong decryption oracle is described as constructing a private key that
corresponds to the queried valid public key, and then using that key to decrypt the ciphertext. The oracle then stores
the extracted secret key to be reused in subsequent queries under the same public key. This definition is more in
line with the intuition that a decryption oracle should reflect the behaviour of the decryption algorithm, and it is
also consistent with the stateful operation of the standard decryption oracle. We can capture this definition through
the algorithms presented in Figure 2] Note that, for those schemes in which there is a unique valid private key
per public key or for those schemes where all valid secret keys behave consistently for all possible, even invalid,
ciphertexts, the oracle resulting from these algorithms will be identical to the one using the criterion in Equation 2]

procedure V(c, PK, m, r,st[V]): procedure U(c, PK, R, m, r, st[V]):

(SK’, PK’) < Gen(r) (SK’, PK’) < Gen(r)

If PK’ # PK V ((SK, PK) € st[V] A SK’ # SK) Return F If PK’ # PK V (SK, PK) € st[V], Return st[V]
If m = Dec(c, SK’, PK’) Return T st[V] < (SK’, PK’) : st[V]

Return F Return st[V]

Fig. 2: Update and validity algorithms for a stateful strong decryption oracle with initial state sto = (SK*, PK*).

The previous discussion indicates that different definitions of a strong decryption oracle can be seen as natural
for particular classes of schemes. However, we can also consider other approaches, which are not so easy to char-
acterise. For example, a straightforward fix to the ambiguity problem described above is to have the oracle simply
return L when it arises. Agreeably, this approach addresses the problem of ambiguity directly, but it is hardly intu-
itive with respect to the operation of public-key encryption schemes. In particular, this definition is best suited for
the class of encryption schemes for which the ambiguity never occurs. However, there is no natural characterisation
of this class of schemes.

As a final motivation for a general definition of a strong decryption oracle, let us look at RSA-OAEP [FOPS04].
The non-malleability properties of (a modified version of) this scheme are analysed by Fischlin [FisO3] using a
model related to the decryption oracle associated with Equation[I] However, the analysis is restricted to adversaries
that only query valid public keys. For such adversaries, the resulting oracle is identical to that resulting from
Equation [2} as the decryption algorithm of the scheme checks for key-pair validity and recovers the random coins

7

used in encryption. However, once this restriction is dropped, the oracles are no longer equivalent. Security with
respect to Equation [2]is still implied by Fischlin’s analysis but, with respect to Equation [I]it remains an open issue.

SIMPLIFICATION. We now characterise a class of schemes for which the above variants of strong decryption or-
acle collapse into a simpler definition. This class consists of encryption schemes which perform checks both at
encryption and decryption stages. They check for public key validity upon encryption, returning a failure symbol
if the key is invalid. Furthermore, in decryption, they check both key-pair validity and that the input ciphertext
lies in the range of the encryption algorithm. Note that for such schemes, whenever encryption and decryption do
not fail, then correctness ensures that the set of messages which can be obtained using any of the validity criteria
above coincide, and have cardinality 1. The simplified version of the strong decryption oracle that we arrive at is
shown in Figure [3] The scheme that we present in Section [5| has been designed so that it belongs to this class of
encryption schemes, and could therefore be analysed using this simpler oracle. Indeed, this observation is central
to our argument that we propose a simpler and more convenient security model in which to analyse schemes that
aim to achieve complete non-malleability.

procedure SDecrypt(c, PK):
m <—g {m : 3SK, m = Dec(c, SK, PK)}
Return m

Fig. 3: Simplified definition of strong decryption for schemes which perform all checks. The search over m excludes L.

4 Security under strong chosen-ciphertext attacks

In this section, we use the general definition of a strong decryption oracle in Figure] to extend different security
models for encryption schemes. This allows for a uniform treatment of strong security models, some of which have
been independently proposed in literature. Then, we investigate the relations among the resulting security notions,
as well as those in [[F1s05/VVOS]].

4.1 Indistinguishability of ciphertexts

We now introduce ciphertext indistinguishability under strong chosen-ciphertext attacks as the natural extension of
the standard notions of security for public-key encryption schemes. The IND-SCCAx advantage of an adversary A
for x = 0, 1, 2 against a public-key encryption scheme [1is defined by

Adviidse(A) := 2. Pr [IND-SCCAxf = T| — 1,

where game IND-SCCAXx is shown in Figure 4 Implicit in this definition are the descriptions of the U and V
algorithms, which are fixed when analysing a scheme in the resulting IND-SCCAx model. As seen in the previous
section, one can make general claims of security and still use a simple definition for the strong decryption oracle
(Figure[3) by showing that the scheme satisfies a well-defined set of natural properties.

STRONG PARALLEL ATTACKS. Bellare and Sahai [BS06] define a security notion known as indistinguishability
under parallel chosen-ciphertext attacks. Here the adversary can query a vector of ciphertexts to a parallel decryp-
tion oracle exactly once and after its left-or-right query, receiving the corresponding component-wise decryptions.
It is proved in [BS06] that parallel security maps well to non-malleability of encryption schemes. We extend this
model to incorporate strong attacks by defining the IND-SPCAx advantage of an adversary A against an encryption
scheme [1 similarly to above, where game IND-SPCAx is shown in Figure [5] Note that under this definition, and
consistently with previous results, IND-SPCA2 is equivalent to IND-SCCAZ2: the parallel oracle is subsumed by the
strong decryption oracle that the adversary is allowed to call adaptively after the challenge phase. We remark that
8

procedure Initialize(): Game IND-SCCAxp

procedure Left-Right(mg, m1):

I <5 Setup(); _(SK*7 PK") < Gen() ¢ s Enc(m;, PK*)

b <= {0, 1}; List « [J; st[V] < sto List < (c, PK*) : List

Return (I, PK*) Return ¢

procedure SDecrypt(c, PK, R): procedure Finalize(b'):
Return SDecrypt (¢, PK,R) Return (' = b)

Fig. 4: Game defining indistinguishability under strong chosen-ciphertext attacks. An adversary A is legitimate if: 1) It calls Left-Right
only once with mg, m; € MsgSp(PK) such that |mg| = |m;|; and 2) R is polynomial-time and, if x = 0 it does not call SDecrypt, if
x = 1 it does not call SDecrypt after calling Left-Right, and if x = 2 it does not call SDecrypt with a tuple (c, PK) in List.

procedure Initialize(): procedure Left-Right(mo, m1): Game IND-SPCAxp
|+ Setup(); (SK*, PK*) «+— Gen() ¢ <5 Enc(my, PK*) procedure PSDecrypt(c, PK,R):
b <5 {0,1}; List < []; st[V] < sto List + (c,PK*) : List For i from 1 to #c do
Return (I, PK*) Return ¢ m[i] <3 SDecrypt,, \(c[i], PK[i], R[i])
procedure SDecrypt(c, PK, R): Return m
Return SDecrypt ,(c, PK,R) procedure Finalize(b'):

7 Return (V' = b)

Fig.5: Game defining indistinguishability under strong parallel chosen-ciphertext attacks. An adversary .4 is legitimate if: 1) It calls
Left-Right only once with mg, m; € MsgSp(PK) such that [mg| = |my]; 2) It calls PSDecrypt exactly once and after calling
Left-Right, on a tuple (¢, PK, R) such that for i = 1, ..., #c, the tuples (c[i], PK][é]) do not appear in List and R[] are polynomial-time;
and 3) R is polynomial-time and, if x = 0 it does not call SDecrypt, or if x = 1 it does not call SDecrypt after calling Left-Right, or
if x = 2 it does not call SDecrypt with a tuple (c, PK) in List.

a stronger definition can be adopted, whereby the adversary is allowed to query the parallel oracle with a relation
that takes all the ciphertexts simultaneously. We will return to this issue in the next section.

KEM/DEM cOMPOSITION. The standard proof technique [[CS98] to establish the security of hybrid encryption
schemes consisting of a secure keys encapsulation mechanism (KEM) and a secure data encryption mechanism
(DEM), fails to extend to the strong chosen-ciphertext models (strong security for KEMs can be defined in the
natural way). This failure is due to the non-polynomial nature of the decryption oracle, which cannot be simulated
even if one generates the challenge public key. One way to go around this obstacle is to build schemes which permit
embedding an escrow trapdoor in the common parameters, enabling decryption over all public keys.

4.2 Complete non-malleability

Turning our attention to strong notions of non-malleability, or so-called complete non-malleability, we shall see in
this section how strong decryption oracles can be used to bring coherence to existing definitional approaches. In
particular, we introduce new definitions using strong decryption oracles that can be used to establish clear relations
with the strong indistinguishability notion introduced above. We also clarify how the definitions we propose relate
to those previously described in literature.

SIMULATION-BASED DEFINITION. The first definition of complete non-malleability was introduced by Fischlin
in [FisO5]. It is a simulation-based definition which we translated to the games shown in Figure [9)in Appendix [A]
for the case where the simulator returns only a public key/ciphertext pair.

We propose an alternative definition. We define the SNM-SCCAx advantage of an adversary A with respect to
a polynomial-time relation R and a polynomial-time simulator S against a public-key encryption scheme [1 by

AdviIRE(A) := Pr [Real-SNM-SCCAx{; g = T| — Pr [Ideal-SNM-SCCAxf g = T],

where games Real-SNM-SCCAx and Ideal-SNM-SCCAx are as shown in Figure [6] The syntax of public-key en-
cryption that we use includes a Setup procedure and hence we explicitly include the common parameters | as
9

an input to the malleability relation. This approach is consistent with the explicit inclusion of the challenge pub-
lic key, which is shown in [FisO3]] to strictly strengthen the definition. Additionally, for backward compatibility
with [BS06]], our relations also include the state information str. For strong decryption oracles that behave consis-
tently with the standard one for PK*, and for a class of relations that matches those in the original definition, our
definition implies standard assisted and non-assisted simulation-based non-malleability as defined in [BSO6].

A similar line of reasoning does not permit concluding that our definition also implies Fischlin’s complete non-
malleability. A legitimate adversary under Fischlin’s definition is also a legitimate adversary under the definition
in [6] However, we cannot identify a concrete version of the strong decryption oracle that captures the environ-
ment under which such an adversary should run. This is because Fischlin’s model implicitly uses two definitions
of decryption oracle: one during the interactive stages of the game, where the adversary has access to a standard
decryption oracle that decrypts using the challenge secret key, and a second one in the Finalize stage, where the
ciphertext produced by the adversary is decrypted by searching through the message/randomness space. We justify
our modelling choice with two arguments. Firstly, the construction of Finalize in Fischlin’s definition makes it
impossible to prove that this security model is stronger than the apparently weaker definition of non-malleability
proposed in [BS06], which uses the standard decryption oracle to recover messages from the ciphertexts output by
the adversary (recall the particular case of invalid ciphertexts under a valid public key, for which the two interpre-
tations of valid decryption results do not coincide). This suggests that using a consistent definition of a (strong)
decryption oracle in all stages of the game is a better approach. Secondly, if this change were introduced in Fis-
chlin’s definition, then this would simply be a special case of our more general definition.

procedure Initialize(): procedure SDecrypt(c, PK,R'): Game Real-SNM-SCCAxn r
/
| N Setup(); (SK*, PK") «—5 Gen() Return SDecrypty, v (c, PK, R') procedure Finalize(c, PK,R):
List < [J; St[\ﬂ sto procedure Encrypt(M, stgr): For i from 1 to #c do
Return (I, PK*) m <—g M(); ¢ <= Enc(m, PK*) m[i] + SDecrypt(c[i], PK[:], R[i])
List < (c, PK*) : List Return R(I, m, m, ¢, PK*, PK, M, stg)
Return ¢
procedure Initialize(): procedure SDecrypt(c, PK, R'): Game Ideal-SNM-SCCAxn.q
. * * Return SDecrypt,, \(c, PK,R’
I T/ss Setup(); (SK*, PK*) <5 Gen() yPtuv() procedure Finalize(c, PK, R, M, stg):
Sl‘:eEtu]rr:IStPOK*) For ¢ from 1 to #c do
’ m[i] + SDecrypt(c[i], PK[:], R[i])
m <—g M()

Return R(I, m, m, ¢, PK*, PK, M, str)

Fig. 6: Games defining simulation-based complete non-malleability under strong chosen-ciphertext attacks. An adversary A, playing the real
game, is legitimate if: 1) It calls Encrypt once with a valid M; 2) R’ queried to SDecrypt is computable in polynomial time; if x = 0 it
does not call SDecrypt; if x = 1 it does not call SDecrypt after calling Left-Right; and if x = 2 it does not call SDecrypt with a
tuple in List; and 3) It calls Finalize with a tuple such that all relations in R are computable in polynomial time and, for i = 1,..., #c,
the tuples (c[¢], PK[¢]) do not appear in List. A non-assisted simulator, playing the ideal game, S is legitimate if: 1) It calls Finalize with
a valid M; and 2) It does not call SDecrypt. An assisted simulator, playing the ideal game, is legitimate if: 1) It calls Finalize with a
valid M; 2) R” queried to SDecrypt is computable in polynomial time; and 3) If x = 0 it does not call SDecrypt.

COMPARISON-BASED DEFINITION. The simulation-based definition due to Fischlin was later reformulated by
Ventre and Visconti [VVO08] as a comparison-based notion. The game underlying this definition is shown in Fig-
ure [10]in Appendix [A] We introduce an alternative definition based on the CNM-SCCAx game shown in Figure
and define CNM-SCCAx advantage of an adversary A against an encryption scheme [T as

Adv{™ s (A):= Pr [CNM-SCCAx{} = T|b=1]—Pr [CNM-SCCAx} = T| b=0]
10

Our definition differs from that given in [VV08] in the following aspects. We provide the adversary with strong
decryption oracles in various stages of the attack. In both models the adversary is allowed to return a vector of
ciphertexts, although in [VVOS] it is restricted to returning a single public key. Also, procedure Finalize does not
automatically return F if any of the ciphertexts is invalid. The definition in [VV08] would therefore be weaker than
ours, were it not for our modelling choice in the Finalize procedure. In Ventre and Visconti’s definition, the rela-
tion R is evaluated by a complete search over (m[1],71) x ... x (m[#c], r4c). In our definition we have constrained
the adversary to performing the search using the strong decryption oracle independently for each component in c,
before evaluating R. This option is, not only consistent with the standard notions of non-malleability for encryption
schemes [BS06], but is also essential to proving equivalence among the different notions we propose.

procedure Initialize(): procedure Encrypt(M): Game CNM-5CCAxn
LF$ s?)tulp(')l;_'(SK*’ P-K*)VH$ Gen() Mo, M1 <=3 M(%K* procedure Finalize(c, PK, R, R):
+s {0, },*ISt + [J; st[V] sto C g En(l:(ml7)* For i from 1 to #¢ do
Return (I, PK*) List < List : (c, PK*) mli] « SDecrypt(c|i], PK[i], R[i])
! ? b
procedure SDecrypt(c, PK,R’): Return ¢ Return R(l, my, m, ¢, PK*, PK)
Return SDecrypt, y(c, PK,R’) T ’

Fig. 7: Game defining comparison-based complete non-malleability under strong chosen-ciphertext attacks. An adversary A is legitimate if:
1) It calls Encrypt once with a valid M; 2) It always queries SDecrypt with R’ computable in polynomial time; if x = 0 it does not call
SDecrypt; if x = 1 it does not call SDecrypt after calling Left-Right; and if x = 2 it does not call SDecrypt with a tuple (c, PK)
in List; 3) It calls Finalize with a tuple (c, PK, R, R) such that R and all the elements of R are computable in polynomial time and, for
i =1,...,7c, the tuples (c[i], PK][é]) do not appear in List.

REMARK. Recall that Ventre and Visconti’s proof [VVOS|| of equivalence between comparison and (non-assisted)
simulation-based complete non-malleability holds (for x % 0) for a restricted class of relations, called lacking
relations, which do not depend on the challenge public key given to the adversary. We note that our equivalence
proof for assisted simulators does not restrict the class of relations under which equivalence holds. Furthermore,
such a restriction would be pointless in our definitions for non-assisted simulators, since the proof technique of
generating a new key-pair is no longer sufficient to guarantee that the simulator can answer strong decryption
queries under arbitrary public keys.

4.3 Relations among notions of security

In this section we present a set of theorems that establish equivalence between the security notions we have pro-
posed above. The proofs of these theorems can be found in Appendices [B] [C| and [D] respectively, and follow the
strategy used by Bellare and Sahai in [BS06]. We note that these results hold for any instantiation of the general
strong decryption oracle we introduced in Figure [T} which provides further evidence that the security models we
are relating are, in fact, one and the same notion presented using different formalisms. Using a standard hybrid
argument one can show that IND-SPCAXx self-composes. Together with our equivalence result, we may conclude
that our notions of complete non-malleability also self-compose [PSVO7].

Theorem 1 (IND-SPCAx = CNM-SCCAX). Let Acym be a CNM-SCCAXx adversary against 1. Then there is an
IND-SPCAXx adversary Ainp against [with advantage equal to that of Acnm.

Theorem 2 (CNM-SCCAx = SNM-SCCAX). Let Asnym be a Real-SNM-SCCAx adversary against I and let R
be any polynomial-time relation. Then there is an ldeal-SNM-SCCAx assisted simulator S and a CNM-SCCAx
adversary Acym against T with advantage equal to that of Asnm (with respect to R and S).

Theorem 3 (SNM-SCCAx = IND-SPCAXx). Let Ainp be an IND-SPCAXx adversary against T1. Then there is
a polynomial-time relation R and a Real-SNM-SCCAx adversary Asnm such that Ainp’s advantage is upper-
bounded by Asnm’s advantage with respect to any ldeal-SNM-SCCAx assisted simulator S.

11

5 An efficient completely non-malleable scheme

The only completely non-malleable scheme (without random oracles) known prior to this work, was that of Ventre
and Visconti [VVOS]], which relied on generic (and hence inefficient) zero-knowledge techniques. In this section,
we will present an efficient and strongly secure scheme based on standard assumptions.

Our scheme, which is shown in Figure |8} uses a computational bilinear group scheme I and a family of hash
functions ¥ mapping G x G x G? to bit strings of size n as described in Appendix The scheme’s design is based
on the certificateless encryption scheme of [DLPOS|, which in turn is based on Water’s identity-based encryption

scheme [Wat05]]. The construction also uses Water’s hash [Wat05]], defined by WH(w) := uo [}, ugwh.

procedure Setupy 5 . (): procedure Enc(m, PK): procedure Dec(c, SK, PK):
k <5 Key(); (@, B, o, - . ., tn) =5 G* x G2 1 <=5 Zp3 (X,Y) = PK (X7S}K/) « PK o
| < (T, Hy, @, B, o, - . ., un) If e(X,) # e(g,Y) Return L Ifg>" # X Vo™ #Y Return L
Return | Ci + m‘e(Ypﬁt);Cz —af (01,02,03) —cC
w <— Hk(Cl,C’Q,PK) w(—Hk(Cl,Cz,PK)
procedure Gen(): C3 + WH(w)" If e(Ca, WH(w)) # e(a, Cs) Return L
T4 Lp; X = g% Y < o ¢+ (C1,Cs,C3) m « C1/e(Cs, B%)
PK+ (X,Y);SK Return ¢ Return m
Return (SK, PK)

Fig. 8: An efficient and strongly secure public-key encryption scheme without random oracles.

VALIDITY ALGORITHMS. We examine which of the validity algorithms exists for this scheme. We assume that
" specifies algorithms to check for group membership, which are used implicitly throughout the scheme. The
MsgSp algorithm is the same as checking membership in G7. The SKSp algorithm checks membership in Z,,.
The KeySp algorithm checks if g = X and o> = Y where (X,Y) = PK. The PKSp algorithm checks if
e(X,a) = e(g,Y). Finally, we show that decryption rejects all ciphertexts outside the range of encryption. Let
(C1,Ca,Cs5) be a ciphertext. Then, there exists a message m and a ¢ such that this ciphertext can be written as
(m-e(Y,)}, at, C3). If this ciphertext is outside the range of encryption, then C3 = WH(w)*' for some ¢’ # t. But
then e(Cy, WH(w)) = e(a, WH(w))? # e(a, WH(w))! = e(a, C3) and the equality check in decryption fails.

The next theorem states the security properties of our scheme. We use the proof technique recently proposed by
Bellare and Ristenpart [BR09] and, through a change in the game hopping strategy, we are able to slightly improve
the reduction. See Appendix [F| for full details.

Theorem 4 (Informal). If the DBDH assumption holds and the hash function family ¥ is collision resistant then
the encryption scheme above is IND-SCCA2 secure (with respect to definition in Figure[3)).

Although our equivalence theorems imply that this scheme admits a black-box assisted simulator, it does not
contradict Fischlin’s impossibility results on black-box simulation [FisO5]]. First note that Fischlin’s impossibility
result is in the plain model whereas our scheme has a setup procedure. Furthermore, our definitions do not require
the opening of message/randomness pairs, whereas Fischlin requires this to derive his impossibility result for as-
sisted simulators. We can indeed construct a non-assisted simulator for our scheme through a direct proof, but this
requires modifying the common parameters in an essential way to simulate the strong decryption oracle. Hence
this result does not hold for general relations, but only for those which ignore the | presented at their inputs (con-
sistently with [VVO08]] we call these I-lacking relations). Furthermore, using a similar technique, we are also able to
show (through a direct proof) that the zero-knowledge-based construction in [VV08] is completely non-malleable
with respect to black-box simulators for a class of relations that are I-lacking (I in this case comprises the common
reference string). We note that this is a better result than that obtained in [V VO8], since there the class of relations
must be both I-lacking and PK-lacking (i.e. they must also ignore the PK at their inputs).

12

Acknowledgments.

The authors were funded in part by eCrypt II (EU FP7 - ICT-2007-216646) and FCT project PTDC/EIA/71362/2006.
The second author was also funded by FCT grant BPD-47924-2008. Research was sponsored by US Army Research
laboratory and the UK Ministry of Defence and was accomplished under Agreement Number W911NF-06-3-0001.
The views and conclusions contained in this document are those of the authors and should not be interpreted as
representing the official policies, either expressed or implied, of the US Army Research Laboratory, the U.S. Gov-
ernment, the UK Ministry of Defense, or the UK Government. The US and UK Governments are authorized to
reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

References

ABN10. Michel Abdalla, Mihir Bellare, and Gregory Neven. Robust encryption. In Daniele Micciancio, editor, TCC, volume 5978 of
Lecture Notes in Computer Science, pages 480—497. Springer, 2010.

ARPO3. Sattam S. Al-Riyami and Kenneth G. Paterson. Certificateless public key cryptography. In Chi-Sung Laih, editor, ASIACRYPT,
volume 2894 of Lecture Notes in Computer Science, pages 452—473. Springer, 2003.

BBMO00. Mihir Bellare, Alexandra Boldyreva, and Silvio Micali. Public-key encryption in a multi-user setting: Security proofs and
improvements. In Bart Preneel, editor, EUROCRYPT, volume 1807 of Lecture Notes in Computer Science, pages 259-274.
Springer, 2000.

BDPR98. Mihir Bellare, Anand Desai, David Pointcheval, and Phillip Rogaway. Relations among notions of security for public-key
encryption schemes. In Krawczyk [Kra9§|], pages 26—45.

BFO03. Dan Boneh and Matthew K. Franklin. Identity-based encryption from the weil pairing. SIAM J. Comput., 32(3):586-615, 2003.

BKO3. Mihir Bellare and Tadayoshi Kohno. A theoretical treatment of related-key attacks: Rka-prps, rka-prfs, and applications. In Eli
Biham, editor, EUROCRYPT, volume 2656 of Lecture Notes in Computer Science, pages 491-506. Springer, 2003.

BRO6. Mihir Bellare and Phillip Rogaway. The security of triple encryption and a framework for code-based game-playing proofs. In
Serge Vaudenay, editor, EUROCRYPT, volume 4004 of Lecture Notes in Computer Science, pages 409-426. Springer, 2006.

BRO9. Mihir Bellare and Thomas Ristenpart. Simulation without the artificial abort: Simplified proof and improved concrete security
for waters’ ibe scheme. In Antoine Joux, editor, EUROCRYPT, volume 5479 of Lecture Notes in Computer Science, pages
407-424. Springer, 2009.

BSO06. Mihir Bellare and Amit Sahai. Non-malleable encryption: Equivalence between two notions, and an indistinguishability-based
characterization. Cryptology ePrint Archive, Report 2006/228, 2006. http://eprint.iacr.org/2006/228,

Cra08. Ronald Cramer, editor. Public Key Cryptography - PKC 2008, 11th International Workshop on Practice and Theory in Public-Key
Cryptography, Spain, 2008. Proceedings, volume 4939 of Lecture Notes in Computer Science. Springer, 2008.

CS98. Ronald Cramer and Victor Shoup. A practical public key cryptosystem provably secure against adaptive chosen ciphertext attack.
In Krawczyk [Kra98§]], pages 13-25.

DDNO00. Danny Dolev, Cynthia Dwork, and Moni Naor. Nonmalleable cryptography. SIAM J. Comput., 30(2):391-437, 2000.

DLP08. Alexander W. Dent, Benoit Libert, and Kenneth G. Paterson. Certificateless encryption schemes strongly secure in the standard
model. In Cramer [Cra08], pages 344-359.

Fis05. Marc Fischlin. Completely non-malleable schemes. In Luis Caires, Giuseppe F. Italiano, Luis Monteiro, Catuscia Palamidessi,
and Moti Yung, editors, ICALP, volume 3580 of Lecture Notes in Computer Science, pages 779-790. Springer, 2005.

FOPSO04. Eiichiro Fujisaki, Tatsuaki Okamoto, David Pointcheval, and Jacques Stern. Rsa-oaep is secure under the rsa assumption. J.
Cryptology, 17(2):81-104, 2004.

GM84. Shafi Goldwasser and Silvio Micali. Probabilistic encryption. J. Comput. Syst. Sci., 28(2):270-299, 1984.

Kra98. Hugo Krawczyk, editor. Advances in Cryptology - CRYPTO 98, 18th Annual International Cryptology Conference, Santa
Barbara, California, USA, 1998, Proceedings, volume 1462 of Lecture Notes in Computer Science. Springer, 1998.

PPV08. Omkant Pandey, Rafael Pass, and Vinod Vaikuntanathan. Adaptive one-way functions and applications. In David Wagner, editor,
CRYPTO, volume 5157 of Lecture Notes in Computer Science, pages 57-74. Springer, 2008.

PSV07. Rafael Pass, Abhi Shelat, and Vinod Vaikuntanathan. Relations among notions of non-malleability for encryption. In ASI-
ACRYPT, pages 519-535, 2007.

VVO08. Carmine Ventre and Ivan Visconti. Completely non-malleable encryption revisited. In Cramer [Cra08]], pages 65-84.

Wat05. Brent Waters. Efficient identity-based encryption without random oracles. In Ronald Cramer, editor, EUROCRYPT, volume
3494 of Lecture Notes in Computer Science, pages 114—127. Springer, 2005.

13

http://eprint.iacr.org/2006/228

A Existing definitions of complete non-malleability

Fis-Real-SNM-SCCAxn r
procedure Initialize():

| s Setup(); (SK*, PK*) +—5 Gen()
List <]
Return (I, PK*)

procedure Encrypt(M):

m < M(); ¢ <—s Enc(m, PK*)
List <— (¢, PK*) : List

Return ¢

procedure Decrypt(c):
Return Dec(c, SK*, PK*)

procedure Finalize(c, PK, stgr):

If 3m’,r ¢ = Enc(m’, PK;7) AR(l,m,m’, ¢, PK*, PK, M, stg)
Return T Else Return F

procedure Initialize(): Fis-ldeal-SNM-SCCAxn r
| s Setup(); (SK*, PK*) +—5 Gen()
Return (I, PK*)

procedure Finalize(PK, c, str, M):

If 3m’,r ¢ = Enc(m’, PK;) AR(l,m,m’, ¢, PK*, PK, M, stR)
Return T Else Return F

procedure Decrypt(c):
Return Dec(c, SK*, PK*)

Fig. 9: Fischlin’s definition of complete non-malleability [[Fis05]]. The game on top is the real game played by the adversary, and the one at
bottom is the ideal game played by a simulator. An adversary A is legitimate if: 1) It calls Encrypt once with a valid M; 2) If x = 0 it
does not call Decrypt; if x = 1 it does not call Decrypt after calling Left-Right; and if x = 2 it does not call Decrypt with a tuple
in List; 3) It calls Finalize with a tuple (c, PK, stg) such that tuple (c, PK) is not in List. A non-assisted simulator S is legitimate if: 1) It
calls finalize with a valid M; and 2) It does not call Decrypt. An assisted simulator is legitimate if: 1) It calls finalize with a valid M; and
2) For x = 0, it does not call Decrypt (in this case it is equivalent to a non-assisted simulator).

Fischlin’s definition of complete non-malleability adapted to encryption schemes with a Setup procedure is
shown in Figure[9] The advantage of an adversary is:

AdviFENIsc@(4) ;= Pr [Fis-Real-SNM-SCCAx{{ g = T| — Pr [Fis-ldeal-SNM-SCCAXf g = T] .

VV-CNM-SCCAxnp
procedure Initialize():

| <5 Setup(); (SK*, PK*) <—5 Gen()
b < {0,1}; List « []
Return (I, PK*)

procedure Encrypt(M):

Mo, My <—g M(), C<g Enc(mo, PK*)
List < (¢, PK*) : List

Return ¢

procedure Decrypt(c):
Return Dec(c, SK*, PK*)

procedure Finalize(c, PK, R):

If 3m, r; s.t. c[i] = Enc(m[3], PK; ;) A R(l, my, m, ¢, PK*, PK)
Return T Else Return F

Fig. 10: Definition of complete non-malleability due to Ventre and Visconti [VVO08]. An adversary A is legitimate if: 1) It calls Encrypt
once with a valid M; 2) If x = 0 it does not call Decrypt; if x = 1 it does not call Decrypt after calling Left-Right; and if x = 2 it
does not call Decrypt with a tuple in List; 3) It calls Finalize with a tuple (c, PK, R) such that R is computable in polynomial time and
fori =1,...,#c, the tuples (c[¢], PK) do not appear in List.

The comparison-based definition of complete non-malleability due to Venter and Visconti is shown in Figure[T0}
The advantage of an adversary is defined by:

Advyymse@(4) = 2 Pr [VV-CNM-SCCAx{} = T] — 1.

B Proof of Theorem[1: IND-SPCAx = CNM-SCCAXx

Proof. Let Acym be a CNM-SCCAx adversary attacking . We construct an IND-SPCAx adversary Ajnp attacking
I1 with the same advantage as shown in Figure

14

adversary Ano Amo: query SDecrypt(c, PK,R):

Query SDecrypt(c, PK,R) to get m

Run Acnwm in the environment below.

Initialize(): Return m

Get (I, PK*) from Initialize() query Encrypt(M):

Return (I, PK*) mo, m1 g M()

Finalize(c, PK, R, R): Query Left-Right(mo, m1) to get c
Return ¢

Query PSDecrypt(c, PK,R) to get m
If R(l, m1, m, ¢, PK*, PK) Return 1 Else Return 0

Fig. 11: An IND-SPCAx adversary based on a CNM-SCCAx adversary.

One can check by examining this adversary that:
Pr [lND-SPCAxﬁ'ND N T‘ bno = 1] = Pr [CNM-SCCAx;‘,‘CNM N T‘ benm = 1], and
Pr [lND-SPCAx;"ND N T‘ binp = 0] = Pr [CNM-SCCAXF,‘CNM N T‘ benm = 0],

where bnyp and by are the bits chosen in the Initialize procedures of IND-SPCAx and CNM-SCCAx games
respectively, and the theorem follows. O

C Proof of Theorem[2Z: CNM-SCCAx = SNM-SCCAXx

Proof. Let Asym be a Real-SNM-SCCAXx adversary against I1, and Rgyyv a polynomial-time relation. We show
that comparison-based non-malleability implies the existence of a canonical assisted simulator that satisfies the
simulation-based definition of non-malleability. We construct the assisted simulator S as shown in Figure [12] We
then construct a CNM-SCCAx adversary Acnym (Figure that, depending on the hidden bit in the CNM-SCCAx
game, runs Agym in an environment that is identical to the real game, or to the way it is run by S in the ideal game.

This allows us to show that Agyn’s advantage with respect to this simulator is the same as .Acywm’s advantage in
the CNM-SCCAx game.

adversary S:
‘Run Asyw in the environment below. query SDecrypt(c, PK, R):
Query SDecrypt(c, PK,R) to get m
Initialize(): Return m
Wfrom Initialize() query Encrypt(M, str):
Return (I, PK*) m s M()
Finalize(c, PK, R): ¢ <5 Enc(m, PK*)
Return (¢, PK, R, M, stgr) Return ¢

Fig. 12: Construction of an ldeal-SNM-SCCAXx simulator based on a Real-SNM-CCAx adversary.

Let b denote the bit chosen in the CNM-SCCAx game. One can see from the definition of Acywm that:
Pr [CNM-SCCAX#CNM = T’ b=1]=Pr |:Rea|_SNM_SCCAX»éS§\IM - T} '
sIRSNM

This is because if b = 1, in both cases the relation will be evaluated on the message which is encapsulated under
the challenge ciphertext given to Agnm-

By substituting the simulator &S in the Ideal-SNM-SCCAxp Rrg,,, game we also see that:

Pr [CNM-SCCAXI™™ = T|b = 0] = Pr [Ideal-SNM-SCCAXS gy, = T]
15

adversary Acnm:
Run Asnwm in the environment below.

Initialize():
Get (I, PK*) from Initialize()
Return (I, PK*)

Finalize(c, PK,R):

Return (¢, PK, R, Rcnm)

query SDecrypt(c, PK,R):

Query SDecrypt(c, PK,R) to get m
Return m

query Encrypt(M, str):

Query Encrypt(M) to get ¢
Return ¢

RCNM(', m, m,cC, PK, PK) = RSNM(L m, m,cC, PK7 PK7 M, StR)

Fig. 13: Construction of a CNM-SCCAx adversary based on a Real-SNM-SCCAXx adversary.

This is because if b = 0, in both cases the relation will be evaluated on a message which is chosen independently
of the challenge ciphertext given to Agnm.

The results follows by subtracting the above equalities.

D Proof of Theorem3: SNM-SCCAx = IND-SPCAXx

Proof. We prove the theorem for x = 2. The theorem can be proved using techniques in [BS06] for the x = 0, 1.
Let Ajnp be an IND-SPCA2 adversary attacking . We construct a Real-SNM-SCCAZ2 adversary Agnm attacking
I1 as shown in Figure This adversary is geared to work with the relation R as shown in Figure Note that
appending 0 to the re-encrypted messages ensures that {mg, m;} N {Omg,0m;} is empty and hence the returned

ciphertext is new.

adversary Asnm:
Run Ajnp in the environment below.

Initialize():
Get (I, PK*) from Initialize()
Return (I, PK*)

Finalize(d'):

c[1] <—s Enc(0m;/, PK*)
PK[1] + PK*
R[1]:=T

Return (¢, PK, R)

query SDecrypt(c, PK,R):

Query SDecrypt(c, PK,R) to get m
Return m

query PSDecrypt(c, PK,R):
For ¢ from 1 to #c

Query SDecrypt(c[i], PK[i], R[i]) to get m[i]
Return m

query Left-Right(mo, m1):

M <« {mo, m1}; str < (mo, m1)
Query Encrypt (M, str) to get ¢
Return ¢

Fig. 14: Construction of an IND-SPCAx adversary based on a Real-SNM-SCCAx adversary.

relation R(l, m, m, c, PK, PK, M, stgr):

(m()7 ml) < str

If mg =m1 VM # {mg,m:} Return F

If #PK # 1V PK[1] # PKV #m # 1 Return F
If m{1] = Om Return T Else Return F

Fig. 15: The relation R.

16

We claim that for the relation in Figure|15|we have:
Pr [Real-SNM-SCCAXI# = T| = Pr [IND-SPCAXI™ = T] .

This can be seen from Figures and [15]| and noting that in game IND-SPCAx we may restrict the adversary
to output two distinct messages with no loss in advantage. This tells us that the value computed by the relation
identifies the challenge message.

We also claim that for any simulator S and for the relation in Figure [I5| we have that:

1
Pr [Ideal-SNM-CCAzp g = 1] < o

This holds since the simulator gets no information about the encrypted plaintexts, and the probability that it satisfies
the other conditions of relation R is at most 1.
The result now follows from the above two equations and using definitions of advantage. O

E Bilinear groups and collision resistance hashing

BILINEAR GROUPS. We say [= (G, G, p, e) is a (symmetric) bilinear group scheme if: 1) G, and G are groups
of prime order p; and 2) e : G x G — G is a non-degenerate, efficiently computable bilinear map [BF03]]. For a
group G, we define G* := G \ {1} where 1 is the identity element of G with respect to its group operation.

THE DECISIONAL BILINEAR DIFFIE-HELLMAN PROBLEM. The DBDH advantage of an adversary A against I is
Adv"(A) := 2. Pr [DBDHA = T] — 1.

where game DBDH is shown in Figure

procedure Initialize(): o) Game DBDHr
a,b,c s Lp;d < {0,1} procedure/: Finalize(d'):

Ifd = 1 Then W « e(g, g)™° Else W <5 Gr Return (d' = d)

Return (g%, g°, g¢, W)

Fig. 16: Game defining the decisional bilinear Diffie-Hellman problem.

COLLISION RESISTANT HASH FAMILY. A hash family ¥ = (Key, H) is defined via a pair of probabilistic polyno-
mial-time algorithms as follows. Key is the probabilistic key generation algorithm which outputs a key k. Algorithm
H takes as input a key k and a string w € {0, 1}* and outputs a string Hy (w) € {0, 1} for a polynomial £(-).

The CR advantage of an adversary .4 against hash family ¥ is defined by

Adv§(A):= Pr[CRE = T].

where CR is the game shown in Figure

procedure Initialize(): Game CRy
k <5 Key() procedure Finalize(w, w’):
Return k If (w" # w) A He(w) = Hy(w’) Return T Else Return F

Fig. 17: Game defining collision resistance.

17

F Proof of Theorem4: DBDH A CR = IND-SCCA2

First, we give a precise statement of the theorem.

Theorem 5. Let [be a bilinear group description, n > 1 an integer, ¥ a family of hash functions, and I1 the
encryption scheme in Figure[8|instantiated for these parameters. Let A be an IND-SCCA2 adversary with advan-
tage € > 0. Suppose A makes at most Qpec € [1...pe/6n) strong decryption queries. Then there exist a DBDH
adversary A" against I and a CR adversary A" against ¥ such that:

62

Ad dbdh / 1/2Adv "o - -
v (A + 1/ vy (A7) > 187Qpe + 3¢

Proof. The proof proceeds by a sequence of games Game, to Games. All games involve an attacker .A who attempts
to guess a hidden bit d for which she eventually outputs a guess d’. For all 7, we call Win; the event that A is
successful (i.e. that d’ = d) in Game;. Formally, this matches the case in which the corresponding game returns 1.
We also call BD/ to the event that Game; sets the Bad; flag.

Before presenting the game sequence, we introduce the following definitions. Let m = [6Qpec /€|, where Qpec
and € are as stated in the Theorem formulation. Also, let x = (zq,...,z,) € X, where X = [—n(m — 1)..0] x
([0.m —1])" and y = (yo, - - .,yn) € Y where Y = Z7*!. Finally, for w € {0,1}", let

Fix,w) =20+ 3 wifw): Gly, w) =yo+ > wifw) mod p
i=1 i=1

Note that while the computation of G above is over Zj, that of F is over Z.

Gamey: In this game, shown on the left side of Figure[I8] A is interacting with the IND-SCCA2 attack environment
(the Bad flags cause no effect in the execution). Note that, following the security model definition, we assume that
the environment can answer decryption queries without knowing the matching secret values for changed public
keys. We also assume without loss of generality that the adversary performs exactly (Jpec decryption queries, all
of them different. Let D = {(c1, PKi,w1), ..., (cQper PKQpe> WQpe.)} be the list of tuples involved in these
decryption queries. For this game, we have

2-Pr[Wing] — 1 =¢

Game;: This game is identical to Gameg except that:

1. The environment generates o and 3 differently by making o = ¢” and 3 = ¢°, for random 7 < Zyand b € Zyp.
Note that, since the distribution of « and [is identical to that in the previous game, the way these parameters
are generated does not affect the analysis.

2. Two of the cases where environment sets the Bad; flag now cause extra code to be executed: the environment
will select a random d’ and use this to calculate its final output. These cases correspond to the adversary causing
a collision in the Hy function.

Lemma 1. There exists a PPT adversary A" such that:
Pr[BD}] = Pr[BDi] = Adv§(A")

Furthermore, we have:
Pr[Wing A =BD}] = Pr[Win; A —BD]]
18

Gamey: Here, we change the code after the setting of Bads. For this hop, we must follow the same line of reasoning
as described in [BRO9], which permits relating the adversary’s probability of success in both games by finding upper
and lower bounds for Pr[-BD?|-BD1], which are very close to each-other.

Lemma 2. There exists a PPT adversary A" such that:

2 QDec - 1
n(m — 1)+1(1 m) Pr[Wino] — nim-—1)+1

2 Pr[Wing] — 1> — Adv§ (A"
Gamegs: In this game we rearrange the generation of the common parameters and move the setting of Bads to
the points in the game where the relevant hash values are calculated. These changes have no influence in the

distribution of the game’s output or in the probability of occurrence of BD events. Note that we now have H(w) =
BFeew) oGlyw),

Game4: We now change the way in which the challenge is generated, and also the also the algorithm for calculating
answers to decryption queries. We note that this means that this game is identical to the previous one, unless BDi
occurs. This means that Pr[Winy A =BDj3] = Pr[Wing A =BDj3] = Pr[Winy A ~BD3], and also Pr[BDj] =
Pr[BD3] = Pr[BDj]. Because of the structure of the games, which forces Pr[Win;|BD?] = 1/2 this means that
Pr[Winy] = Pr[Wins] = Pr[Wing].

Games: We finally change the way the environment generates the challenge public key and the challenge ciphertext.
The entire game environment now depends on random elements A, B, C € G and also on a random element T" €
Gr. Call a, b, ¢ to the (unknown) discrete logarithms of A, B, C' with respect to g. Observe that, if ' = e(g?, ¢°)°
then Gameg is in fact identical to Game,. Furthermore, since the challenge ciphertext now holds no information on
the encrypted message, as 1" operates as a one-time pad, we must have Pr[Wins] = 1/2.

Lemma 3. There exists a PPT adversary A’ such that:
Pr[Winy] — 1/2 = Adv®dh(4").

1

We now combine the various inequalities, using § = A=T)FT"

Pr[Wing] — 1/2 = Advi®dh(A4)

Advedh (A +1/2AdvE(A") > 6(1 — QTE:C)Pr[WinO] — g
Addedh(A/) + 1/2Advcr(A//) > 5(1 _ QD“-‘C)(E + }) _ é
r * = m "2 2 2
o QDec QDec
dbdh l cry AN e _ _
AV (') +1/28dvE (A") = T[(1 - <0 D=

We now take advantage of the fact that e < 1 and m = [6Qpec/€] > 6Qpec/€ to derive a simpler expression for
the reduction:

))
Advidh(A) +1/2AdvE (") > 1—;(6 —e—1) = 56
Finally, substituting for 0 and using m = [6Qpec/€] < 6Qpec/€ + 1, we have
1 €

Advdbdh(g/ 1/2Adve (A" s € >
vET A FL2AAVE(AD 2 5T T T 2 TenGne + 3¢

19

Proof (Lemma . First note that the two games are identical unless BD] occurs in lines 141 or 143. The second
part of the lemma and also Pr[BD}] = Pr[BD{] follows directly from this observation and the results in [BRO9].
To obtain the first part of the lemma, we construct an algorithm A" that uses the adversary A to produce a collision
for Hy as follows:

— It runs the adversary according to the rules of Gamej, changing only the way in which line 027 is executed.
Instead of searching for the (m, 7) pair, the algorithm takes advantage of its knowledge of the discrete logarithm
b. Since it is only required to decrypt ciphertexts under well-formed public keys (i.e. a public key PK = (X, Y)
where e(X, a) = e(g,Y)), we can assume that X = ¢g* and Y = o” for some (possibly unknown) value x.
Hence, the decryption oracle will work correctly by calculating:
Ch &

m = =

e(CQ7Xb) e(027ﬁm)

Note that this means that algorithm A" executes in polynomial time, as required.
— When Bad; is set in either line 141 or line 143, the algorithm returns the two Hy inputs that originated the
collision.

We present the description of the algorithm in Figure from which it is possible to infer the execution time of
the adversary indicated in the theorem statement.
From the algorithm description we have that Pr[BD1] = Adv$ (A"), and the lemma follows.
0

Proof (Lemma . We start by noting that the probability of BD% is dependent on the particular set of decryption
queries placed by the adversary, represented by list D, and also on the challenge ciphertext. To deal with this,
we start by observing that the two games are identical until BD% happens, which means that independently of the
particular sequence of adversarial queries, we have:

Pr[Winy A =BD3] = Pr[Win; A -BD?]

Pr[BD?] = Pr[BD3]

We can also write:

Pr[Wing] = Pr[Winy A =BD3] + Pr[Winy A BD3]
r[Win; A =BD?] 4 1/2 - Pr[BD?]
r[Win; A =BD? A BDj] + Pr[Win; A =BD? A =BDj] + 1/2 - Pr[BD? A BD{] 4 1/2 - Pr[BD? A —=BDj]
r[Win; A —-BD? A =BD1] + Pr[BD1] + 1/2 - Pr[BD? A —BDj]

r[Win; A =BD?|-BD}] Pr[-BDj{] 4 1/2 - Pr[BD?|-BD}] Pr[-BD1] + Pr[BD}]

= (1 — Adv§(A”))(Pr[Win; A —-BD?|-BD]}] + 1/2 — 1/2 - Pr[~-BD?|-BDj{]) + Adv§ (A”)

=P
=P
=P
=P

Hence:
2 - Pr[Winy] — 1 > 2- Pr[Win; A -BD?|-BD1] — Pr[-BD?|-BD{] — Adv¥(A")

Defining event W as the occurrence of a particular list of hash values (w*, wy, ..., w;) due to adversarial queries,
conditional independence [BRQ9] allows us to write

Pr[Win; A —-BD? A W|-BD}] = Pr[-BD?|-BD{] Pr[Win; A W|-BDj]

Pr[-BD? A W|-BD1] = Pr[-BD?|-BD}] Pr[W|-BDj]
20

In turn, summing these probabilities over all possible (w*, wy,...,w;), this allows us to re-write our equations
above for all possible adversarial queries as

2 - Pr[Winy] — 1 > 2- Pr[-BD?|-BD}] Pr[Win;|-BD}] — Pr[-BD?/-BD}] — Adv¥ (A")

min

Now, using the results from Lemma([I] we can establish that
2 - Pr[Winy] — 1 > 2 - Pr[-BD?%|-BD1}] Pr[Wing|-BD}] — Pr[-BD?|-BDi] — Adv(A”)
min max
2 - Pr[Winy] — 1 > 2 - Pr[-BD?|-BD}] Pr[Wino] — Pr[-BD?%-BD}] — Adv§ (A")
min max
since in Gameg the occurrence of BD% does not affect the adversary’s probability of success in any way.
To finally obtain the Lemma, we need to provide appropriate lower and upper bounds for Pr[-BD?|-BD1}]. We
start with the lower bound, by writing
Pr[-BD}|-BDi] = Pr[F(x,w*) =0 /\ F(x,w) # 0|-BDj]
e w)ED
We can rewrite this as
Pr[BD}|-BD{] = Pr[F(x,w*) #0 \/ F(x,w)=0/-BDj]
(','{LU)ED
Pr[BD?|-BD1] < Pr[F(x,w") # 0[-BD{] + > Pr[F(x,w*) = 0 A F(x,w) = 0|-BDj]
('7'7w)€D
Following the same reasoning as in [BR09]|, which takes advantage of the fact that, since BD} does not occur, each
w must differ from w* in at least one bit, we have that

1 =
- (1-—)= Pr[-BD?-BD!
n(m—l)—i—l(m) mlfl[i 1

1
- 2—\ 1 < —_ = - 2—\ 1
Pr[-BDF|-BD}] < s = Pr[-BD}-BD}]

Pr[-BD?|-BD1] >

And the Lemma follows.
O

Proof (Lemma . We construct an algorithm A’ that interpolates between Game,4 and Gamejs and solves the DBDH
problem with an advantage which is identical to .A’s capability in distinguishing the two games. A" works exactly
like Games, except that: (1) it takes (A, B,C,T) to be the challenge parameters in the DBDH game; and (2) it
simulates the strong decryption oracle by also applying lines 426* the decryption procedure in line 027 (note that
this means that our algorithm works in polynomial time, as required). We present the algorithm in Figure 20| from
which it is possible to infer the execution time of the adversary indicated in the theorem statement.

It is clear that if 7" = e(A, B)¢ (call this event DBDH), where C' = ¢, then our algorithm is running the
adversary under the rules of Game,4. Conversely, if 7" is a random element in G, then the algorithm is simulating
the environment of Games. This means that we can write

Pr[d = d’ — 1|DBDH| = Pr[Winy]
Pr[d = d'|~DBDH] = Pr[Winj]
and the Lemma follows from
Adv@"(A") = Pr[d = d'|DBDH] + Pr[d # d’|-DBDH] — 1
Advidh(A") = Pr[Winy] — Pr[Wins)

21

lvdo

procedure Initialize(): Gameg
000 k + Key()
001 o+« G*
002 B+ G
003 Forj=0,...,ndo
004 u; < G
005 1< (M Hg, B, u0,...,un)
006 o < Zp; X* g V" — a®
007 PK* « (X*,Y*); SK* « (2%, PK*)
008 D+« {}
009 Return (I, PK*)
procedure SDecrypt(c, PK): Gameg
020 w < Hk(Cl,CQ,PK)
021 Add (c,PK,w) to D
022 Parse (X,Y) «+ PK
023 Ife(X,a)#e(g,Y) Return L
024 Parse (C1,C2,C3) < ¢
025 Ife(C2,H(w)) # e(a, C3) Return L
026 If PK = PK* setm < Cy/e(Ca, 8%)
2027 Else find (r,m) s.t. Enc(m,PK;r) = ¢
028 Return m
procedure Left-Right(mo, m1): Gameg
030 d«+ {0,1};t* < Z,
031 Cf +mg-e(Y*,8);Cs « ot
032 w* + Hy(Cy,Ca, PK)
033 C% < H(w*)"
034 ¢+ (CF,C3,C3)
035 Returnc*
procedure Finalize(d'): Gameg

040 If (C,PK,w*) € D A (¢, PK) # (c*,PK*)
041 Set Bad,

042 Ifﬂ(-,~,wi)7(-,-,w]~)eD | 1# JAw; = w;j
043 Set Bad:

044 x<+ X

045 If F(w*,x) # 022« F(w;,x) = 0

046 Set Bads

047 Return (d' = d)

procedure Initialize(): Game,
000 k< Key()

101 v Zya+g”

102 b+ Zp; 8+ g°

003 Forj=0,...,ndo

004 u — G

005 1+ (I He, a,Bu0,...,un)

006 2 < Zp; X* < g° ;Y* —a®

007 PK* « (X*,Y*); SK* « (2%, PK*)

008 D+ {}

009 Return (I, PK*)

procedure SDecrypt(c, PK): Game;
020 w « Hy(Ch,Ca, PK)

021 Add (c,PK,w) to D

022 Parse (X,Y) «+ PK

023 Ife(X,a) #e(g,Y) Return L

024 Parse (Cl, Cg, 03) < C

025 Ife(Ca,H(w)) # e(a, C3) Return L

026 If PK = PK* setm « C /e(Cs, 5%

027 Else find (r,m) s.t. Enc(m,PK;r) = ¢

028 Return m

procedure Left-Right(mg, m1): Game;
030 d+ {0,1};t" + Z,

031 Cf«mg-e(Y*,B7);C5 « o’

032 w* — Hk(c1, CQ, PK*)

033 C% « Hw*)"

034 c* « (C7,05,C%)

035 Returnc”®

procedure Finalize(d'): Game;

040 If (C,PK,w*) € D A (c, PK) # (c*, PK*)
141 Set Badi; d’ + {0,1}

042 IfEI(-,-,wi),(-,v,wj) eD ‘ z;«ég/\wlzw]
143 Set Bady; d’ + {0,1}

044 x<+ X

045 If F(w*,x) # 0 /<2« F(w;,x) = 0

046 Set Bad,

047 Return (d' = d)

procedure Initialize(): Game,
000 k + Key()

101 v+ Zpa+g"

102 b Zp; B+ g°

003 Forj=0,...,ndo

004 u; +— G

005 |+ (I Hy, @, B,uo,...,un)

006 z* <+ Zp; X~ egz*;Y*eaz*

007 PK* « (X*,Y*); SK* « (z*, PK*)

008 D+ {}

009 Return (I, PK*)

procedure SDecrypt(c, PK): Games
020 w « Hk(C1,C5, PK)

021 Add (c, PK,w) to D

022 Parse (X,Y) « PK

023 Ife(X,a) #e(g,Y) Return L

024 Parse (Cl, CQ, 03) «—cC

025 Ife(Cs,H(w)) # e(a, C3) Return L

026 If PK = PK* setm < C /e(Cs, 5°)

027 Else find (r, m) s.t. Enc(m,PK;r) = ¢

028 Return m

procedure Left-Right(mg, m1): Game,
030 d+ {0,1};t" + Z,

031 Cf«mg-e(Y*,B);C5 o

032 w* Hk(Cl,Cg,PK*)

033 C3 « H(w*)"

034 c*«+ (C7,05,C3%)

035 Return c*

procedure Finalize(d'): Gamey

040 If (C,PK,w*) € D A (c, PK) # (c*, PK*)
141 Set Badi; d’ + {0,1}

042 Ifﬂ(v,~,wi),(-,-,wj) eD ‘ z;é]/\wzzw]
143 SetBadi; d’ «+ {0,1}

044 x<+ X

045 If F(w*,x) # 0 /<0« F(w;,x) = 0

246 Set Bads; d’ + {0,1}

047 Return (d' = d)

Fig. 18: Games Gamey, Game;, and Games.

procedure Initialize(): Games
000 k « Key()
301 v+ Zpoa—ghixeX
32 b ZB gy«
003 Forj=0,...,ndo
304 uj — 3% gYi
005 1<« (I Hy, «,B,uo,...,un)
006 * ¢ Zp; X* = g 1 Y* ¢+ a”
007 PK* + (X*,Y™); SK* «+ (2, PK*)
008 D+« {}
009 Return (I, PK*)
procedure SDecrypt(c, PK): Games
320 W <— Hk(Cl,CQ,PK);If F(w7x):O Set Bads
021 Add (c,PK,w)to D
022 Parse (X,Y) «+ PK
023 Ife(X,a) #e(g,Y) Return L
024 Parse (Cl, CQ, 03) < C
025 Ife(C2,H(w)) # e(a, C3) Return L
026 If PK = PK* setm < Cy/e(Ca, 8%)
027 Else find (7, m) s.t. Enc(m, PK;r) = ¢
028 Return m

N6}

wprocedure Left-Right(mg, m1): Games
030 d+«+ {0,1};t* < Z,
031 Cf+mg-e(Y*,8);Cs + ot
332 w*+ Hy(C1,C2,PK*)If F(w*, x) #0 SetBad;
033 O3 + Hw")"
034 ¢« (CT,035,C%)
035 Return c*
procedure Finalize(d'): Games
040 If (C,PK,w*) € D A (c, PK) # (c*, PK*)
141 Set Bady; d’ + {0,1}
042 IfH(-,~,wi),(-,~,wj)eD | i # jAw; = wj
143 Set Bady; d’ «+ {0,1}
344
345
346 If Bad, thend' < {0,1}
047 Return (d' = d)

procedure Initialize(): Gamey
000 k< Key()

301 vy« Zpa+—ghixe X

302 b Zp B ghy

003 Forj=0,...,ndo

304 u; < B g%

005 |« (I Hy, o, B,uo,...,un)

006 z* + Zp: X* < g° ;Y* —a®

007 PK* < (X*,YV*); SK* « (2%, PK*)

008 D+ {}

009 Return (I, PK*)

procedure SDecrypt(c, PK): Gamey
320 w + Hy(C1, Co, PK); If F(w, x) =0 Set Bad,
021 Add (c,PK,w) to D

022 Parse (X,Y) «+ PK

023 Ife(X,a) #e(g,Y) Return L

024 Parse (C1,C2,C3) ¢

025 Ife(C2,H(w)) # e(a, C3) Return L

4261 If PK = PK*

4262 If Bads set m =_L

4263 Else Z = C5/CS& ™)/

4264 m « Cy/e(Y, Z'/FOw)y

027 Else find (r,m) s.t. Enc(m, PK;r) = ¢

028 Return m

procedure Left-Right(mg, m1): Gamey
030 d< {0,1};t" « Z,

031 Cf < mg-e(Y*,87):C5 o

332 w*Hy(C1,C2,PK*)If F(w*, x) #0 SetBads
4331 If Bada set C5 =1

4332 Else C} «+ (¢S®)t

034 "+ (CT,C5,C3%)

035 Returnc*®

procedure Finalize(d'): Gamey
040 If (C,PK,w*) € D A (c, PK) # (c*, PK*)
141 Set Badi; d’ «+ {0,1}

042 Ifﬂ(-,-,wi),(-,-,wj) eD ‘ 1# JAw; = wj
143 Set Bady; d’ + {0,1}

344

345

346 If Bads thend’ < {0,1}

047 Return (d' = d)

procedure Initialize(): Games
000 k « Key()

301 v+ Zpa+—ghixe— X

502 B+ G+ By«)Y

003 Forj=0,...,ndo

304 u; < % gYi

005 1+ (I Hy, a,B,uo,...,un)

506 A+ G X"+ AV +— A"

507 PK* « (X*,Y*); SK* « (L, PK*)

008 D+ {}

009 Return (I, PK*)

procedure SDecrypt(c, PK): Games

320
021
022
023
024
025
4261
4262
4263
4264
027
028

procedure Left-Right(mg, m1):

w < Hk(C1, C2, PK); If F(w, x) =0 Set Bad,
Add (¢, PK,w) to D
Parse (X,Y) < PK
Ife(X,) # e(g,Y) Return L
Parse (C1,C2,C3) « ¢
If e(C2,H(w)) # e(a, C3) Return L
If PK = PK*

If Badz setm =L

Else Z = C3/CSY™)/7

m « Cy/e(Y, Z'/Few))y

Else find (r, m) s.t. Enc(m,PK;r) = ¢
Return m

Games

530
531
332
4331
5332
034
035

procedure Finalize(d'):

d<+{0,1};C+ G, T «+ Gr
Ci+myg-T,C5 < C”
w*—Hy(C1,C2,PK*);If F(w*, x) #0 SetBad,
If Bads set C3 =1
Else C% + &™)
c*+— (CT,C5,03)
Return c*

Games

040
141
042
143
344
345
346
047

If (C,PK,w") € D A (c, PK) # (c*, PK*)
Set Bady; d’ «+ {0,1}

If3(, - wi), (- wi) €D i #jAw =w;
Set Badi; d’ + {0,1}

If Bads then d’ + {0,1}
Return (d' = d)

Fig. 19: Games Games, Gamey, and Games.

¥C

procedure Initialize():

100
101
102
003
004
005
006
007
008
009

k < Initialize()
YLy o g7
b4 Zp; B < gb
Forj=0,...,ndo
Uj +— G
| < (I Hk, 0, B, w0, .., un)
¥ Lpy X* g”*;Y* —a"
PK* + (X*,Y™); SK* « (z*,PK*)
D+ {}
Return (I, PK*)

procedure SDecrypt(c, PK):

020
021
022
023
024
025
026
027
028

w $— Hk(Cl, 027 PK)

Add (¢, PK,w) to D

Parse (X,Y) «+ PK

Ife(X,a) # e(g,Y) Return L

Parse (C1,C2,C3) ¢

If e(C2,H(w)) # e(a, C3) Return L
If PK = PK* set m « C /e(Ca, 8°)
Else m « C1/e(Ca, X?)

Return m

procedure Left-Right(mg, m1):

030
031
032
033
034
035

d«{0,1}t* + Z,

Ct + mg-e(Y™, ,Bt*); C3 «+— at”
w Hk(Cl,Cg7 PK*)

Ci + Hw")"

¢t (CF,C3,05)

Return c*

procedure Finalize(d'):

040
141
042
143
044
045
046
047

If (C,PK,w*) € D A (c,PK) # (c*, PK¥)
Set Bad;; Finalize((C, PK), (C*, PK*))

If 3(Ci, PK;, w;), (C5, PKj,w;) € D | i # j Aw; = w;
Set Bad1; Finalize((Ci, PKl)7 (Cj, PK]))

x+— X

If F(w*, x) # 0 /2% F(wi, x) = 0
Set Bads

Finalize(L, 1)

procedure Initialize():

000 (A, B,C,T) < Initialize(); k < Key()
301 v+ Zpa+—ghixe X

502 B+ Byy<+)Y

003 Forj=0,...,ndo

304 uj — B g¥i

005 |+ (I Hy, @, B,u0,...,un)

506 X* <« A; V"« AV

507 PK* + (X*,Y™); SK* + (L,PK")

008 D« {}

009 Return (I, PK*)

procedure SDecrypt(c, PK):

320 w « Hk(C1,C2, PK); If F(w,x) = 0 Set Bad,
021 Add (c,PK,w) to D

022 Parse (X,Y) «+ PK

023 Ife(X,«) #e(g,Y) Return L

024 Parse (C1,C2,C3) <— ¢

025 Ife(C2,H(w)) # e(a, Cs) Return L
4262 If Bads setm =L

4263 Else Z = C3/CS™ ™)/

4264 m « Cy/e(Y, Z1/Fw))y

028 Returnm

procedure Left-Right(mg, my):

530 d <« {0,1}

531 Ci<+mg -T;C5 + C”

332 w* + H(Cy, Ca, PK*): If F(w*, x) # 0 Set Bads
4331 If Bads set C3 =1

5332 Else C% + &™)

034 c*+ (CT,C5,C3%)

035 Returnc*

procedure Finalize(d'):
040 If (C,PK,w") € D A (c, PK) # (c*, PK*)

141 Set Bady; d’ + {0,1}
042 If3(-,-,wi),(~,-,wj) eD ‘ 1# jAw; = wj
143 Set Badi; d’ + {0,1}

346 If Bady then &’ < {0, 1}
047 Finalize(d' = d)

Fig. 20: The CR adversary A" (left) and the DBDH adversary A’ (right).

	Relations among Notions of Complete Non-Malleability: Indistinguishability Characterisation and Efficient Construction without Random Oracles

