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Abstract. We analyse and exploit implementation features in OpenSSL
version 0.9.8¢g which permit an attack against ECDH-based functional-
ity. The attack, although more general, can recover the entire (static)
private key from an associated SSL server via 633 adaptive queries when
the NIST curve P-256 is used. One can view it as a software-oriented ana-
logue of the bug attack concept due to Biham et al. and, consequently,
as the first bug attack to be successfully applied against a real-world sys-
tem. In addition to the attack and a posteriori countermeasures, we show
that formal verification, while rarely used at present, is a viable means of
detecting the features which the attack hinges on. Based on the security
implications of the attack and the extra justification posed by the possi-
bility of intentionally incorrect implementations in collaborative software
development, we conclude that applying and extending the coverage of
formal verification to augment existing test strategies for OpenSSL-like
software should be deemed a worthwhile, long-term challenge.
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1 Introduction

Concrete implementation of cryptographic primitives is becoming easier as a
result of more mature techniques and literature. Elliptic Curve Cryptography
(ECC) is a case in point: twenty years ago ECC was limited to experts, but
is now routinely taught in undergraduate engineering courses. However, such
implementation tasks are still hugely challenging. This is because as well as
functional correctness, the quality of an implementation is, in part, dictated by
efficiency (e.g., execution speed and memory footprint) and physical security.



For (at least) two reasons, the efficiency of cryptographic primitives is an
important issue within many applications. On one hand, many primitives rep-
resent an inherently expensive workload comprised of computationally-bound,
highly numeric kernels. On the other hand, said primitives are often required
in high-volume or high-throughput applications; examples include encryption of
VPN traffic and full-disk encryption, both of which represent vital components
in e-business. Both reasons are amplified because the primitive in question will
often represent pure overhead at the application level. That is, cryptography
is often an implicit enabling technology rather than an explicit feature: there
is evidence to show it is common (and perhaps sane [11]) for users to disable
security features in an application if it improves performance or responsiveness.

To summarise, some engineer must find an efficient way to map a complex,
high-level specification of some primitive onto the characteristics of a demanding
target platform, potentially using low-level programming languages and tools.
Both the semantic gap between specification and implementation, and the skills
gap between cryptography and engineering can be problematic. Two examples
of the problems encountered, both relating to components in modern e-business
work-flows, are as follows:

1. Nguyen [14] described an attack on GPG version 1.2.3, an open-source im-
plementation of the OpenPGP standard. In short, the size of some security-
critical parameters had been reduced; this meant computation was faster,
but that the system as a whole was vulnerable to attack.

2. In part because of such wide-spread use, the open-source OpenSSL library
has been subject to numerous attacks. Examples include issues relating to
random number generation®, and badly formulated control-flow logic allow-
ing malformed signatures to be reported as valid®.

Although other factors clearly contribute, one could argue that overly zealous
optimisation is a central theme in both cases. Focusing on the provision of ECC
in OpenSSL version 0.9.8¢g, this paper presents further evidence along similar
lines. We stress that our aim is not to implicitly or explicitly devalue OpenSSL:
one can, and should, read the paper more as a case study on the difficulty of
cryptographic software implementation.

At the crux is an arithmetic bug, initially reported on the openssl-dev
mailing list [16] in 2007 and later traced to the modular arithmetic underlying
implementation of specific NIST elliptic curves; in short, the bug causes mod-
ular multiplications to (transiently) produce incorrect output. To the best of
our knowledge, no cryptanalytic exploitation of this bug was previously known.
Perhaps for this reason, it has not been considered a security risk, but rather
a minor issue of functionality. Indeed, although the bug has been resolved in
OpenSSL versions 0.9.8h and later it persists”; for example versions of the li-
brary are deployed in (at least) two major Linux distributions, namely Debian
(as late as 5.0 “Lenny”) and Ubuntu (as late as 9.10 “Karmic”).

® http://www.openssl.org/news/secadv_20071129.txt
5 http://www.openssl.org/news/secadv_20090107 . txt
" http://marc.info/?t=131401133400002



The main contribution of this paper is a concrete attack: we show how the
bug can be exploited to mount a full key recovery attack against implementations
of Elliptic Curve Diffie-Hellman (ECDH) key agreement. The nature of the bug
means the attack represents a software analogue (or a first practical realisation)
of the bug attack concept [4] due to Biham et. al. Our attack works whenever the
ECDH public key is static, and therefore reused across several key agreement
protocol executions. In particular, any higher-level application relying on the
SSL/TLS implementation of OpenSSL in the following two scenarios could be
vulnerable:

1. Use of static ECDH-based cipher suites, (e.g., ECDH-ECDSA and ECDH-
RSA). In such cipher suites, the TLS server holds a public key certificate
that directly authenticates the ECDH public key; this is shared across an
arbitrary number of key exchanges.

2. Use of ephemeral ECDH-based cipher suites (e.g., ECDHE-ECDSA and
ECDHE-RSA) in combination with the OpenSSL ephemeral-static ECDH
optimisation. In such cipher suites, and according to the TLS specification,
a fresh ECDH public key should be generated for each key exchange. How-
ever OpenSSL allows one-time generation of said key when the TLS server is
initialised, sharing it across an arbitrary number of key exchanges thereafter.

As a concrete example, we demonstrate the attack on stunnel version 4.42 (when
linked against OpenSSL version 0.9.8¢), an SSL-based tunnelling proxy.

As well as discussing potential countermeasures for vulnerable versions of
the library, we also explore an alternative, longer-term solution. Specifically, we
investigate use of formal verification as a means to prevent similar bugs rather
than just detecting them a posteriori. This approach is particularly relevant
in addressing the possibility of intentionally incorrect implementations, which
could constitute a serious risk in software components developed using an open,
collaborative approach. Our conclusion is that although such techniques can
already play an important role, a step-change in attitude toward their use is
required as software complexity increases; despite the effort required to adopt a
development strategy that supports formal verification, this seems an important
area for future work in the context of OpenSSL-like software.

From here on we use OpenSSL as a synonym for OpenSSL version 0.9.8¢g
unless otherwise stated. In Section 2 we present a detailed analysis of features
in OpenSSL that permit our attack to work, before explaining the attack itself,
and possible countermeasures, in Section 3. In Section 4 we discuss approaches
to formal verification that could help prevent similar defects in OpenSSL, and
therefore similar attacks, and offer some concluding remarks in Section 5.

2 Background and analysis

The aim of this section is to relate high-level, standardised ECC with an analysis
of associated low-level implementation features in OpenSSL which support our
attack.



2.1 OpenSSL Implementation of NIST Standard Curves

For a GM-prime p, multi-precision integer multiplication modulo p can be par-
ticularly efficient. OpenSSL uses this fact to support ECC implementations over
the NIST standard curves P-192, P-224, P-256, P-384 and P-521. Using P-256
as an example, we have

p =926 _ 9224 | 9192 4 996 _ |

and, from here on, we refer to the resulting elliptic curve as F.

Assuming a processor with a 32-bit word size, imagine that given two 8-
word operands 0 < z,y < p, the goal is to compute z - y (mod p). Solinas
demonstrates [17, Example 3, Page 20] that given z = z - y, the 16-word integer
product of = and y, one can compute z (mod p) by first forming nine 8-word
intermediate values

So = ( 27, 26, 5, 24, 23, 22, 21, 20 )
S1 = ( 215, 214, 213, 712, 211, 0, 0, 0 )
So=( 0, 215, 214, 213, 212, 0, 0, 0 )
Sz = (215, 214, 0, 0, 0, 210, 29, 23 )
Sy = ( 28, 213, 215, 214, 213, 211, 2105 29 )
Ss = (z10, 28, 0, 0, 0, 23, 212, 211 )
Se = (211, 29, 0, 0, 215, 214, 213, 212 )
S7=(z12, 0, z10, 29, 28, 215, %14, 713 )

( )

S =

213, 0, z11, 210, 29, 0, 215, 214
and then computing S (mod p) with
S =58y)+25 +2Sy+S53+S54— 55— S —S7 — Ss. (1)

Note that |S| cannot be much larger than p, meaning a small number of extra
modular additions or subtractions, depending on the sign of S, would give the
correct result.

OpenSSL adopts a similar approach for P-192, P-224 and P-521 but deviates
for P-256 and P-384: we again use P-256 as an example, but note that the same
problem exists for P-384. It proceeds using the following faulty algorithm: first it
computes t = S mod 2256 and the correct carry ¢ (which is positive or negative)
such that

S =t+c-2%6

Note that per the comment above, the carry has a small magnitude; by inspection
it is loosely bounded by —4 < ¢ < 6, which is used from here on wlog. The result
is computed, potentially incorrectly, via two steps:

1. set 7’ = (t — ¢ p) mod 2256, then

2. i7" >p, " =r" —p.
The concrete implementation of these steps uses a fixed look-up table T[i] =i-p
mod 2256 for small 4, by computing r’ = t—sign(c)-T'[|c|] mod 22°¢. The modular
reduction in this case is implicit, realised by truncating the result to 8 words.



The intention is to eliminate any possibility of overflow; the assumption is that
c is the exact quotient of division of S by p.
The reasoning behind the faulty algorithm is that if one writes S = t+¢-2256,
then the exact quotient ¢ =S + p is given by
1. if¢c>0,theng=corg=c+1,
2. ifec<0,theng=corg=c—1
since c is small. Indeed, write A = 2256 —p, then after subtracting c-p we obtain

S—cp=t+c-2_—¢c.p=t4c-A.

Since —4 < ¢ < 6 and A < 2224, this shows the result is bounded by —p <
t+ c- A < 2p. The faulty algorithm therefore computes an incorrect result in
the following cases:

— If ¢ > 0, the algorithm fails when ¢ + ¢ - A > 225 since it computes 7/
only modulo 22°6 and not as a full integer (for which the resulting algorithm
would have been correct). Note that in this case the correct result would be
r’ 4+ A and that modulo p, the correct result thus is v’ 4 2256 (mod p).

— If ¢ < 0, the algorithm fails when ¢ + ¢- A < 0. The correct result then
depends on whether (¢ + ¢ - A) mod 2256 > p or not: in the former case, the
correct result is v’ — A, whereas in the latter case, the correct result is given
by 7' + 2256 — 2A. Note that although there are two different subcases for
¢ < 0, the errors —A and 226 — 2A are congruent modulo p, i.e. modulo p,
the correct result is given by r’ — 22°¢ (mod p).

Note that Ciet and Joye [5, Section 3.2] consider the case of faults in the under-
lying field; the fault (resp. bug) here is certainly related, but occurs as a result
of erroneous computation rather than corrupted parameters.

The resulting bug is difficult to detect using the (random) test vector ap-
proach employed by OpenSSL: it simply manifests itself too rarely. An up-
per bound for the probability of the bug being triggered can be obtained by
ignoring the probabilities of certain carries occurring and analysing the case
t+6- A > 22°6: if ¢t was chosen uniformly over the interval [0,2255[, then this
case occurs with probability less than 2729 so OpenSSL computes the result
incorrectly with probability less than 10 - 2729,

To deliberately trigger the bug, we empirically arrived at the following strate-
gies (after inspection of partial products within the integer product of x and
y):

— For modular multiplication, selecting z,y as follows should induce an incor-
rect result for any random 0 < R,, R, < 231,

r=(2%2-1).2220 £ 3.218 L R,
y:(232_1).2224_~_1_296 +Ry

— For modular squaring, selecting z = (232 — 1) - 2224 +1.2!29 4 R, should
induce an incorrect result for any random 0 < R, < 231,
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Fig. 1. A description of ECDH key exchange.

2.2 ECC Cipher Suites for TLS

Modern versions® of the Transport Layer Security (TLS) standard provide a
number of different cipher suites that rely on ECC for key exchange. We focus
on Elliptic Curve Diffie-Hellman (ECDH) and Ephemeral Elliptic Curve Diffie-
Hellman (ECDHE) based cipher suites?. To be precise, in these cipher suites
the key exchange protocol is conducted to establish a secret key for a session
1 between a client C' and a server S; it proceeds in three stages outlined in
Figure 1, with client and server assumed to share D = {p, A, B, z¢,yc,n, h}, a
set of domain parameters. After the protocol terminates, Ry = R represents
the shared key.

Figure 2 illustrates the TLS handshake at a higher level of abstraction. We
now describe how said handshake proceeds, detailing how the ECDH protocol
messages formalised above are embedded in the communication. While our at-
tacks are equally applicable in the case of client authentication, we omit the
details for this case. The ClientHello message conveys the protocol version,
supported cipher and compression methods, and a nonce to ensure freshness.
The ServerHello message is analogous, but selects parameters from the meth-
ods proposed by the client (contingent on the server supporting them). The
content of the Certificate message varies depending on the selected cipher
suite:

— In ECDH-ECDSA, the Certificate message contains a static ECDH public
key authenticated by a public key certificate signed with ECDSA; ECDH-
RSA is analogous, but the public-key certificate is signed using an RSA
signature. The static ECDH public key corresponds to the value Q% above,
and the server will reuse this value for multiple key exchanges with an arbi-
trary number of clients. For this reason, the ServerKeyExchange message is
omitted in ECDH suites.

— In ECDHE-ECDSA, the Certificate message contains an ECDSA veri-
fication key, which is authenticated by a certificate signed with the same

8 http://tools.ietf.org/html/rfc5246
9 http://tools.ietf.org/html/rfca492
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Fig. 2. Message flow in a TLS handshake with ECDH cipher suites; messages relating
to client authentication are omitted for clarity, and those marked with t are only sent
under specific circumstances.

algorithm; ECDHE-RSA is analogous but an RSA signature verification
key is sent, and the public-key certificate is signed using an RSA signa-
ture. The server also sends message ServerKeyExchange, containing both
a fresh ephemeral ECDHE public key (i.e., Q%) and a digital signature au-
thenticating this and other handshake parameters, including the exchanged
nonces. Said signature is produced with either the ECDSA or RSA signing
key matching to the verification key sent in the Certificate message.

The ServerHelloDone message marks the end of this stage of the protocol; the
client then sends its ephemeral ECDHE key in the ClientKeyExchange message,
which always includes a fresh ephemeral Qlc Finally, the negotiated symmetric
cipher suite is activated via the ChangeCipherSpec message. A session key for the
cipher suite is derived from Ry = RY, and the exchanged nonces. The Finished
messages provide key confirmation for both parties, notably occurring client-first,
and depend on all previous messages in the protocol execution.

2.3 OpenSSL Implementation of the ECC Cipher Suites

The ECDH implementation in OpenSSL is seemingly straightforward, and follows
the TLS specification. However, the ECDHE implementation offers two distinct
options for server applications. The first follows the specification and generates
a new ephemeral ECDH key pair for every protocol execution. Deviating from



the specification, the second features an optimisation termed ephemeral-static
ECDH'.

When activated, the optimisation means a single ECDH key pair is gener-
ated during initialisation of the OpenSSL context within an application. This
key pair is reused for all protocol executions thereafter; with ephemeral-static
ECDH, OpenSSL has the server use a static key (i.e., a fixed k7 and hence Q7 for
all ¢) for each OpenSSL context. Put another way, the key pair is ephemeral for
each application instance and not (necessarily) per handshake instance. While
this preserves forward secrecy between application instances, it violates for-
ward secrecy within a single application instance when performing more than
a single protocol execution. Interestingly, the default behaviour is the latter: to
“opt out” and disable the optimisation, the application must explicitly use the
SSL_OP_SINGLE_ECDH_USE option during initialisation of the context.

3 An Attack on ECDH in OpenSSL

Implementing scalar multiplication. For scalar multiplication on E(IF,),
OpenSSL uses a textbook double-and-add algorithm along with the modified
width-w NAF representation of k. For P-256 OpenSSL sets w = 4, i.e., each non-
zero digit from digit set D = {0,+1,£3,£5,47} is followed by at least three
zero digits. Modified NAF is otherwise identical to traditional NAF but allows
the most-significant digit to violate the non-adjacency property, if doing so does
not increase the weight but reduces the length. This slight distinction between
the two affects neither the derivation of our attack nor the implementation of it:
henceforth we use NAF synonymously with traditional NAF.

Attack Goals and Limitations. The goal of the attacker is to recover the
fixed kg in the server-side computation of R = [ks]Q%. The algorithm we pro-
pose and implement recovers the digits of kg by detecting faults in the server-side
computation of R%. The ability of the attacker to observe these faults heavily
depends on the protocol and/or cryptosystem under attack. For example, when
ks is fixed but Q% is not, it is uncommon for a protocol to directly reveal ng to
another participant. Inspecting TLS, one way the attacker can detect faults is by
attempting to complete the handshake. If RY is fault-free (denoted R% € E) then
the computed session key is the same for both the client and server. Consider
the phase of the handshake when the client sends ChangeCipherSpec, signalling
that it has activated the newly negotiated session cipher suite, and transmits the
encrypted Finished handshake message for key confirmation. Then, if the server
successfully decrypts said message, the handshake continues, and ultimately suc-
ceeds. On the other hand, if RY is faulty (denoted R% ¢ E) then the session keys
differ, the server will not obtain the expected key confirmation message, and the
handshake ultimately fails. The practical consequence is that the attacker can-
not arbitrarily choose each QZC in the protocol, rather he must know the discrete
logarithm of said point in order to correctly calculate the negotiated session key.

10 http://tools.ietf.org/html/rfc5753



The Attack Algorithm. Having established a method to detect the occurrence
of faults, the algorithm proceeds in an exhaustive depth-first search for NAF (kg)
starting from the most-significant digit, trimming limbs and backtracking by it-
eratively observing handshake results. At each node in the search, the attacker
submits a different carefully chosen point, termed a distinguisher point, to de-
termine if the next unknown digit takes a specific value at the given iteration,
tracing the execution path of the server-side scalar multiplication. We define a
distinguisher point for an integer prefix a and target digit b € D \ {0} to be a
point Dy = [I]G € E such that [a || b | d]Dap & E and [a || ¢ || d]Dqy € E for
all ¢ € D\ {0, b} both hold. Here, [ is known, a is the known portion of NAF (kg),
and d is any sufficiently long random padding string that completes the resulting
concatenation to a valid NAF string. In practice, testing a single distinguisher
point requires varying d over many values to ensure the computation reaches a
sufficient number of possible subsequent algorithm states: this acts to deter false
positives.

We step through the first few iterations to demonstrate the algorithm. For
clarity, we use subscripts on variables a and D to identify the iteration, i.e., the
digit index in the NAF representation from most- to least-significant, we are
referring to. For ¢ = 1, a; is the empty string and D; = {1, 3,5, 7}. The attacker
finds a distinguisher point Dy ; for each b € D; \ {1} and uses these three points
in attempted handshakes to the server!!. Handshake failure reveals the correct
digit, and allows us to set a for the next iteration as as = b; if all handshakes
succeed, the attacker deduces as = 1 for the next iteration. Enforcing NAF rules,
for i = 5 we have a5 = ay || 000 and D5 = {0,+1,+3,£5, £7}. The attacker
then finds D, ; for each b € D5 \ {0} and uses these eight points in attempted
handshakes to the server. Handshake failure reveals the correct ag = as || b and
if all handshakes succeed the attacker deduces ag = a5 || 0. The attack continues
in this manner to recover all subsequent digits. On average, our attack takes
4 handshake attempts to recover subsequent non-zero digits, and 8 handshake
attempts to detect zero digits (note that we do not explicitly check for zeros
which are implied by the NAF representation).

Relation to the Bug Attacks of Biham et al. This algorithm relates to that
which Biham et al. used to mount a bug attack against Pohlig-Hellman in the
[y setting [4, Section 4.1.1]. The authors consider recovering the binary digits
of the exponent from a left-to-right binary modular exponentiation algorithm.
It does this by finding input X € Fj such that (X?)? fails yet (X?)X does
not, i.e., it uses the former to query explicitly for any zero digits and implicitly
obtain any non-zero digits. Assume the attacker knows [/ such that X = g’ (this
is not necessary to carry out their attacks, but is necessary when adapting their
strategy to attack TLS). The most-significant digit of the victim’s binary string is
a non-zero digit by definition. The attacker queries the next digit by submitting

" When i = 1 finding a distinguisher point Dy ; is less practical as it can cause the
table of pre-computed points to be erroneously populated, so in this case querying
for that particular digit value occurs implicitly.



X. Assume wlog. that it fails: the attacker now knows the two most-significant
digits are 1 and 0. To obtain the (or analogy of a) distinguisher point for the
next iteration, the attacker simply computes X'/2 and, knowing the discrete
logarithm of X to the base g, can easily derive the logarithm of this group
element. This procedure essentially cancels out the effect of the known digits,
forcing the accumulator to take value X at the intended iteration.

In the discussion that follows we will see that, in our attack, we search for
all distinguishing points independently. Indeed, although it is tempting to use
existing distinguisher points to derive subsequent points, which would reduce
the complexity of our attack, this approach does not seem to apply in our sce-
nario. The distinguishing point derivation technique by Biham et al. works for
Fy (and even E(F,) when using affine coordinates) because there is a unique
representation for group elements in both cases (i.e., elements of F, are stored
as their smallest non-negative residue). There are a number of reasons why this
strategy is ineffective for the OpenSSL implementation of ECC, the most promi-
nent being the use of projective coordinates: group element representations are
not unique, as the implementation computes in an equivalence class. As a result,
the attacker cannot force the accumulator to the desired value since it undergoes
projective point doublings. To summarise, there is no obvious way to cancel out
the effect of the known digits. In any case, we will see in the following that this
does not impact on the practicality of our attack in a significant way.

Finding Distinguisher Points. Lacking an analytical method to derive dis-
tinguisher points, our implementation of the attack resorts to random search.
This is done by choosing [ at random and testing whether D, satisfies the
properties of a distinguisher point and, as previously mentioned, varying d over
a reasonable amount of random values. The practicality of carrying out the at-
tack thus hinges (in part) on the effort required to find said points, i.e., the
average number of [ values to test. Figure 3 (left) depicts our observed effort
in two different parts of the attack. The solid line represents effort required at
the beginning of the attack with less than 12 digits recovered. The dashed line
represents effort required towards the end of the attack with roughly 224 digits
recovered. This empirical data suggests not only that the computational effort
to find a specific distinguisher point is rather modest, but that said effort does
not significantly depend on the amount of known key digits. That is, as the
attacker recovers successive digits, the effort to find new distinguisher points
remains fairly constant. It is worth mentioning that the search scales perfectly
with the number of computing nodes.

Attack Analysis and Results. The practicality of the attack additionally
hinges on the number of required distinguisher points, i.e., the average number
of attempted handshakes to recover the entire key. Our theoretical analysis of the
expected number of queries, based on a rough approximation to the distribution
of digits in the NAF representation of a random 256-bit secret exponent, points
to an approximate value of 635 handshakes, suggesting that said value is similarly



0.007

less than 12 known digits

appx. 224 known digits -=----

0.006

0.005

0.004

0.003

Relative frequency
Relative frequency

0.002

0.001

. . . . o . . . n
18 20 22 24 26 28 30 400 500 600 700 800 900
Steps (base 2 log) Queries

Fig. 3. Left: distribution of required search steps to find distinguisher points (lg-linear).
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and the dashed line towards the end (mean 26.9 s.d. 1.9). Right: distribution of required
queries to the server, or distinguisher points, for the full attack (mean 633.2 s.d. 57.7).

modest. We also measured this value empirically and obtained a consistent result,
as illustrated in Figure 3 (right).

The proof-of-concept source code for our attack implementation includes dis-
tinguisher points for all NAF strings up to length 12. As it stands this immedi-
ately removes roughly 12 bits of entropy from the private key, and is of course
easily extendible. The code includes instructions for running the attack in two
different use cases:

1. The stunnel application provides a flexible SSL proxy for any application
that does not natively support SSL; it links against OpenSSL to provide the
SSL functionality. When stunnel is configured to support ECDH suites with
a static ECDH key, our attack implementation facilitates recovery of said
private key. Once carried out, it allows the attacker to decrypt all previous
SSL sessions and to impersonate the server indefinitely.

2. The s_server application within OpenSSL is a generic SSL server. This ap-
plication, and those similar to it supporting ECDHE suites, are vulnerable
since they feature the ephemeral-static ECDH optimisation. The attack im-
plementation facilitates recovery of the application instance’s ECDH private
key. Once carried out, it allows the attacker to decrypt all previous SSL ses-
sions from the application instance and to impersonate the server until the
application restarts.

Algebraic and Algorithmic Countermeasures. Coron outlines three meth-
ods to thwart DPA attacks [7, Section 5]. In general, they seek to counteract the
deterministic nature of double-and-add style scalar multiplication routines, and
are therefore quite effective against the bug attack presented above.

Scalar blinding, i.e., [k]P = [k + rn|P for (small) random value r, effectively
randomises the execution path of the scalar multiplication algorithm. This is not
“free” however: the performance overhead (and security) is proportional to the
size of the random multiplier. Point blinding, i.e., [k]P = [k](P + R) — S, with



randomly chosen R € E and S = [k]R (updating both R = [r]R and S = [r]S
for small, random r periodically), is equally effective. However, this also entails
some performance overhead and is slightly more intrusive to integrate. Lastly,
coordinate blinding, i.e., multiplying the projective coordinates of the accumu-
lator by a random element of the finite field in such a way that preserves the
equivalence class, effectively randomises the states of the scalar multiplication
algorithm. In this case, said blinding would only need to occur at the beginning
of the algorithm and hence does not entail anywhere near as significant a per-
formance overhead. Our implementation as a patch to the OpenSSL source code
is available from the openssl-dev mailinglist!?.

Algorithmic countermeasures seem ineffective against the attack if they are
deterministic. The Montgomery ladder [13, Section 10.3.1], for example, can
resist many forms of side-channel attack due to the regular nature of operations
performed; it cannot resist a varient of the attack in Section 3 however, since
one can still select distinguisher points that target the control-flow and hence
(iteratively) recover the scalar. See the full version of this paper for a more
detailed discussion.

4 Approaches to Formal Verification

In this section we investigate whether it is realistic to use current formal verifi-
cation technology to prevent similar bug attacks in open-source projects such as
OpenSSL. We focus our analysis in two complementary aspects of this problem:
first the design of efficient algorithms for carrying out the necessary numeric
computations, and second checking that these algorithms are correctly imple-
mented in machine code. The concrete arithmetic bug that we explore in this
paper serves as a perfect illustration of why these two aspects should be consid-
ered separately.

A high-level specification of the procedure for modular reduction that was
found to be incorrect is described in Section 2.1. Producing a concrete implemen-
tation of this procedure implies a need to refine it into a lower-level specification;
the particular refinement we are analysing can be described as follows:

1. Pre-compute a table T, where the i-th element T'[i] = i - p (for small 7).
2. To reduce the integer product z = x - y modulo p, first construct the inter-

mediate values Sy, S1,...,Ss based on the representation of z.

3. Write the integer sum S = Sy + 257 + 255+ S3+ 5S4 — S5 — S — S7 — Sg as

S =1t+2%6.c

4. Return the result r’ =t — sign(c) - T'[|c|] (mod 22°°).

This highlights a subtle point: rather than a programming error, the bug is
more accurately characterised as a design error. That is, the incorrectly designed
refinement is correctly implemented in OpenSSL.

We next discuss how one can formally verify the design of such refinements
using existing technology. We discuss the viability of fully verifying implemen-
tation correctness in the full version of this paper.

2 http://marc.info/?1=openssl-dev&m=131194808413635
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The first question we consider is whether it is feasible to verify that a par-
ticular refinement is correct wrt. the associated high-level specification. In order
to illustrate the techniques that can be employed at this level, we present two
examples inspired in the bug described in the previous sections; each represents
a refinement (invalid and valid respectively) along the lines above.

We have used the CAO domain specific language for cryptography [3] and
the CAOVerif deductive verification tool [19]. The CAO language is syntactically
close to C, but is equipped with type system (including, in particular, multi-
precision integers) that make it straightforward to express mathematically-rich
algorithms. The CAOVerif tool 13 takes an annotated version of the program one
wishes to prove correct as input (the specification of correctness is included in the
annotations), and generates a set of proof obligations that need to be validated
as output. If one is able to validate all the proof obligations, this implies the
program meets the specification. The proof obligations can be discharged by
automatic provers such as Simplify [8] or Alt-Ergo [6] or, if these fail, one can
use an interactive theorem prover such as Coq [18]. The verification condition
generation procedure is based on Hoare logic [12], and uses the Jessie/Frama-C [9]
and Why [10] platforms as a back-end.

Failed Proof for an Incorrect Refinement. Proving that the refinement
used by OpenSSL is functionally equivalent to the original specification essen-
tially reduces to proving that steps 1, 3 and 4 compute the same result as Equa-
tion 1. To illustrate how the proof proceeds we implemented these steps in CAQO,
annotating the result using the CAO Specification Language [2] (closely inspired
by the ANSI C Specification Language) to indicate the proof goal. The most rel-
evant fragment is presented below, where Prime and Power2 are global variables
holding the values of p and 22°6, respectively:

typedef modPower2 := mod[2**256];

/%@ requires ((0 <= sum) && (sum <= 7*(Power2-1))

&8 (Prime == 2%%256 - 2%%224 + 2%%192 + 2%*96 - 1)
&6 (Power2 == 2xx256))
ensures ((0 <= result) &6 (result < Prime)
&6 (exists d : int; result + d*Prime == sum)) */
def modPrime(sum : int) : int {

def c,res : int;
c := sum / Power2;
/*@ assert ¢ >= 0 €68 ¢ <= 6 */
/*@ assert O <= (sum - c*Prime) */
/%@ assert (sum - c*Prime) < Power2 */
res := (int)((modPower2)sum - (modPower2) (c*Prime));
if (res >= Prime) {

res := res - Prime;
}

return res;

}

Ignoring the embedded annotations for the moment, modPrime takes the sum-
mation sum as input (which for simplicity and wlog. we assume to be positive),

13 A distribution of the CAOVerif tool and source code for the examples in this paper
are available from http://crypto.di.uminho.pt/CACE/.
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and computes a (possibly incorrect) output of sum modulo Prime. This compu-
tation is performed in three steps that mimic the OpenSSL implementation: 1) it
calculates the (computationally inexpensive) division by Power2, 2) it uses the
result ¢ to subtract a multiple of Prime from the input (this operation is car-
ried out efficiently modulo Power2 by casting the values to an appropriate data
type), and 3) the result is placed in the correct range by applying a conditional
subtraction.

The annotations in the code can now be described. The specification of
modPrime is a contract including a precondition requires and a post-condition
ensures. It states that provided sum is in the correct range, i.e., 0 < sum <
7-(Power2—1), and that the output meets the mathematical definition of the least
residue of sum modulo Prime, i.e., (0 < res < Prime) A (3d st. res + d-Prime =
sum). Inside the function, a series of assertions guide the proof tool toward es-
tablishing intermediate results towards an attempted proof. For example, one
is able to establish the correct range of ¢ after the division. The proof fails,
however, when one tries to establish that performing the subsequent calculation
modulo Power2 will produce a result that is still congruent with sum modulo
Prime. In particular, one will not be able to prove (if that was the initial intu-
ition) that sum — c - Prime < Power2 which would be sufficient to ensure that
the calculations could be performed modulo Power?2.

Robust Proof for a Correct Refinement. Consider the following alternative
refinement to that presented above.

/*@ requires ((0 <= sum) &8 (sum <= 7T*(Power2-1))

&8 (Prime == 2%%256 - 2%%224 + 24%192 + 24%*96 - 1)
&6 (Power2 == 2%%256))
ensures ((0 <= result) & (result < Prime)
&6 (exists d : int; result + d*Prime == sum)) */
def modPrime(sum : int) : int {
def res : int := sum;
/*@ ghost def t : int :=0; */
/%@ assert res + t*Prime == sum */
/*@ invariant (res>=0) &8 (res == sum + t*Prime) */

while (res>=Prime) {
/%@ ghost t:=t-1; */
res := res - Prime;
}
/*@ assert ((0 <= res) &6 (res < Prime)
&6 (res + (-t)*Prime == sum)) */
return res;

This implements the “natural” refinement: it simply subtracts the Prime from
the input until the result is in the appropriate range. In order to complete the
proof, one needs to include a loop invariant that keeps track of how many times
Prime is subtracted; to achieve this, we use a “ghost” variable t that is only visi-
ble to the verification tool. The annotated result can be fed to the CAOVerif tool,
which will automatically check that the program indeed meets the specification
(noting that this automation relies partly on the assertions included).




5 Conclusions

This paper presents a concrete attack against ECDH-based functionality sup-
ported by OpenSSL version 0.9.8g. The attack works whenever the ECDH public
key is static: this may occur either explicitly as a result of the selected cipher
suite, or (partly) implicitly as a result of the (non-standard) ephemeral-static
optimisation supported by OpenSSL. It is worth noting that we also considered
exploiting the bug to mount invalid curve attacks [1]: while this allowed us to by-
pass OpenSSL point validation routines, it did not lead to a practical attack due
largely to the nature of the bug severely limiting the number of invalid curves.

The arithmetic bug has been resolved in OpenSSL versions 0.9.8h and later.
As a result, it is tempting to conclude that the attack does not represent a
serious threat. However, vulnerable versions of the library are deployed in (at
least) two major Linux distributions, namely Debian (as late as 5.0 “Lenny” ) and
for Ubuntu (as late as 9.10 “Karmic”). Although they selectively apply patches
to the default installation, the arithmetic bug persists in both. That is, although
a patch resolving the bug has been available since 2008, it has yet to permeate
existing installations. This represents a concrete example of the premise that
patching is no panacea for similar problems.

Whether OpenSSL should prevent optimisations like ephemeral-static being
included or invoked is perhaps a more philosophical question aligned to a bigger
picture. For example, problems relating to IPsec support for encryption-only
modes of the Encapsulating Security Payload (ESP) protocol seems conceptually
similar; a comprehensive overview and resulting attack is given by Paterson and
Yau [15]. One can conjecture that the motivation for encryption-only ESP, like
ephemeral-static ECDH, is efficiency. Given that provision of a more efficient,
less secure option will inevitably lead to someone using it, our work lends weight
to the argument that a better approach may be to permit only secure, albeit less
efficient options.

While (non-)support for various options in OpenSSL is subjective in part,
the correctness of what is supported is less debatable. As such, detecting bugs
in a more rigorous manner represents a difficult and extremely resource- and
time-consuming task if undertaken over the entire implementation. OpenSSL
clearly differs from a formal cryptographic standard, but it represents a de facto,
ubiquitous and mission-critical software component in many settings. As such,
we suggest that the effort required to adopt a development strategy capable of
supporting formal verification is both warranted, and an increasingly important
area for future work.
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