
Generically Extending Anonymization Algorithms to Deal
with Successive Queries

Manuel Barbosa
HASLab-INESC TEC &
Universidade do Minho
mbb@di.uminho.pt

Alexandre Pinto
∗

HASLab-INESC TEC &
Instituto Superior da Maia

alex.miranda.pinto@gmail.com

Bruno Gomes
HASLab-INESC TEC &
Universidade do Minho

ABSTRACT
This paper addresses the scenario of multi-release anonymiza-
tion of datasets. We consider dynamic datasets where data
can be inserted and deleted, and view this scenario as a case
where each release is a small subset of the dataset corre-
sponding, for example, to the results of a query. Compared
to multiple releases of the full database, this has the obvi-
ous advantage of faster anonymization. We present an algo-
rithm for post-processing anonymized queries that prevents
anonymity attacks using multiple released queries. This al-
gorithm can be used with several distinct protection princi-
ples and anonymization algorithms, which makes it generic
and flexible. We give an experimental evaluation of the al-
gorithm and compare it to m-invariance both in terms of
efficiency and data quality. To this end, we propose two
data quality metrics based on Shannon’s entropy, and show
that they can be seen as a refinement of existing metrics.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Applications-
Data Mining; K.4.1 [Computers and Society]: Public
Policy Issues-Privacy

Keywords
Anonymization, multiple-releases, dynamic datasets

1. INTRODUCTION
Information is one of the biggest assets of every organiza-

tion since it lies at the root of every business function. Often,
this information is about real world people, who would not
like to see it revealed. Nevertheless, limited usage of the
data might be tolerated if well justified, e.g. for health re-
search purposes or simply for the sake of a better service.
This introduces a tension between keeping the privacy of
the individuals represented in a dataset, and the usability of

∗
This author has been supported by CELCC, through project

CELCC.businessintel.07.2012

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’12, October 29–November 2, 2012, Maui, HI, USA.
Copyright 2012 ACM 978-1-4503-1156-4/12/10 ...$15.00.

such data to the business and to the quality of the service
the organization provides.

Sweeney [15] showed that the removal of identifying fields
such as name and credit card number may leave in place
quasi-identifier attributes that uniquely identify people in
a wide range of contexts. Thus, a whole line of research
developed around the idea of anonymizing data by grouping
data in classes of mutually indistinguishable records. The
aim is to preseve real useful information about people, but
discard the possibility that some adversary might associate
any given individual to its sensitive data.

The initial results in literature focused on anonymizing
large datasets released once [15, 11, 10], but subsequent con-
tributions [3, 14, 19, 6, 4, 16] moved to the case of multiple
releases with full dynamic datasets. In this paper we also
go in this direction, and consider a scenario where some
client application or user queries a large database at differ-
ent points in time, where each query returns a small fraction
of the data set. The goal is to ensure that anonymity is pre-
served across all the queries, whilst avoiding an anonymiza-
tion of the whole database each time, thereby resulting in
faster processing for each query. We present an algorithm
that preserves anonymity over multiple queries and give an
experimental analysis that compares it to m−invariance in
both execution time and data quality. We base our com-
parison on two quality metrics based on Shannon Entropy,
which we introduce and justify by showing that they can be
seen as a refinement of existing metrics.

2. PRELIMINARIES
The attributes in a table containing personal data can

be divided in three groups: identifiers, quasi-identifiers and
sensitive attributes. In an anonymization scenario, we as-
sume the identifier attributes have previously been removed.
Anonymization procedures usually follow a common frame-
work: the algorithm receives a table of original data without
identifying attributes and outputs a new anonymized table
where each record is a processed version of a single original
record. Records are grouped in equivalence classes where it
is impossible to associate each record or sensitive value to a
particular person, either because sensitive values are disso-
ciated from the respective record or the quasi-identifiers of
all records in the class are generalized to a common value.

We denote a table to be anonymized by T, which con-
tains tuples t of identities denoted by I. The schema of
T, T(Q, S), is composed of a sequence Q of quasi-identifier
atributes and a single sensitive attribute S1. We denote by

1S can of course be a set of sensitive attributes, and our
results can be adapted to that scenario.



|X| the cardinality of a set X, and represent the projection
of a tuple t onto a set of fields F by t[F]. For a generalized
attribute a, t[a] may represent a set rather than a single
value. For tuples t, t∗ ∈ T(Q, S), we say t∗ generalizes t if
for all attributes a ∈ Q, t[a] ⊆ t∗[a].

Given a relation R(Q,S), an equivalence class E is the
set of all tuples t ∈ R that agree on the attributes in Q:
for any two distinct tuples t1, t2 in E , t1[Q] = t2[Q]. For
a set of tuples R ⊆ T and a set of quasi-identifiers Q, let
R∗ be the anonymized version of R, i.e., a set of disjoint
equivalence classes: R∗ =

⋃n
i=1 Ei. In a given relation R∗,

let ER∗(t) denote the equivalence class that generalizes tuple
t, let Id(E) be the set of identities represented in E and t(I)
the tuple that represents an identity I. For a given set of
tuples X, aX = {t[a] : t ∈ X} is the multiset of all distinct
values that a assumes in X, and Xa=v denotes the tuples in
X for which a takes the value v.

If we view quasi-identifiers as distinct axes in space, each
equivalence class E defines a particular region in that space.

3. RELATED WORK

Anonimity models. The first approach to protecting records
in a large database was k-anonymity [15]. This model pro-
tects information against a link-disclosure attack, by anony-
mizing a table into equivalence classes with at least k el-
ements. The first principle to protect against attribute-
disclosure was `-diversity, proposed in [11], which requires
that each equivalence class have at least ` well-represented
values. This is usually accepted to mean that each sensitive
value appears in at most a fraction 1/` of the records in the
class. Other attacks were discovered later, leading to new
principles, e.g., t-closeness [10] and variants of k-anonymity
and `-diversity, still not applicable to multiple releases.

This scenario began to be addressed systematically in [3].
The authors identify two basic ways of dealing with the prob-
lem: anonymize and publish only the new records, or re-
anonymize and publish the full dataset. The first method
has the drawback of degrading the information to a higher
degree if the new records are sparsely distributed, leading to
wide generalizations. The second method gives better data
quality, but is susceptible to several inference attacks. The
authors identify some of these, but only address incremental
changes to the database, where records may be inserted but
not altered nor deleted between releases.

The work in [19] was the first to consider re-publication of
anonymized datasets modified by insertions and deletions,
proposing the principle of m−invariance. This enforces two
kinds of protection: each equivalence class must contain ex-
actly m records all having distinct values in the sensitive
attribute; and, if a tuple appears in different releases of
published data, it is always associated to the same set of
possible sensitive values.

In [14], the authors address the case of successive pub-
lications of dynamic data, but like [3] consider only inser-
tions. The idea of tracking a record among successive re-
leases by using an attribute that uniquely identifies each
original record is introduced: this record identifier is con-
served unchanged in the anonymized tuples. The work in [6]
reasons about possible attacks against releases of different
datasets over the same population, but focuses more on esti-
mating the fraction of the population subject to intersection
attacks, and how this evolves with a number of parameters.

Later, [4] also focused on incremental databases, introduc-
ing a new form of attack called correspondence attack and a
new protection principle, called BCF-anonymity. The work
in [16] also deals with the scenario of incremental updates.
Its approach is to subvert inference channels by mixing data
of different releases in the same anonymization. Unfortu-
nately this is not well suited for scenarios where rigorous
analysis of the data at a given point in time is required.

Other papers focus on a different kind of successive pub-
lication called streaming publication. This scenario is differ-
ent from ours, since anonymization must consider time con-
straints on the records and these are generated continuously.
This means it is not possible to treat the data as limited at
any given point in time, thereby disallowing anonymization.

Quality metrics. Anonymization is a compromise between
privacy and usability. Several quality metrics have been pro-
posed in the literature to evaluate the balance between these
conflicting goals for different anonymization solutions. Such
metrics are typically calculated after the anonymization pro-
cess in order to obtain numeric values that can be used for
comparative quantitative analyses. We review some of the
most prominent in this section.

The precision metric was proposed in [15]. It computes
the distortion of a table by averaging the distance of each
generalized value to the root of its generalization hierarchy.
It is thus not suitable for algorithms where such hierarchy
doesn’t exist, like Mondrian. The discernibility metric was
proposed in [1]. It is based on the idea that a tuple is less
discernible if it is indistinguishable from other tuples and
so penalyzes large equivalence classes. Ignoring supressed
tuples, the metric computes the sum CDM =

∑
E |E|

2 over all
equivalence classes. The least the value of CDM, the high-
est the data quality is. The notion of normalized average
equivalence class size metric (CAVG) was proposed in [9] as a
normalization to the discernibility metric, and is defined as

CAVG = (N/k)
#E , where #E denotes the total number of equiv-

alence classes in the anonymized table.
The notion of information loss was proposed in [3], moti-

vated by the observation that neither CDM nor CAVG address
the modification of data values imposed by the generaliza-
tion process. This metric works well for attributes that ad-
mit a notion of distance, and measures the degradation of
the information in a dataset. For an attribute a and an
equivalence class E , it computes the interval covered by the
records of that class in that attribute d(aE) and the corre-
sponding interval for the whole dataset d(a). The informa-

tion loss for a class can be written IL(E) = |E| ·
∑m

i=1

d(ai
E )

d(ai)
.

The average information loss (AIL) is the average over all
equivalence classes and serves as the metric for the whole
dataset. This has been generalized as certainty in [20].

The use of the Kullback-Leibler divergence as an utility
measure was proposed in [8]. The authors propose to com-
pute a probability P1 over the original data and a marginal
distribution P2 over the generalized data, and define utility
as the Kullback-Leibler divergence of P1 and P2. The score
metric was proposed in [5] and refined in [18] by the same
authors. This metric balances gain of information and loss

of privacy. Score is computed as score(v) = InfoGain(v)
PrivLoss(v)+1

.

Information gain is defined as the difference in information
before and after the specialization of v. Quantity of infor-
mation can be measured, e.g., using Shannon’s entropy.



4. ANONYMIZATION THEORY
Attacker model. The attacker we consider has full access to
all the anonymized releases of data, and has unlimited stor-
age and computation abilities. The attacker also has access
to a public list with the identification of all the individuals
in the original database throughout time, omitting of course
the sensitive value. We also give the attacker full knowl-
edge of the quasi-identifiers of any target she chooses, which
permits finding the corresponding equivalence class. Specif-
ically for the multi-release scenario, we allow the attacker to
know which individuals are present in each release and to
track individuals across releases. This is done by giving a
unique identifier to each original record that is independent
of real world data, as was done in [14, 17]. This allows the
attacker to correlate records of the same individual in differ-
ent releases, across different generalizations and even with
a changing sensitive value via an update operation. Never-
theless, we do not consider the case in which the adversary
has external knowledge that the sensitive value of a target
identity has changed from one release to the other. This
means that updates can be modeled as insertions and dele-
tions, possibly modifying sensitive values. For this reason,
we do not further refer specifically to update operations.

The most common attacks in literature can be grouped
in the following kinds of privacy breach: link-disclosure,
attribute-disclosure and record tracing. Link disclosure is
the simplest kind of attack and its goal is to find which
anonymized record corresponds to a given target. The at-
tacker can always find the equivalence class that contains
the target, and her uncertainty will stem from the indis-
tinguishability of the records in that class. The objective
of attribute disclosure is to find the sensitive value, which
may be done without identifying a unique record. In an
attribute disclosure, the adversary wins by identifying the
sensitive value of the target. In record tracing [13, 12, 2],
the attacker doesn’t have a predefined target. Instead, she
starts from the anonymized data with sensitive values and
tries to match any record in a public list to some anonymized
record. This attack only makes sense in a multiple-release
scenario, where an attacker gradually refines her knowledge
about the quasi-identifiers of anonymized records. For this
it is crucial that the attacker is able to correlate records in
distinct releases.

Protection principles. The principles of k-anonymity and
`-diversity are still at the basis of most of the anonymization
processes. We review their definitions here.

Definition 1. A relation R(Q, S) satisfies:

• k-anonymity if every equivalence class E in T has at
least k elements.

• distinct `-diversity if for every equivalence class E, we
have that |SE | ≥ `, i.e. the sensitive attribute assumes
at least ` different values.

• simple `-diversity if for every equivalence class E, we
have that |SE |/|S| ≤ 1/`, i.e. no sensitive attribute
appears in more than a 1/` fraction of the records.

The m−invariance criterion was the first to address dy-
namic databases. We give a definition here, as we will use
it as benchmark reference for our algorithm.

Definition 2 (m−invariance). Consider several re-
lations R∗1,R

∗
2, . . . ,R

∗
m of a same dynamic dataset. Consider

also that a given tuple of the original dataset may appear in
several of these relations. For a given tuple t, let Ei(t) rep-
resent the equivalence class that contains t in R∗i (Ei(t) = ∅
if t 6∈ R∗i ). These relations satisfy m−invariance if

1. for every equivalence class E in any of these relations,
|E| = m and |SE | = m

2. for every tuple t and X = {Ei(t) : 1 ≤ i ≤ m, t ∈ R∗i },
then for any E1, E2 ∈ X, SE1 = SE2 .

Attacks with multiple releases. In the setting of static re-
leases, attacks mentioned in literature typically concern the
information the adversary gains about the sensitive value,
when she has access to the anonymized table and an auxil-
iary source. Homogeneity, similarity and proximity attacks
can all be leveraged from the target’s equivalence class alone,
and skewness attacks only need to add information about
the distribution in the static table. These attacks can be
addressed with different techniques proposed in the litera-
ture, including `-diversity, t-closeness and their variants.

The introduction of dynamic updates to the data allows
the appearance of new kinds of attack simply because there
are more data available that can be combined in different
ways. In the end, the objective of these attacks is to achieve
the same kinds of disclosure (homogeneity, similarity, etc.),
but there are more ways in which to combine the informa-
tion, which can be described as a new family of attacks. In
what follows, we consider attacks over distinct releases of
the same relation corresponding to anonymizations of the
data at different points in time. In general, there may have
been changes by insertion, deletion or updating of records
between these two releases. However, as mentioned earlier,
we consider only explicitly insertion and deletion operations.

To obtain some intuition about possible attack scenarios,
let us consider multiple releases of health data as shown in
Table 1. This shows four patients who were admitted to the
same hospital, and their quasi-identifiers (Age and Gender).
We list Name only to track the evolution of the values, and
is not published in the anonymized releases. Observe that,
for a given equivalence class, some (but not all) identities
are present in both releases and new ones have been added.
If the attacker cannot know the identities that are in each
equivalence class, then there’s no attack: it might just be
that the individuals in each release are totally unrelated.
This is why it is natural to assume that the attacker can
learn who is in what release and in what equivalence class.
In this case, the attacker learns two possible values for either
Charlotte or Bob (Pneumonia or Migraine), increasing the
possibility of disclosing the right value from 1/4 to 1/2. She
can also learn easily that Fran and George, among them,
have Flu and Cancer.

However, the attacker is not so lucky in comparing Re-
lease 2 and Release 3 (without knowing Release 1). One of
Alice and Dave must have Flu, and at least one of Ellis and
Helen must suffer from HIV, but the exact possibility is im-
possible to determine. The attacker can identify the cases
in Table 2. In order to consider stronger adversaries that
don’t have these doubts, we use a unique identifier for each
individual, that stays constant across distinct releases. This
allows the attacker to track the progress of an individual,
without giving any clue to its identity. With this knowledge



Table 1: Simultaneous deletions and insertions

Release 1

Name Age Gender Illness
Alice 30-40 M-F Flu
Charlotte 30-40 M-F Migraine
Bob 30-40 M-F Pneumonia
Dave 30-40 M-F HIV

Release 2

Name Age Gender Illness
Alice 30-40 M-F Flu
Dave 30-40 M-F HIV
Fran 30-40 M-F Flu
George 30-40 M-F Cancer

Release 3

Name Age Gender Illness
Fran 30-40 M-F Flu
George 30-40 M-F Cancer
Ellis 30-40 M-F HIV
Helen 30-40 M-F HIV

Table 2: Possible attacker’s deductions
Fran & George Alice & Dave Ellis & Helen

Flu, HIV Flu, Cancer Cancer, HIV
Flu, Cancer HIV, Flu HIV, HIV
HIV, Cancer Flu, Flu Flu, HIV

and the previous releases, it would be easy for the attacker
to conclude that Ellis and Hellen both had HIV. It is this
sort of attack we wish to prevent.

In the sequel, we show how the attacker can infer new
equivalence classes from the releases she sees. For each tar-
get, she computes a candidate set of records that is guaran-
teed to contain it. If such a set of records fails to satisfy the
selected protection principle, then the attack is successful.
We illustrate with k-anonymity and `-diversity.

Difference attack [3]. A difference attack occurs when
a target individual I is known to be in exactly one of two
releases and the data can only be altered through insertions.
Assume that t∗ = t(I) ∈ R∗2. Let ER∗1 (t∗) be the equivalence
class in R∗1 that would contain t∗ if it belonged to R∗1. Since
the attacker can track records across releases, she can simply
find the candidate set C = ER∗2 (t∗)−ER∗1 (t∗). If the protection
principle does not hold for C, i.e. if |C| ≤ k or |SC| ≤ `, then
k-anonymity and/or `-diversity are broken.

If the attacker did not know the unique identifier, she
would have to consider all classes overlapping ER∗1 (t∗). De-

note these by L =
{
Ej2
}m
j=1

. Because we only allow insertions

in this attack, Id(E1) ⊆ Id(L) and t∗ ∈ Id(L)\Id(E1). Then,
C = (L− ER∗1 (t∗)) ∩ ER∗2 (t∗). We illustrate with an example.

In the above example, suppose the target belongs in E12
and would have belonged in ER∗1 (t∗) if he were in R∗1. Given
the UID column, it’s easy to deduce the target has tuber-
culosis and previously had flu. Without that column, the
attacker can only reason that the target may be any of the
three records in Ei2. Since all the records in ER∗1 (t∗) are repre-
sented in the three classes of the second release, the attacker
reasons that only three people may correspond to his tar-
get and their sensitive values can be one of { Tuberculosis,
Cancer, HIV }. Intersecting with E12 , the attacker reduces
her uncertainty to only {Tuberculosis,Cancer}. This at-
tack does not work in the presence of deletions, because we
can no longer guarantee that we did not exclude any of the

Table 3: Difference attack
Class UID QID Sen Att

ER∗1 (t∗)

3 (30-40, M-F) Flu
4 (30-40, M-F) HIV
5 (30-40, M-F) Cancer
6 (30-40, M-F) Flu

E12
1 (25-35, F) Cancer
2 (25-35, F) Flu
3 (25-35, F) Tuberculosis

E22
4 (35-42,F) Flu
5 (35-42,F) HIV

E32
6 (33-38,M) Cancer
7 (33-38,M) HIV

newly inserted tuples: if a new tuple were equal to one of
the deleted ones, even if it belonged to a different identity,
then it would be impossible to tell whether the tuple was
new, and therefore whether it should be one of the tuples in
the candidate set. Applying the formula above would have
the effect of removing a valid new tuple from the list of pos-
sibilities. The inclusion of the unique identifier solves this
problem for the attacker.

Intersection attack [3, 19, 6]. An intersection attack
occurs when a target individual I is known to be in two
different releases. Here, the candidate set is simply the in-
tersection of both equivalence classes that contain t∗: C =
ER∗1 (t∗) ∩ ER∗2 (t∗). This attack works well in the presence of
deletions and insertions: because the target is in both re-
leases, it is not affected by the disappearance or inclusion
of new records, as those will necessarily be absent from the
intersection of both classes.

5. QUALITY METRICS
The objective of a good metric is to quantify the useful-

ness of data after anonymization in a statistical analysis of
anonymized data. Metrics in the literature can usually be
placed in one of two groups: those that relate loss of in-
formation to the number of indistinguishable records and
those that relate loss of information to the necessary gener-
alization of record values. Both of them have merit and we
believe both should be present when evaluating the worth
of an anonymization.

We propose two metrics (FEM and VEM) that share the same
basic framework but cater to each of the two groups above.
Our starting point is to take Shannon’s Entropy as a good
measure of the amount of information in a given source. In-
tuitively, if a dataset has more entropy it must have more
information and therefore be more useful. This is similar
to [8] and [5]. Our proposal gives an upper bound to the
amount of information in a data set, before and after gen-
eralization. Our metrics also deal with counterfeit records,
which to our best knowledge is not explicitly addressed by
earlier metrics. Due to their similarity, we will often make
statements that apply to both metrics simultaneously. In
this case we will simply refer metric xEM.

Metric xEM computes quality as the measure of informa-
tion in the data set, and satisfies these desirable proper-
ties: the data set holds maximum information in the original
state; quality is minimum (0) when all records are anonymized
into the same class; larger data sets may have more informa-
tion; any generalization or suppression always decreases the



quality of information. Metric xEM is defined as the average
of information for points in the dataset. The crux of the def-
inition is to characterize these “points” and their probability
distribution. A point is a distinguished tuple in the dataset.
Originally, each record is a tuple; after anonymization, each
equivalence class becomes a tuple. We give two ways of
defining the probability of a tuple: by counting the number
of records in each class (FEM) or by measuring the volume
that the class generalization defines in the quasi-identifier
space (VEM). The two metrics are not directly comparable
but complement each other.

Frequency Entropy Metric. The Frequency Entropy Met-
ric of a data set R, FEM(R), is the average information (InfF)
of the equivalence classes in the data set, under the distri-
bution P. In a non-anonymized dataset, we let each record
be an equivalence class. For an equivalence class E , we let
P(E ,R) = |E|/|R| and InfF(E ,R) = − logP(E ,R). Then, FEM
is formally the entropy of distribution P:

FEM(R) =
∑
E∈R

P(E)InfF(E) =
∑
E∈R

−|E||R| log
|E|
|R| .

Volume Entropy Metric. FEM is intuitive but does not
represent the fact that larger equivalence classes convey less
information about its records than tighter ones. The Volume
Entropy Metric (VEM) takes this into account. The difference
to FEM is in the information function. Instead of the cardi-
nality of a class, we measure the extent of its neighborhood,
and penalize the larger ones: InfV(E ,R) = − logV(E)/V(R)
where V(X) represents the volume of a minimum region in
the quasi-quantifier space that contains all tuples in a set X.

The V function cannot be computed as a normal volume
in algebra, because individual records would define single
points in space and would have volume 0, whereas we want
such records to have maximum information. To prevent this,
we must discretize space: each equivalence class is defined
over a lattice of discrete points in the quasi-identifier space.
Each quasi-identifier may be discretized in a different way,
but it is essential that a minimal unit can be identified. This
unit should be an integer in order to ensure that the prop-
erties of entropy function are preserved, and single points
should have volume 1. We achieve this by defining

V(E) =
∏
q∈Q

(max(qE)−min(qE) + 1) .

These definitions are unsatisfactory when some records are
suppressed from the database during the anonymization pro-
cess in order to prevent attacks. This is because applying
the formula to the anonymized dataset in this case might
lead to an increase of the information value, which we find
contrary to what a good metric should do: if there are less
records, there should be less information. To address this,
we handle tuple suppresion by considering that they remain
in the dataset, but with an information value of 0. We do
this by making xEM depend on the original version of the
data (|T|) and making the information of other tuples inde-
pendent of suppressions:

FEM(R,T) =
∑
E∈R

− |E||T| InfF(E) =
∑
E∈R

− |E||T| log
|E|
|T|

VEM(R,T) =
∑
E∈R

− |E||T| InfV(E) =
∑
E∈R

− |E||T| log
V(E)

V(T)

When there is no record suppression, so T = R, we simplify
notation by omitting the T argument.

Unlike FEM, VEM is not formally an entropy measure, as
the term inside the logarithm does not correspond to that
on the outside. However, VEM conserves all the properties
we’re interested in. We list these in the following theorem,
but omit the proofs due to lack of space. They are similar
to the corresponding proofs for the entropy function.

Theorem 1. For all releases R of a dataset T, we have
that

• 0 ≤ FEM(R,T) ≤ log |T| and 0 ≤ VEM(R,T) ≤ logV(T).

• xEM is maximum for the original data and 0 when all
records are generalized to the same equivalence class.

• Generalization of records reduces xEM.

Theorem 2. If an equivalence class is suppressed from
the data set, the resulting FEM and VEM is never larger than
the previous value, and usually decreases.

An important property conserved by the definition of VEM
is additivity, as shown in the next theorem.

Theorem 3 (Additivity of VEM). Fix generalized data
set R of original T and a set of quasi-identifiers Q = {q1 . . . , qk}.
Let VEMq(R,T) denote VEM restricted to quasi-identifier q.
Then,

VEM(R,T) =

k∑
i=1

VEM
{qi}(R,T) .

Inclusion of Counterfeit Records. The algorithm pro-
posed in [19] may call for the creation of counterfeit records.
These fake records are extraneous to the data set, but will
appear in the generalized release. We therefore must take
them into account when computing data quality. Counter-
feit records should not add to the information of the dataset,
since they are false data. Indeed, it seems acceptable that
they decrease this information because their presence may
distort the statistical meaning of the data. We take this
view and consider that counterfeit records are part of the
database, reducing the probability of other classes, but have
an information value of 0. To do this, we define

Inf′f (E ,R,T) = − log((|E|+ |F(E)|)/|T|)

where F(X) is the set of counterfeit records introduced in
X. Note that we add the total of counterfeits to the orig-
inal size of the table, to account simultaneously for record
suppression.

FEM
′(R,T) =

∑
E∈R

− |E|
|T|+ |F(R)| log

|E|+ |F(E)|
|T| .

The reason the logarithm does not include a |F(R)| term
is because the information value of those classes that do
not have counterfeit records would actually increase, which
we find makes no sense. This definition ensures the maxi-
mum information of each equivalence class stays the same,
no matter how many counterfeits are added to the database.

Counterfeits affect VEM more transparently, as the infor-
mation of a class is dependent only on its volume and not



on the record count. Counterfeit tuples may sometimes pro-
voke the enlargement of the neighborhood and decrease in-
formation, but if this is not the case, the class will keep its
information value. In parallel to FEM we extend VEM to deal
with counterfeits like this:

VEM
′(R,T) =

∑
E∈R

− |E|
|T|+ |F(R)| log

V(E)

V(T)
.

The net effect of these extensions is that the addition of
counterfeit records to an anonymized dataset lowers the
data quality. This introduces one quirk: in extreme cases
with many or very outlying counterfeits, the information of
a class may become negative. This is unusual, but not neces-
sarily bad, as we may argue that the introduction of false in-
formation in a dataset actually creates counter-information
that may offset the useful one. A negative value therefore
would indicate an exaggerated inclusion of counterfeits. It is
possible to prevent negative values with a variant definition
that would allow counterfeits to increase information. For
lack of space, we do not explore this issue further.

Comparison to other metrics. Both FEM and VEM are in-
spired by Shannon’s entropy and therefore have strong ties
to KL-Divergence [8]. The objective in [8] is to release addi-
tional information - the marginals of the anonymization – to
allow estimating the true distribution of the original data,
while keeping privacy. In this way, KL-Divergence aims to
provide useful relative measure of data quality degradation
with respect to a concrete original data set. Our approach is
to measure the absolute quantity of information present in
datasets, in order to compare the performance of anonymiza-
tion algorithms. We thus avoid the computation and selec-
tion of marginals, as well as reasoning about the potential
risks of releasing this extra information. Our metrics are
thus better suited for this simpler scenario.

The nearest metric to VEM we know of is average informa-
tion loss (AIL). Using theorem 3, we can rewrite VEM in a
similar way to AIL as

VEM(E ,R,T) =
|E|
|T|

m∑
i=1

− log
d(aiE)

d(ai)
.

The obvious difference is we take the logarithms of the in-
verse ratios used by AIL. This makes VEM a refinement of
AIL with some interesting implications. We see this notion
as a variant of FEM, rather than an adaptation of AIL.

While AIL measures the degradation of information in
each class, VEM measures the amount of information in in-
tuitive terms, as the information is better the larger VEM is.
Also, a totally generalized dataset has information 0 and the
upper bound of VEM is the logarithm of the volume of the
global domain. In comparison, AIL is 0 when the dataset
is in its original form and it’s impossible to compare differ-
ent pristine datasets. The upper bound is reached when all
records are generalized to the global maximum range of the
database, and is equal to the number of dimensions of the
domain. This is not intuitive, as this value depends on the
data structure and is hard to reason about.

6. ALGORITHM DESCRIPTION
We now propose an algorithm to prevent attacks in a mul-

tiple anonymized query scenario. We consider a dynamic
database that evolves over time allowing insertions and dele-
tions. This also covers the case where the dataset is static

over time, but different queries allow for seemingly dynamic
views of it, i.e., some records may appear in one query and
not in others. This case is of importance because it allows for
big gains in efficiency, since we no longer need to anonymize
the whole dataset at once, but can do it piece-wise as each
query is submitted. We don’t address the ways a query can
be specified, as our focus is only on how to combine their
results. We wish to return only true data and thus do not
use data perturbation techniques. For our purposes, a query
is simply an arbitrary subset of the original data.

The attacker receives an anonymized subset in each re-
lease, and our aim is that anonymity is preserved even when
the attacker correlates the data from many releases. The al-
gorithm we propose (BPG) is to be used as a post-processor,
meaning that it analyses the results of an anonymized query,
decides if they can be released to the user, and computes in
what form that should be done. The goals of this post-
processor are to be lightweight and non-intrusive, i.e., it
should work with any standard anonymization algorithm
and be fast enough to not degrade significantly the answer-
ing of the query. BPG is not tied to any specific protec-
tion principle. It can work with any principle that sat-
isfies monotonicity, as defined below. There are several
monotonous principles, for example, k-anonymity and dis-
tinct `-diversity. This gives BPG wide applicability.

Definition 3. (Monotonous Principle) An anonymiza-
tion principle is monotonous if the validity of a non-empty
set implies the validity of all its supersets. Let P(E) be true
iff equivalence class E satisfies principle P. We say P is
monotonous if ∀E2 ⊇ E1 ) ∅, (P(E1) = True) ⇒ (P(E2) =
True) with the same parameters on both sides.

In the following discussion, recall that we let the attacker
know exactly what individuals are present in each release.
Each individual has a unique identifier that is consistent
across releases. The sensitive value can change over time,
but the quasi-identifiers are fixed. We assume that the gen-
eralizations returned by the underlying anonymization al-
gorithm are minimal. This reveals preciser data and thus
makes the attacker stronger, so there is no loss of security
in such an assumption.

A Post-Processing Anonymization Algorithm. BPG is
a query post-processor. It receives a fresh anonymized re-
lease of a (part of) a dataset and a state summarizing a
history of previous releases. It outputs a new version of
this release that is consistent with the previous history in a
way that individual records of current and past releases are
not vulnerable to intersection nor difference attacks. Differ-
ent anonymization algorithms can be used in each release,
as long as the protection principle and parameters remain
fixed and all of them produce disjoint equivalence classes.

Since anonymization runs are carried out independently,
there are no guarantees that their combined results are valid
according to a protection principle. A record present in two
releases may be placed in equivalence classes A and B with
different neighbors. This means that the sets of identities
A − B, B − A and A ∩ B may implicitly reveal informa-
tion that breaks the protection principle. The job of BPG
is to analyze these sets, identify the cases that may lead
to a breach of privacy, and conservatively try to make the
equivalence class safe for release. If this is not possible, an
equivalence class may be omitted from the new release.



BPG keeps track of the information that any observer hav-
ing access to all the releases will have: the minimal region in
quasi-identifier space that can be inferred for a given record,
which we call a neighborhood, plus a record of appearances
of each record in each release, which we call its signature.
We denote a signature by σ(t), which boils down to a new
field in the database that behaves as follows: before the first
release, this field takes the value of the empty string; each
new release adds one bit of information to this field; after n
releases, each record has an n−bit signature, where a 1 in
position i means that record was published in the ith release.

We often need to recover all records associated with a spe-
cific neighborhood. Therefore, our proposed way to store
this information is to add a table of neighborhoods to the
database, and a foreign key to it so that each record can
be in at most one neighborhood. Since we assume that the
adversary knows in which of the releases a target identity is
present, our algorithm sees its signature as a quasi-identifier.
The fact that we do not allow generalizations over this quasi-
identifier is at the crux of our protection against attacks
that explore insertions and deletions. This implies that the
generated equivalence classes all contain records that have
appeared in exactly the same releases. Furthermore, each
equivalence class will always share the same signature infor-
mation, and therefore each neighborhood also stores a sig-
nature field that will match those in all associated records.

Each time the algorithm receives a release, it confronts
each equivalence class with the stored record data, and finds
the minimum neighborhood that can be released for that
class. This process can eventually refine the stored neigh-
borhoods for some records, tightening the global level of
generalization, and improving the quality of released data.

The algorithm is presented in pseudo-code in Listing 1. In
the description and analysis below, P(X) means the validity
of X according to protection principle P. Furthermore, ν
denotes neighborhood information, where we overload nota-
tion to let ν(E) denote the quasi-identifier region associated
with a class E , use ν(t) to denote stored neighborhood in-
formation for a tuple in db, and use db[ν] to denote the set
of tuples associated with neighborhood ν in the database.

BPG first tentatively updates the signatures of all records
in db, adding a bit 1 to those that are in the release and a bit
0 for all others (lines 5-6). Then it loops through all classes
in the release (line 7). For each record in the new release:

1. It retrieves the neighborhood ν1 for E1 (line 8), finds
all distinct stored neighborhoods ν0 of records in E1
and the corresponding set of records E0 (lines 10-11).

2. For each pair of neighborhoods (ν0, ν1), it analyzes the
sets implicitly defined by them: E1−E0 (line 12), E0−E1
(line 15) and E0 ∩ E1 (line 20).

3. If any of these sets violates the protection principle,
BPG looks for a neighborhood that includes ν1 and
that would make all the implicit sets validate the pro-
tection principle: this includes all the records in E1 and
possibly records of E0 that do not intersect any other
class of the current release.

4. If such a neighborhood is found, it is published instead
of ν1 to prevent attacks on sets R− = E0 − E1, R+ =
E1 − E0 and Rx = E0 ∩ E1 (lines 33-35).

5. Otherwise, if this is not possible, the class is rejected
and its records are not published (lines 30-32).

Listing 1: The BPG algorithm
1 Input : db , R1 = (E11 , . . . , E

n
1 )

2 Output : db , R′1
3 r e j e c t := False
4 R′1 := ∅
5 For t in db
6 I f t ∈ R1 Then σ(t) := σ(t)||1 Else σ(t) := σ(t)||0
7 For E1 in R1 do
8 ν1 := ν(E1)
9 For t in E1 do

10 ν0 := ν(t)
11 E0 := db[ν0]
12 I f P(E1 − E0) = False
13 Then r e j e c t := True
14 GoTo Update
15 I f P(E0 − E1) = False

16 Then E−0 := { t ∈ E0 : ∃σ′, σ(t) = σ′||0 }
17 E1 := E1 ∪ E−0
18 ν1 := ν1 ∪ ν0
19 For t in E−0 do σ(t) = σ′||1
20 I f P(E0 ∩ E1) = False

21 Then E−0 := { t ∈ E0 : ∃σ′, σ(t) = σ′||0 }
22 I f P((E1 ∪ E−0 ) ∩ E0) = False
23 Then r e j e c t := True
24 GoTo Update

25 E1 := E1 ∪ E−0
26 ν1 := ν1 ∪ ν0
27 For t in E−0 do σ(t) := σ′||1
28 Update :
29 I f r e j e c t = True
30 Then For t in db ∩ E1 do
31 σ′||1 := σ(t)
32 σ(t) := σ′||0
33 Else For t in db ∩ (E1 ∩ E0) do ν(t) := ν0 ∩ ν1
34 For t in db ∩ (E1 − E0) do ν(t) := ν1
35 R′1 := R′1 ∪ {E1}

Observe that, in its final steps, BPG ensures that the
neighborhoods and signatures are correctly updated for ev-
ery record in the database. Also note that the Update sec-
tion is part of the main loop.

Analysis. BPG preserves the following invariant properties
after each release:

Each record is associated with only one neigh-
borhood, all records in the same neighborhood share
the same signature and all neighborhoods satisfy
the protection principle.

By monotonicity, an invalid set can only be made valid by
increasing its cardinality or making it empty. BPG finds and
corrects invalid sets applying either of these two solutions
according to one general design principle: it only considers
true information and never creates counterfeit records, even
though it may force the inclusion of additional (real) records
that have been omitted from a given release. Although this
may be seen as a form of counterfeiting, we believe that
there exists a distinction between the two.

The above invariant excludes attacks on records that are
deleted from the dataset, i.e. that do not appear in the
latest release. On the other hand, for records that are freshly
added to the dataset, i.e. they appear for the first time in the
latest release, the underlying anonymization algorithm will
automatically guarantee safety: this is because new records
have a distinct signature that will force them all into self-
contained equivalence classes. This leaves the records that
appear in the latest release and had already been released.
For these, each of the implicit sets that lead to intersection
and difference attacks is analysed in turn. We discuss how
BPG effectively protects these records next:



• For each recurrent record in E1, BPG analyses first if
E1−E0 is valid. If it is not, the records in it are known
to be in ν1 − ν0 and since the attacker can identify all
the published identities that fall in this region their
privacy is breached. Expanding the set could only be
done by including counterfeit records, so according to
its guiding principle BPG rejects the class.

• Otherwise, it goes on to test E0 − E1. In case this is
invalid, it may be possible to make the set valid by
adding records to it. E0 contains records with signa-
ture ending in 0 or 1. The latter also appear in other
equivalence classes of R1 and thus can not be added
to E1, so BPG tries to add records from E−0 to E1. Call
E∗1 to this new version of E1. By monotonicity, it is
valid. Besides, this inclusion has the effect of mak-
ing all records in E0 have signature ending in 1, which
means all records in E0 are now in R1. To release E∗1 ,
we must be sure it passes the first test P(E∗1 −E0) but
this must be true because all records in E0 are now in
disjoint classes of R1 and E∗1 is itself valid.

• Finally, BPG analyses the third test, E0 ∩ E1. If this
fails, BPG uses the same strategy of the previous case.
Note that E−0 is recomputed in this step because it
may have been altered during the previous test. In
particular, it may now be empty. Even if it is not
empty, it is not guaranteed that the test (E1∪E−0 )∩E0
is valid, and so BPG tests it again. If it is invalid, it
has no way to correct the set and must reject the class.

As each test passes, BPG updates the signature informa-
tion in the database. If all tests pass, it also updates the
neighborhoods, intersecting the released neighborhood with
the current state. If some test implies rejection, no neigh-
borhoods are updated, and the signatures are reverted to
indicate that the records in E1 will not be published in this
release. Hence, the neighborhoods stored in the database
are safe and so are the sets implicitly defined by them.

Variants. The above algorithm may suppress records from
the dataset by rejecting entire equivalence classes. On the
other hand it may also include some records that suppos-
edly should not appear in the dataset, which we call dirty
records. These options are a middle-ground that seems to
offer the best compromise between data quality and useful-
ness. Two extreme variants can be considered: “no dirty
records” and “with counterfeits”. In the first case, each time
a set fails to validate, BPG simply rejects instead of trying
to correct the class. In the second case, if a class does not
have enough records to be safe, fake (counterfeit) records
are added until it passes the test, in a manner similar to
m−invariance. There is yet another “middle” variant worth
considering: when BPG needs to extend class E1 to make it
valid, instead of finding the union with all records in E−0 it
can add records individually until the class becomes valid.
This is possible by monotonicity and would allow the records
in E−0 to “save” several classes in R1 if needed.

Comparison with other approaches. The main advan-
tage of our algorithm with respect to the literature is its in-
dependence of the anonymization algorithm and protection
principle used. Most of the previous work is focussed on one
particular principle and usually gives an algorithm tailored
specially to achieve it departing from the raw data. Like

many other algorithms, we keep a history of past anonymiza-
tions, but this is minimal since we only keep an aggregated
view of those anonymizations, that does not grow with each
new release.

The algorithm we present is suited to deal with databases
that may grow or shrink dynamically, which models a broader
scenario of anonymizing successive queries. In comparison,
[2], [14] and [4] only consider incremental databases. In-
deed, m−invariance was the first notion proposed to deal
with deletions of records. Unlike m−invariance, our algo-
rithm is flexible enough to allow a given record to appear in
sets with different combinations of sensitive values, as long
as all validity tests are met. This allows the refining of in-
formation relating to already anonymized records and main-
taining protection without introducing false information. In
the next section, we present our experimental results and a
direct comparison with m−invariance.

As a final note, we emphasize that BPG has been designed
for efficiency, so that it can be competitive with other ex-
isting solutions. This means that, rather than pursuing an
optimal solution, our algorithm adopts simple heuristics. In
particular, BPG anonymizes each candidate release indepen-
dently, and it analyses equivalence classes sequentially. The
downside is that the output of the algorithm may degrade
for unfavorable inputs, such as update patterns that consis-
tently lead to small intersections and difference sets.

7. EXPERIMENTAL ANALYSIS
We describe the results of the experimental evaluation of

BPG. Given its flexibility, we had to fix some parameters at
the start. We used Mondrian as anonymization algorithm,
and both k-anonymity and `-diversity with k = ` = 10
as protection principles (simultaneously), since they are the
most intuitive and still widely used. Mondrian was a good
choice because it is fast, simple, and independent of tax-
onomies, yielding very tight neighborhoods. For the split-
ting heuristic in Mondrian we chose degeneracy, which af-
ter some tests proved to give the best results. We per-
formed a parallel comparison between our algorithm and
m−invariance with m = 10. We used the source code in
C++ made available by the authors of [19] as reference im-
plementation. We also used the same databases, named
SAL and OCC from the Adult dataset, downloadable from
http://ipums.org. We coded our algorithm in the same
language to ensure a fair comparison. The tests were run
on a machine equipped with a 3.16 GHz Intel Core2 Duo
processor and 4Gb of RAM on Windows 7 (64 bits) and no
workload on the computer besides the testing procedure.

Both databases have 600k tuples with four quasi-identifier
attributes (age, gender, education and birthplace). The sen-
sitive attribute is income in the SAL database and occu-
pation in the OCC. All column values are discretized and
the sensitive attribute has 50 possible values. We used the
same setup as the reference implementation, by creating a
dynamic table for each data set with 200k new randomly
sampled tuples and made successive anonymizations based
on an update rate parameter r which can take values 40k,
20k, 10k and 5k. For BPG we make an anonymization of
the original table and create history state based on this. In
each following release, r random new tuples replace r old
ones and this process is repeated until the 600k tuples are
used. We repeat the test ten times for every update rate.
The results shown are the average over these runs.

http://ipums.org


Figure 1: Total execution times

Figure 2: Average execution time per release

Benchmarking results. We first compare the time used
by both algorithms. In Figure 1, we report the total time
of running the whole test for m−invariance and for BPG
(where the latter means BPG after Mondrian). Each run in-
cludes 400k/r+ 1 releases for either algorithm. In Figure 2,
we show the average time per release. The total execution
time grows exponentially as the update rate decreases, which
is expected since the number of releases required to cover
all 600k records doubles with each halving of the update
rate. For all 8 cases, BPG is noticeably faster overall than
m−invariance, varying from 20% faster at the longer runs
to almost 40% faster for the shorter. BPG is very stable
regarding the average time per release, but m−invariance
becomes more efficient as more runs are made and approx-
imates BPG’s average time per run. However, BPG also
showed a decrease in the time per release for the smallest
update rates. This suggests that this time will eventually
settle around a constant. This is to be expected since, as
the number of updates tends to zero, both m−invariance
and BPG are reducing their level of intervention and tend-
ing towards static consistency checks.

We also separately analyzed the efficiency of the post-
processing algorithm itself, i.e. checking the overhead over
the execution time of Mondrian. As can be seen in Table 4,
the impact of post-processing in the overall time slowly in-
creases for decreasing update rates. This is natural because,
as the total number of releases grows, the number of conflicts
that potentially need to be resolved because of overlapping
equivalence classes will tend to increase. Nevertheless, in
our cases the overhead stayed between 1/5 and 1/4 of the
total time, which indicates that BPG definitely does not con-
stitute a bottleneck.

We also analysed the quality of the data produced by both
algorithms. The results from all cases resulted in curves with
similar general shapes, as can be checked in Figure 3. The
main features are the following:

Table 4: BPG impact on anonymization process
SAL BPG Total Ratio

OCC-40k 8.38 37.93 0.22
OCC-20k 17.57 75.68 0.23
OCC-10k 35.6 148.48 0.24
OCC-05k 71.82 288.98 0.25
SAL-40k 8.35 38 0.22
SAL-20k 17.57 75.71 0.23
SAL-10k 35.56 148.1 0.24
SAL-05k 71.53 287.87 0.25

• For both algorithms, VEM is overall better for SAL than
for OCC. Furthermore, it seems easier to preserve high
quality with respect to frequency of records than with
respect to volume of quasi-identifier regions in equiva-
lence classes.

• m−invariance achieves very high FEM and very low VEM.
This is natural since m−invariance focuses on hav-
ing the right number of records in each class before
analysing the effects of generalization over the quasi-
identifiers. This leads to inclusion in the same class
of records with possibly very different quasi-identifiers
and forces the creation of large neighborhoods. Con-
sequently, FEM is stable with each release, but VEM de-
creases steadily up to a certain point and then stabi-
lizes at a very low value com pared to that achieved
by BPG.

• BPG has a very good VEM in the first releases, and this
gradually decreases. However, it consistently outper-
forms m−invariance in this parameter, with a ratio
between 1.62 and 2.2.

• BPG displays slightly worse FEM than m−invariance for
the first releases, but steadily recovers with each new
release, reaching roughly same level as m−invariance
and sometimes surpassing it as the release number
reaches its maximum. Overall, we interpret these re-
sults as indicating that BPG matches m−invariance in
the FEM parameter, as the lowest ratio we obtained was
0.83. We observe that the improvement in FEM means
that BPG manages to refine the equivalence classes as
the number of releases increases, which is something
that m−invariance cannot do by construction.

The bad performance of m−invariance relating to VEM can
be justified as follows: m−invariance’s priority is to assign
records to buckets based on their sensitive value. Indeed,
the assignment of tuples to unbalanced buckets in the first
stages of the algorithm does not consider the quasi-identifier
values. When the equivalence classes are created in the final
stages of the algorithm, the final result may already be com-
promised by earlier choices. Adapting m−invariance to take
quasi-identifier information into consideration from earlier
on may improve its performance for VEM.

The conclusions we draw from the previous benchmarking
results are the following. The BPG algorithm is competitive
with m−invariance both in terms of execution time and car-
dinality of the generated equivalence classes. However, our
algorithm displays a significant advantage in terms of the
degradation of data quality, when this takes into consider-
ation the amount of generalization of the resulting quasi-
identifier regions.



Figure 3: FEM and VEM values for r = 5k and r = 40k.

8. DIRECTIONS FOR FUTURE WORK
Some open problems remain. The metric definitions we

propose are defined for releases with strictly disjoint neigh-
borhoods. Since some anonymization algorithms might pro-
duce overlapping neighborhoods, it would be interesting to
expand them to handle this case. Our algorithm also makes
strong use of the monotonicity property of the protection
principle. Some principles, like simple- and entropy-`-diversity
and t-closeness are not monotonous in the sense we defined
here, but they have some related properties, in particular,
the union of valid classes is valid (rather than any superset
of a valid class). Also, some principles nearly satisfy mono-
tonicity as we defined it, but the protection parameter must
be degraded a little. Further work could propose ways of
expanding our algorithm to deal with these weaker forms.
An interesting consequence of dealing with the latter princi-
ples is that successive releases might degrade the protection
parameter, and so a maximum should be imposed on the
total number of queries over a certain dataset.

We do not consider attacks based on knowledge of the
anonymization algorithm used [7], i.e. Algorithm-Safe data
Publishing (ASP). In [7], the authors show how existing al-
gorithms can be modified to achieve ASP versions for some
classical protection principles. One of these strategies, Strat-
ified Pick-up, performs post-processing not unlike BPG. Ex-
ploring how this can be integrated into BPG is an interesting
direction for future work.

9. REFERENCES
[1] R. Bayardo and R. Agrawal. Data privacy through

optimal k-anonymization. In International Conference
on Data Engineering, pages 217–228. IEEE, 2005.

[2] J.-W. Byun, T. Li, E. Bertino, N. Li, and Y. Sohn.
Privacy-preserving incremental data dissemination. J.
Comput. Secur., 17(1):43–68, 2009.

[3] J.-W. Byun, Y. Sohn, E. Bertino, and N. Li. Secure

anonymization for incremental datasets. In Secure
Data Management, pages 48–63, 2006.

[4] B. C. M. Fung, K. Wang, A. W. C. Fu, and J. Pei.
Anonymity for continuous data publishing. In
International Conference on Extending Database
Technology, pages 264–275. ACM, 2008.

[5] B. C. M. Fung, K. Wang, and P. S. Yu. Top-down
specialization for information and privacy
preservation. In International Conference on Data
Engineering, pages 205–216, 2005.

[6] S. R. Ganta, S. P. Kasiviswanathan, and A. Smith.
Composition attacks and auxiliary information in data
privacy. In KDD, pages 265–273, 2008.

[7] Xin Jin, Nan Zhang, and Gautam Das. Algorithm-safe
privacy-preserving data publishing. In Proceedings of
the 13th International Conference on Extending
Database Technology, EDBT ’10, pages 633–644, 2010.

[8] D. Kifer and J. Gehrke. Injecting utility into
anonymized datasets. In SIGMOD Conference, pages
217–228, 2006.

[9] K. LeFevre, D. J. DeWitt, and R. Ramakrishnan.
Mondrian multidimensional k-anonymity. In Int.
Conference on Data Engineering. IEEE, 2006.

[10] Ninghui Li, Tiancheng Li, and Suresh
Venkatasubramanian. t-closeness: A new privacy
measure for data publishing. IEEE Trans. on Knowl.
and Data Eng., 22(7):943–956, July 2010.

[11] A. Machanavajjhala, D. Kifer, J. Gehrke, and
M. Venkitasubramaniam. L-diversity: Privacy beyond
k-anonymity. ACM Trans. Knowl. Discov. Data, 1(1),
2007.

[12] B. Malin and L. Sweeney. Re-identification of dna
through an automated linkage process. Journal of the
American Medical Informatics Association, 2001.

[13] A. Narayanan and V. Shmatikov. Robust
de-anonymization of large sparse datasets. IEEE
Symposium on Security and Privacy, 2008.

[14] J. Pei, J. Xu, Z. Wang, W. Wang, and K. Wang.
Maintaining k-anonymity against incremental updates.
In Int. Conf. on Scientific and Statistical Database
Management. IEEE, 2007.

[15] L. Sweeney. Achieving k-anonymity privacy protection
using generalization and suppression. Int. Journal on
Uncertainty, Fuzziness and Knowledge-based Systems,
10:571–588, 2002.

[16] Y. Tao, Y. Tong, S. Tan, S. Tang, and D. Yang.
T-rotation: Multiple publications of privacy preserving
data sequence. In ADMA, pages 500–507, 2008.

[17] G. Wang, Z. Zhu, W. Du, and Z. Teng. Inference
analysis in privacy-preserving data re-publishing. In
IEEE Int. Conf. on Data Mining, 2008.

[18] K. Wang and B. Fung. Anonymizing sequential
releases. In KDD, pages 414–423, 2006.

[19] X. Xiao and Y. Tao. M-invariance: towards privacy
preserving re-publication of dynamic datasets. In
ACM SIGMOD International Conference on
Management of Data, pages 689–700, 2007.

[20] J. Xu, W. Wang, J. Pei, X. Wang, B. Shi, and A. Fu.
Utility-based anonymization using local recoding. In
ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 785–790, 2006.


	Introduction
	Preliminaries
	Related work
	Anonymization theory
	Quality Metrics
	Algorithm description
	Experimental analysis
	Directions for future work
	References

