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Abstract. This paper presents techniques developed to check program
equivalences in the context of cryptographic software development, where
specifications are typically reference implementations. The techniques al-
low for the integration of interactive proof techniques (required given the
difficulty and generality of the results sought) in a verification infrastruc-
ture that is capable of discharging many verification conditions automat-
ically. To this end, the difficult results in the verification process (to be
proved interactively) are isolated as a set of lemmas. The fundamental
notion of natural invariant is used to link the specification level and the
interactive proof construction process.

1 Introduction

Software implementations of cryptographic algorithms and protocols are at the
core of security functionality in many IT products. However, the development
of this class of software products is understudied as a domain-specific niche in
software engineering.

The development of cryptographic software is clearly distinct from other areas
of software engineering due to a combination of factors. First of all, cryptogra-
phy is an inherently inter-disciplinary subject. The design and implementation
of cryptographic software draws on skills from mathematics, computer science
and electrical engineering. The assumption that such a rich body of research
can be absorbed and applied without error is tenuous for even the most expert
software engineer. Secondly, security is notoriously difficult to sell as a feature
in software products, even when clear risks such as identity theft and fraud
are evident. An important implication of this fact is that security needs to be
as close to invisible as possible in terms of computational and communication
load. As a result, it is critical that cryptographic software is optimised aggres-
sively, without altering the security semantics. Finally, typical software engineers
develop systems focussed on desktop class processors within computers in our of-
fices and homes. The special case of cryptographic software is implemented on a
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much wider range of devices, from embedded processors with very limited com-
putational power, memory and autonomy, to high-end servers, which demand
high-performance and low-latency. Not only must the cryptographic software
engineers understand each platform and the related security requirements, they
must also optimise each algorithm with respect to each platform since each will
have vastly different performance characteristics.

CACE (Computer Aided Cryptography Engineering [5]) is an European
Project that targets the lack of support currently offered to cryptographic soft-
ware engineers. The central objective of the project is the development of a
tool-box of domain-specific languages, compilers and libraries, that supports
the production of high quality cryptographic software. The aim is that specific
components within the tool-box will address particular software development
problems and processes; and combined use of the constituent tools is enabled by
designed integration between their interfaces. The project started in 2008 and
will run for three years.

This paper stems from CACE - Work Package 5, which aims to add formal
methods technology to the tool-box, as a means to increase the degree of assur-
ance than can be provided by the development process. We describe promising
early results obtained during our exploration of existing verification techniques
and tools used to construct high-assurance software implementations for other
domains. Specifically, we present our achievements in using an off-the-shelf ver-
ification tool to reason about the functional correctness of a C implementation
of the RC4 encryption scheme that is included in the well-known open-source
library openSSL [15].

Contribution. The main contribution of this paper is to report on the appli-
cation of the off-the-shelf Frama-c verification platform to verifying correctness
of a real-world example of a cryptographic software implementation: the widely
used C implementation of the RC4 stream cipher available in the openSSL library.
We focus on functional correctness, which is a critical use-case for verification
tools when applied to cryptographic software. The (conceptual) specifications
of cryptographic schemes are very often presented as pseudo-code algorithms,
which may be easy to transcribe into a high-level programming language. How-
ever, given that cryptographic implementations are typically optimised for high
efficiency, the best implementation is unlikely to be the most readable one. For
this reason, we formalise the property of functional correctness of the RC4 imple-
mentation in terms of input/output behavioural equivalence to another (more
readable) C implementation of the same algorithm. We then explore techniques
to prove such an equivalence, which we believe may be of independent interest.

Paper Organisation. Sections 2 and 3 give background on deductive veri-
fication and RC4 in openSSL. Section 4 introduces the method used to prove
equivalence between the reference and practical implementations of RC4, and
Sections 5 and 6 describe the formalisation of loop refactorings in Coq, based on
the notion of natural invariant. Section 7 presents related work and Section 8
concludes the paper.
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2 Background: Deduction-Based Program Verification

The techniques employed in this paper are based on Hoare Logic [12], brought to
practice through the use of contracts – specifications consisting of preconditions
and postconditions, annotated into the programs. In recent years, verification
tools based on contracts have become more and more popular, as their scope
evolved from toy languages to very realistic fragments of languages like C, C#,
or Java.

In a nutshell, a verification infra-structure consists of a verification conditions
generator (VCGen for short) and a proof tool, which may be either an auto-
matic theorem prover or an interactive proof assistant. The VCGen reads in the
annotated code (which contains contracts and other annotations meant to facil-
itate the verification, such as loop invariants and variants) and produces a set of
proof obligations known as verification conditions, that will be sent to the proof
tool. The correctness of the VCGen guarantees that, if all the proof obligations
are valid, then the program is correct with respect to its specification. Depend-
ing on the specified properties, the verification conditions may, or may not, be
automatically provable.

The concrete tools we have used in this work were Frama-c [3], a tool for the
static analysis of C programs that contains a multi-prover VCGen [10]; and a set
of proof tools that included the Coq proof assistant [18], and the Simplify [9]
and Ergo [7] automatic theorem provers. C programs are annotated using the
ANSI-C Specification Language (ACSL [3]). Both Frama-c and ACSL are work
in progress; we have used the latest (Lithium) release of Frama-c.

Frama-c contains the gwhy graphical front-end that allows to monitor indi-
vidual verification conditions. This is particularly useful when combined with
the possibility of exporting the conditions to various proof tools, which allows
users to first try discharging conditions with one or more automatic provers,
leaving the harder conditions to be studied with the help of an interactive proof
assistant. An additional feature of Frama-c that we have found useful is the
declaration of Lemmas. Unlike axioms, which require no proof, lemmas are re-
sults that can be used to prove goals, but give themselves origin to new goals. In
the proofs we developed, it was often the case that once an appropriate lemma
was provided, all the verification conditions could be automatically discharged,
leaving only the difficult lemma to be proved in Coq.

3 The RC4 Cipher and Its Implementation in openSSL

RC4 is a symmetric cipher designed by Ron Rivest at RSA labs in 1987. It is
a proprietary algorithm, and its definition was never officially released. Source
code that allegedly implements the RC4 cipher was leaked on the internet in
1994, and this is commonly known as ARC4 due to trademark restrictions. In
this work we will use the RC4 denomination to denote the definition adopted in
literature [16]. RC4 is widely used in commercial products, as it is included as
one of the recommended encryption schemes in standards such as TLS, WEP
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Fig. 1. Block diagram of the RC4 cipher

and WPA. In particular, an implementation of RC4 is provided in the pervasively
used open-source library openSSL, which we selected as the case study for this
paper.

In cryptographic terms, RC4 is a synchronous stream cipher, which means that
it is structured as two independent blocks, as shown in Figure 1. The security of
the RC4 cipher resides in the strength of the key stream generator, which is ini-
tialized with a secret key SK. The key stream output is a byte1 sequence kt that
approximates a perfectly random bit string, and is independent of plaintext and
ciphertext. The encryption operation consists simply of XOR-ing each plaintext
byte xt with a fresh keystream byte kt. Decryption operates in an identical way.
The key stream generator operates over a state which includes a permutation
table S = (S[l])l=255

l=0 of (unsigned) byte-sized values, and two (unsigned) byte-
sized indices i and j. We denote the values of these variables at time t by St, it
and jt. The state and output of the key stream generator at time t (for t ≥ 1)
are calculated according to the following recurrence, in which all additions are
carried out modulo 256.

it = it−1 + 1
jt = jt−1 + St−1[it]

St[it] = St−1[jt]
St[jt] = St−1[it]

kt = St[St[it] + St[jt]]

The initial values of the indices i0 and j0 are set to 0, and the initial value of
the permutation table S0 is derived from the secret key SK. The details of this
initialisation are imaterial for the purpose of this paper, as they are excluded
from the analysis.

We present in Appendix A the C implementation of RC4 included in the
openSSL open-source. The function receives the current state of the RC4 key
stream generator (key), and two arrays whose length is provided in parameter
len. The first array contains the plaintext (indata), and the second array will
be used to return the ciphertext (outdata). We note that this implementation
is much less readable than the concise description provided above, as it has
been optimised for speed using various tricks, including macro inlining and loop
unrolling.

1 We adopt the most widely used version of RC4 which operates over byte-sized words,
which is also the one implemented in openSSL.
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unsigned char RC4NextKeySymbol(RC4_KEY *key) {
unsigned char tx,ty;

key->x=(key->x+1) % 256;
tx=key->data[key->x];
key->y=(tx+key->y) % 256;
ty=key->data[key->y];
key->data[key->x]=ty;
key->data[key->y]=tx;
return key->data[(tx+ty) % 256];

}

void RC4(RC4_KEY *key, const unsigned long len,
const unsigned char *indata, unsigned char *outdata) {

int i=0;
while(i<len) { outdata[i]=indata[i] ^ RC4NextKeySymbol(key); i++; }

}

Fig. 2. RC4 specification

4 Functional Correctness of Code Refactoring

It is typical of cryptographic software that specifications are given as algorithms,
rather than using the notion of an abstract model. The programmer is free to
improve the code, say by introducing optimizations or internal reorganizations
(e.g. to improve efficiency, maintainability or to satisfy non-functional security
properties), as long as the input-output behaviour is the same as that prescribed
by a reference implementation. In software engineering, such a transformation
is usually known as code refactoring.

To illustrate this point, recall the description of the RC4 algorithm provided
in Section 3. A direct transcription of this specification to a C implementation
could look something like the code in Figure 2. Although this implementation is
quite readable, and arguably verifiable by inspection, it was created without the
slightest consideration for efficiency. This stands in contrast with the openSSL
implementation of RC4 (see Appendix A) where readability (and the inherent
assurance of correctness) was sacrificed to achieve better performance.

This example supports the domain-specific motivation for the discussion pre-
sented in this section: the natural way to obtain assurance that an implemen-
tation of a cryptographic algorithm is correct, is to verify that it is functionally
equivalent to another (more readable) implementation of the same algorithm.
We have investigated how this goal can be achieved for the particular case of
RC4, by identifying refactoring steps that may require a proof of equivalence in
order to establish the correctness of different RC4 implementations. We describe
these refactoring steps in the remainder of this section. In the next section we
present our approach to verifying the identified class of equivalence relations
using an off-the-shelf tool such as Frama-c. The results we obtain are, of course,
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void RC4(RC4_KEY *key, const unsigned long len,
const unsigned char *indata, unsigned char *outdata) {

unsigned char keystream[len];

int i=0;
while(i<len) { keystream[i] = RC4NextKeySymbol(key); i++; }

i=0;
while(i<len) { outdata[i]=indata[i] ^ keystream[i]; i++; }

}

Fig. 3. RC4 implementation with key pre-processing

not only applicable to implementations of other cryptographic algorithms, but
also to other application domains where similar program transformations may
be employed.

A simple refactoring to capture key pre-processing. The first example we
present of a possible refactoring of the RC4 specification in Figure 2 is suggested
by a common optimisation performed when using stream ciphers. Indeed, one of
the ways of speeding up the throughput of stream cipher processing is to compute
(a portion of) the key stream before the plaintext is available (or the ciphertext
if one is decrypting). This means that the encryption operation to be performed
on-the-fly is then reduced to simple masking using an XOR operation, which can
be done extremely fast. For sychronous ciphers such as RC4, the number of key
stream bits that can be pre-computed can be arbitrarily large, as this is totally
independent of the encrypted data. The version of RC4 presented in Figure 3
moves in this direction by separating the key stream generation process from
the plaintext masking (or ciphertext unmasking process). In the next section
we will discuss a technique that can be used to prove equivalence beween the
programs in Figures 2 and 3 using a verification infrastructure like that discussed
in Section 2.

A sequence of refactorings leading to the openssl implementation. We
now discuss a more elaborate sequence of refactoring steps that permit reach-
ing the openSSL implementation of RC4 in Appendix A, departing from the
reference implementation in Figure 2. The first refactoring step, leading to the
RC4 function in Figure 4, top, is not very interesting from a verification point
of view. It consists of a number of simple transformations whose validity can
be proven with some effort using Frama-c: (1) removing the auxiliary function
by inlining the corresponding code in the main function body; (2) rearranging
local variables to match those in the openSSL implementation; (3) applying the
transitivity property of assignments in C to combine two statements; and (4)
replacing modular operations by their equivalent bit-wise operations. A macro
is also introduced to improve readability.
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void RC4(RC4_KEY *key, const unsigned long len,
const unsigned char *indata, unsigned char *outdata)

{
unsigned char x,y,tx,ty, *d;
int i;

x = key->x; y = key->y; d = key-> data;

i=0;
while(i<len) { RC4LOOP(indata,outdata,i); i++; }

key->x=x; key->y=y;
}

void RC4(RC4_KEY *key, const unsigned long len,
const unsigned char *indata, unsigned char *outdata)

{
unsigned char x,y,tx,ty, *d;
int i;

x = key->x; y = key->y; d = key-> data;

i= (int)(len>>3L);
while(i>0) {

RC4LOOP(indata,outdata,0);
RC4LOOP(indata,outdata,1);
RC4LOOP(indata,outdata,2);
RC4LOOP(indata,outdata,3);
RC4LOOP(indata,outdata,4);
RC4LOOP(indata,outdata,5);
RC4LOOP(indata,outdata,6);
RC4LOOP(indata,outdata,7);
indata+=8; outdata+=8; i--;

}

i=(int)(len&0x07);
while(i>0) {RC4LOOP(indata,outdata,i); i--; }

key->x=x; key->y=y;
}

Fig. 4. RC4 refactoring steps 1 (top) and 2 (bottom)
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The next refactoring steps, leading to the version shown in Figure 4, bottom,
are more interesting examples of transformations involving loop refactorings.
Concretely, the main loop is first separated into two loops with the same body,
which are sequentially composed to realise the original number of iterations. The
first loop is then modified by explicitly composing the original body with itself
8 times, and altering the increments accordingly.

The final refactoring steps, leading to the openssl version of RC4 in Ap-
pendix A, are introduced to achieve additional speed-ups. Firstly, pointer arith-
metic is used to reduce the range of indexing operations, and loop counting
is inverted. Then, different control flow constructions are applied: all while
loops are reformulated using the break statement to remove the final back-
ward jump, and if constructions are introduced to detect termination cases.
Again, these refactoring steps can be handled in Frama-c with some effort,
but they do not require non-trivial proof steps that justify a detailed presen-
tation.

In the remainder of this paper we concentrate on presenting a technique that can
be used to prove the equivalence of the different versions of the RC4 function that
spring from the specific loop transformations outlined in the second step above.

Equivalence by Composition. We now formalise a notion of program equiva-
lence that permits dealing with the refactoring paradigm introduced above. The
required notion of program equivalence is based on Hoare logic, using a program
composition technique inspired by self-composition, a technique for reasoning ax-
iomatically about non-interference properties of programs [2]. The general tech-
nique introduced here sets the grounds for the work presented in the next section,
where we explore the technical details involved in proving program equivalence re-
lations such as those arising from the refactorings described above for RC4.

The basic principle underlying self-composition can be adapted to the current
context: given two terminating programs C1 and C2, they can be combined by
first renaming the variables in one of the programs so that they use distinct name
spaces, and then composing the programs sequentially. Given some program C,
let Cs be the program that is equal to C except that every variable x is renamed
to a fresh variable xs.

Let V be the set of variables occurring in both programs. The idea that we
want to capture is that if the programs are executed from indistinguishable states
with respect to V , they terminate in states that are also indistinguishable. C1

and C2 will be defined as equivalent if every execution of the composed program
C1; Cs

2 , starting from a state in which the values of corresponding variables are
equal, terminates in a state with the same property. This can be expressed as
the following Hoare logic total correctness specification, that can be expressed
in ACSL.

[
∧

x∈V

x = xs

]
C1; C

s
2

[
∧

x∈V

x = xs

]

Weaker notions of equivalence can be handled by taking V to be a subset of
Vars(C1) ∩ Vars(C2).
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5 Proving Equivalence Using Natural Invariants

Is this section we elaborate on the general approach that we adopt to prove the
equivalence between a refactored version of a function such as those in Figure 4,
with respect to the originating function, in this case the reference implementation
in Figure 2. In order to establish this equivalence using a deductive framework
such as Frama-c, we need to:

– create a composed program which aggregates the two versions of the original
program we aim to prove functionally equivalent;

– annotate the composed program with appropriate contracts and loop invari-
ants;

– discharge the resulting proof obligations.

Moreover, we would like to overcome these steps with a reasonable degree of
automation. Here, reasonable essentially means that we intend to take the max-
imum advantage from the fact that we are dealing with program refactorings,
which admittedly share most of its control structure. Our strategy for tack-
ling these problems consist in: (1) extracting a relational specification directly
from the program code; (2) annotating the program with invariants derived from
the specification; (3) generating specific lemmas justifying the most significant
refactorings; and (4) using an automatic first-order theorem prover to discharge
the proof-obligations. The generated lemmas, which constitute the (small) non-
trivial part of the proof, must then be justified using an interactive theorem
prover.

To illustrate this methodology, we consider a simple While-language with
integer expressions and arrays. Its syntax is given by:

P ::= {P} | skip | P1; P2 | V := Eint | A[Eint] := Eint

| if (Ebool) then P1 else P2 | while (Ebool) P

Eint ::= Constint|Eint op Eint|A[Eint]|...
Ebool ::= true|false|Ebool ∧ Ebool|Ebool ∨ Ebool|Eint opRel Eint

For simplicity we do not include any form of variable declaration. Instead, we
consider a fixed State type to keep track of all the variable values during the
execution of the program. Integer variables are interpreted as (unbound) integers
and arrays as functions from integers to integers (no size/range checking). We
also adopt the usual axioms for array access and update operations.

access : (Z → Z) × Z → Z

update : (Z → Z) × Z × Z → (Z → Z)
access(update(a, k, x), k) = x

access(update(a, k′, x), k) = access(a, k) , if k '= k′.

The State type is defined as the cartesian product of the corresponding interpre-
tation domains (each variable is associated with a particular position). We also
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consider an equivalence relation ≡ that captures two extensionally equal states.
Integer and boolean expressions are interpreted in a particular state, that is
[[eInt]] : State → Z, [[eBool]] : State → B. We take the standard definition for the
big-step semantics of a program as its natural specification. Concretely:

specskip(s, s′) = s ≡ s′

spec{P}(s, s
′) = specP (s, s′)

specP1;P2
(s, s′) = ∃s′′, specP1

(s, s′′) ∧ specP2
(s′′, s′)

specv:=E(s, s′) = s′ ≡ s{v ← [[E]](s)}
speca[E1]=E2

(s, s′) = s′ ≡ s{a ← update(a, [[E1]](s), [[E2]](s))}
specif (C) then P1 else P2

(s, s′) = ([[C]]s ∧ specP1
(s, s′)) ∨ (¬[[C]](s) ∧ specP2

(s, s′))

specwhile (C) P (s, s′) = ∃n, loopn
C,specP (s,s′)(s, s

′) ∧ ¬[[C]](s′)

where loopn
C,R(s, s′) is the inductively defined relation

loop0
C,R(s, s′) ⇐= s ≡ s′

loopS(n)
C,R (s, s′) ⇐= ∃s′′, loopn

C,R(s, s′′) ∧ [[C]](s′′) ∧ R(s′′, s′)

The relation loopn
C,R(s, s′) denotes the loop specification for the body R under

condition C. In this definition we have made explicit the iteration rank (iteration
count) in superscript – in fact, we will see that it is often convenient to consider
it explicitly in the proofs. Neverthless, when omitted, it should be considered
as existentially quantified. Also, we will omit subscripts (both in loop and spec)
when the corresponding programs are clear from the context. From the loop
relation we recover what we call the loop’s natural invariant as:

Invloop(s) = loopC,R(s@Init, s)

where C and R are the loop’s condition and body, respectively, and s@Init
denotes the snapshot of the loop’s initial state.

Expressiveness and Relative Completeness. Natural invariants depend
on a sufficiently expressive assertion language that should allow defining new
inductive relations. This corresponds essentially to Cook’s expressiveness criteria
in his relative completeness result for Hoare Logic [8]. In fact, from the definition
of spec we can easily recover the strongest liberal predicate as

slp(S, P ) = {s′ | P (s) ∧ specS(s, s′)}

An immediate consequence of this observation is that we might conduct the
verification of an arbitrary Hoare triple logically, namely

{P}S{Q} iff slp(S, P ) ⊇ Q iff P (s) ∧ specS(s, s′) ∧ Q(s′).

Note that these requirements surpass the realm of first-order logic. Thus, when
the target verification tool is a first-order theorem prover, we shall rely on a weak
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axiomatisation of these predicates (in our case, we consider an axiom for each
constructor and a simple inversion principle). This observation clarifies why we
need to supplement the first-order theory with additional lemmas. Moreover, it
also shows that failure in verification is not necessarily caused by limitations in
the first-order theorem provers. When full-fledged inductive reasoning is needed,
we resort to Coq’s higher-order logic capabilities to interactively prove specific
lemmas. Fortunately, it is possible to identify a set of general lemmas that can
be proven once-and-for-all, and that permit justifying interesting refactorings.
General Properties. We call plain theory to the first-order theory resulting
from the program specification and the corresponding weak axiomatization of
loop predicates. A consequence of the limitations of first-order theory/provers
mentioned above is that the plain theory is insufficient to establish the adequacy
of even the most trivial refactoring (the identity refactoring) when the programs
use loops. To illustrate what is missing, we need to walk the reader through the
proof of the following spec properties:

Proposition 1. For every program fragment P and states s1, s2, s′1, s
′
2,

– spec preserves ≡, i.e. s1 ≡ s2 ∧ s′1 ≡ s′2 ∧ specP (s1, s′1) ⇒ specP (s2, s′2).
– spec is deterministic, i.e. specP (s, s′1) ∧ specP (s, s′2) ⇒ s′1 ≡ s′2.

The proof follows straight by induction on the program P using the following
lemma

Lemma 1. Let R(s, s′) be a deterministic relation on states, and C a boolean
condition. Then, loopC,R(s, s′) is deterministic whenever ¬[[C]](s′).

This in turn is a consequence of the following two assertions:

s1 ≡ s2 ∧ loopn1
C,R(s1, s

′
1) ∧ ¬[[C]](s′1) ∧ loopn2

C,R(s2, s
′
2) ∧ ¬[[C]](s′2) =⇒ n1 = n2

s1 ≡ s2 ∧ loopn
C,R(s1, s

′
1) ∧ loopn

C,R(s2, s
′
2) =⇒ s′1 ≡ s′2

Both of these statements are directly proved by a simple induction (on max(n1, n2)
in the first case, and on n in the second). The first statement establishes the syn-
chronization of both executions and the second their determinism. Augmenting
the plain theory with these lemmas is mandatory to perform even the most basic
reasoning.

This factorization strategy, in which we detach the synchronization and de-
terminism properties, underlies our proposed paradigm for reasoning about mul-
tiple executions of the same (or related) program fragments. Moreover, we can
strengthen the synchronization lemma by observing that it only depends on the
equivalence between fragments of the initial state, namely those that affect the
loop’s condition. The determinism lemma can itself be rephrased replacing state
equivalence by an arbitrary predicate.

Justifying Loop Refactorings. For the sake of presentation, we restrict our
attention to specifications obtained from single loops with loop-free bodies. That
is, we consider natural invariants of the form:

loopC,spec(P )(s, s′)
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where P contain no loops. This scenario is enough to illustrate the applicability
of the proposed strategy in tackling the sort of program refactorings needed for
establishing correctness of the RC4 openSSL implementation.

The simplest loop refactoring that we can address using our technique is loop
unrolling, where we detach instances of the loop-body. We find this refactoring in
the optimisations described in the previous sections. This sort of transformation
is justified by the loop’s inversion lemma:

∀n s s′, loopS(n)
C,R (s, s′) =⇒ ∃s′′, loopn

C,R(s, s′′) ∧ [[C]](s′′) ∧ R(s′′, s′).

This relatively simple class of refactorings can then be handled directly by the
plain theory augmented with synchronization and determinism lemmas.

For more interesting refactorings, we may need to formulate specific lemmas
to justify them. Let us illustrate this by a loop-fusion refactoring: we consider
the equivalence between two consecutive loops (loops 1 and 2) and one single
fused loop (loop 3). This is applicable to the RC4 pre-processing optimisation
presented in the previous section. Let us denote the inductive predicates of these
loops by loop1, loop2 and loop3, respectively. We assume, for simplicity, that all
the loops share the same control structure (loop condition and associated state).
This means that we are able to prove mixed synchronization lemmas such as, for
all n1 n2 s1 s2 s′1 s′2,

πC(s1) ≡ πC(s2)∧loopn1
1 (s1, s

′
1)∧¬[[C]](s′1)∧loopn2

2 (s2, s
′
2)∧¬[[C]](s′2) =⇒n1 =n2.

Again, the proof is a straightforward generalisation of the single loop version.
Once this result is estabished, one can move to the proof of the main lemma
that can be used to justify the fusion refactoring:

∀n s1 s2 s′1 s′′1 s′2,

s1 ≡ s2 ∧ loopn
1 (s1, s

′′
1) ∧ loopn

2 (s′′1 , s′1) ∧ loopn
3 (s2, s

′
2) =⇒ s′1 ≡ s′2.

The advantage of our method is that, since this lemma is based on simple prop-
erties concerning the three loop bodies, which are all non-recursive, it can be
easily discharged by automatic provers.

6 Implementation Details

We have tested the proposed methodology in checking the correctness of the
RC4 openSSL implementation (shown in appendix). The specification predicates
were extracted manually, and included in the ACSL code as inductive defini-
tions. These definitions are allowed by the last revision of the ACSL language
(version 1.4), but we remark that when the target verification tool is a first-order
prover they are translated to a weak axiomatization (as described in Section 5).
Additional lemmas were also included in the ACSL code and proved by the Coq
proof assistant. For that purpose, we have developed a library that includes a full
formalization of natural invariants as presented in the last section. This library
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makes extensive use of the Coq’s module system [6] in order to structure the
development. As a rule, we embed each lemma and respective proof in a functor
parametrized by the basic facts it depends on. In particular, we have defined
functors for deriving synchronization, determinism and loop fusion lemmas. All
the facts required by these functors are non-iterative, and thus are easily dis-
charged by the automatic provers. In this way, we are able to treat this library
as a catalog of refactorings that can be used on demand during the verification
process — we emphasise that there is no need to conduct further interactive
proofs, unless this catalog is extended to cover a new class of loop refactorings.

7 Related Work

Natural Invariants provide an explicit rendition of program semantics. In [13]
a similar encoding of program semantics in logical form can be found, which
advocates the use of second-order logic as appropriate to reason about programs,
since it allows to capture the inductive nature of the input-output relations for
iterative programs. To some extent, our use of Coq’s higher-order logic may be
seen as an endorsement of that view. However, we have made an effort to combine
the strength of higher-order logic reasoning with facilities made available by
automatic first-order provers.

Our “proof-by-composition” technique is reminiscent of the self-composition
approach for verifying non-interference[2]. Terauchi and Aiken [17] identified
problems in applying it, arguing that automatic tools (software model checkers
like SLAM [1] and BLAST [11]) are not powerful enough to verify this property
over programs of realistic size. To compensate for this, the authors propose a
program transformation technique, which incorporates the notion of security
level downgrading using relaxed non-interference [14]. Our work proposes an
alternative solution since it enriches the uderlying first-order theory with lemmas
that overcome the identified limitations.

Relational Hoare Logic [4] has also been used to prove the soundness of pro-
gram analyses and optimising transformations. Its scope is thus similar to our
proofs-by-composition setting. The main difference is the fact that we do not
need to move away from traditional Hoare Logic, which allows us to rely on
standard available verification tools.

8 Conclusions

In this paper we have presented a methodology for verifying correctness of im-
plementations with regard to reference implementations, an important concern
in domains such as the verification and certification of cryptographic software
implementations. We have focused on proposing strategies and techniques allow-
ing us to maximize the benefits of using well established and publicly available
tools, such as Frama-c, first-order automatic theorem provers and the Coq proof
assistant. The approach can be summed up as follows
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1. Program equivalences in general can be expressed (for terminating programs)
as Hoare triples using a composition technique that simulates the execution
of two programs by a single program. Such triples can be written in an
interface specification language like ACSL and fed to a standard VCGen like
Frama-c.

2. However, program equivalences are difficult verification challenges by nature,
and automatic proof is, on its own, of little help. Resorting to an interactive
proof tool to conduct inductive proofs involving loops is inevitable.

3. Natural invariants are good candidates for establishing the connection be-
tween the interface specification language and the proof assistant: on one
hand, all the interactive reasoning is transferred to the inductive predicates
that form the invariant; on the other hand, the invariant can be annotated
into the specification files to be fed through the VCGen. We remark that
these invariants (and some standard lemmas) can be generated mechani-
cally.

4. Concluding the verification process is then a matter of identifying the rele-
vant refactoring and instantiating the corresponding lemma. Once equipped
with these lemmas an automatic prover is able to discharge the remaining
proof obligations.

5. Once recognized, a new refactoring might be included by defining a new
functor responsible for instantiating the corresponding lemma. It will require
a once-and-for-all formal proof asserting the refactoring correctness (proved
interactively in Coq).

This approach was put to practice to prove (as a sequence of refactoring steps)
the equivalence between a reference implementation of an open-source crypto-
graphic algorithm and the realistic implementation included in the appendix.
Other applications that we are developing for this approach based on natu-
ral invariants include proofs of information flow security properties, using the
self-composition technique, and related properties such as the absence of error
propagation in stream ciphers.
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A openSSL Implementation of RC4

typedef struct rc4_key_st { unsigned char x,y,data[256];} RC4_KEY;

void RC4(RC4_KEY *key,const unsigned long len,
unsigned char *indata, unsigned char *outdata) {

register unsigned char *d,x,y,tx,ty;
int i;
x=key->x;
y=key->y;
d=key->data;

#define LOOP(in,out) \
x=((x+1)&0xff); \
tx=d[x]; \
y=((tx+y)&0xff); \
d[x]=ty=d[y]; \
d[y]=tx; \
(out) = d[((tx+ty)&0xff)]^ (in);

#define RC4_LOOP(a,b,i) LOOP(a[i],b[i])

i=(int)(len>>3L);
if (i) {

while(1) {
RC4_LOOP(indata,outdata,0);
RC4_LOOP(indata,outdata,1);
RC4_LOOP(indata,outdata,2);
RC4_LOOP(indata,outdata,3);
RC4_LOOP(indata,outdata,4);
RC4_LOOP(indata,outdata,5);
RC4_LOOP(indata,outdata,6);
RC4_LOOP(indata,outdata,7);
indata+=8;
outdata+=8;
if (--i == 0) break;}}

i=(int)(len&0x07);
if(i) {

while(1) {
RC4_LOOP(indata,outdata,0); if (--i == 0) break;
RC4_LOOP(indata,outdata,1); if (--i == 0) break;
RC4_LOOP(indata,outdata,2); if (--i == 0) break;
RC4_LOOP(indata,outdata,3); if (--i == 0) break;
RC4_LOOP(indata,outdata,4); if (--i == 0) break;
RC4_LOOP(indata,outdata,5); if (--i == 0) break;
RC4_LOOP(indata,outdata,6); if (--i == 0) break;}}

key->x=x;
key->y=y;

}
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