chi+med

making medical devices safer

EPSRC Programme Grant EP/G059063/1

Public Paper no. 325

Developing and Verifying User Interface
Requirements for Infusion Pumps:
A Refinement Approach

Rimvydas Ruksénas, Paolo Masci & Paul Curzon

Ruksénas, R., Masci, P., & Curzon, P. (2015). Developing and
Verifying User Interface Requirements for Infusion Pumps:
A Refinement Approach. Chapter 1 of L. Petre &

E. Sekerinski (Eds), From Action Systems to Distributed
Systems: The Refinement Approach, Chapman and Hall/CRC.

PP release date: 9 June 2015

file: WP325.pdf

, = 0 EPSRC
N I c & . - \Q Queen Mary : 5 o CITY UNIVERSITY
m U C l Swansea University [—L' —7‘] - Mversityof tomdon m LONDON pgeering on =l oclences
Prifysgol Abertawe | l - o

Chapter 1

Developing and Verifying User Interface
Requirements for Infusion Pumps: A
Refinement Approach

Rimvydas Ruksénas

Queen Mary University of London

Paolo Masci

Queen Mary University of London

Paul Curzon

Queen Mary University of London

1.1 Introductionc..iiiiiii
1.1.1 Outline of the Approachccoiiiiiiiiiiiiinn...

1.2 Sample User Interface Requirements from FDA
1.3 Background ...
1.3.1 Interface refinement approaches

1.3.2 Event-B/Rodin frameworkccooiinll

1.4 The requirement hierarchiesccooiiiiiiiiin...
1.4.1 Requirements for dataentrycc.oooeiiiiiiiiinn...

14.1.1 Requirements Rland R2

14.1.2 Requirements R3and R4

1.4.2 Safeguards against inadvertent changes or tampering

1421 RequirementRS

1422 Requirement R6l

1.5 Verification of concrete interfaces ...
1.5.1 Specification of the vtbi entry in Alaris

1.5.2 RequirementR6 i

1.5.3 Requirements R1-R4o

1.6 CONCIUSIONS ... vt
Acknowledgmentst

[l IEN RN IEN B NV IR

—_
S o

11
11
13
15
15
16
17
18
19

4 From Action System to Distributed Systems: The Refinement Approach

1.1 Introduction

Demonstrating that interactive devices are acceptably safe is a significant and
important element in their development in various domains. For example, interaction
design errors in medical devices have an impact on patient safety and contribute to
health-care costs. Because of this, medical device regulators require manufacturers
to provide sufficient evidence that the risks associated with the device are “as low as
reasonably practicable” as well as being fit for purpose before entering the market.
This process is known as the premarket review process. For the majority of medical
devices, the premarket approval relies on manufacturers demonstrating that the new
device is as safe and effective as an already legally marketed device [18], or that it
has been developed in accordance with recognised international standards [5].

In its current form, the premarket approval process involves the analysis of tens of
thousands of printed pages [11] rather than a direct evaluation of the product. To re-
duce the amount of paperwork and enable the submission of more succinct and rigor-
ous evidence, the use of formal methods is being promoted by the US Food and Drug
Administration (FDA), the regulator for medical devices in the US. Their approach
relies on usage models for the verification of software [10]. A usage model is a formal
representation that describes the common characteristics and behaviour of software
for broad classes of devices. The approach is based on the idea of developing usage
models that satisfy core sets of safety requirements that are designed to mitigate typi-
cal hazards. This way, usage models can be used as a reference by manufacturers — if
they are able to show that their product is compliant with the behaviours of the usage
models, then regulators have evidence that the manufacturer’s device meets mini-
mum safety conditions. These models are developed manually starting from safety
requirements, verifying the models against these requirements using model checking
techniques.

Our approach shows how stepwise refinement and the Event-B/Rodin platform
can be conveniently used to develop correct-by-construction usage models that are
related to the interactive aspects of medical devices. It addresses two key points of
the FDA’s approach. The first is how to design safety requirements so that they are
sufficiently precise to be effectively operationalised. The second is to provide, by op-
erationalising requirements, the means for encompassing the range of input/output
technologies that are likely to be encountered in interacting with the systems. Event-
B is initially used here to express the high level requirements such as those proposed
by the FDA. Stepwise refinement is then used both to make those high level require-
ments more precise and to demonstrate that the requirement can be cascaded into a
hierarchy that encompasses potential input/output technologies.

To illustrate the approach, we focus specifically on infusion pumps. We take as
a starting point a particular sample set of user related requirements specified by the
FDA. The original FDA specifications are in natural language. We give abstract for-
mal specifications of these requirements. We then show how they can be refined to
more concrete versions. These versions can be verified against the formal specifica-

Developing and Verifying User Interface Requirements for Infusion Pumps 5

tion of specific pump designs. Here we concentrate on a particular infusion pump
design based on a commercially available pump.

This paper is based on and extends our earlier work [14] on user interface re-
quirements for infusion pumps. In particular, it formally develops and verifies new
requirements related to the safeguards against accidental tampering with infusion
settings. Also, the specific pump design is modelled in more detail which reflects the
actual device more truthfully.

1.1.1 Outline of the Approach

The proposed approach is based on three layers: requirements hierarchies, inter-
face hierarchies and concrete interfaces, each described below.

The requirements hierarchies layer, which is directly relevant to regulators, con-
cerns the development of user interface requirements. The regulator will be interested
in the satisfaction of these requirements to assure them of the device’s safety. A min-
imal set of such requirements, relevant to some usability aspect of device interfaces,
is developed. The aim is that these requirements should be sufficiently abstract to
encapsulate the behaviour of the largest class of possible devices. Refinements are
then used to detail these requirements in a sequence of steps. It is also possible that
refinement can lead to alternative interface requirements that also provide assurance
of the safety of the device. These modified requirements would be developed as a
contract between regulator and manufacturer. The development of the requirements
hierarchy layer is discussed in Section 1.4.

The concrete interface layer focuses on the user interfaces of specific devices.
This layer is most relevant to manufacturers as they demonstrate that the user in-
terfaces of their devices satisfy the requirements developed in the requirements hi-
erarchy layer. There are several possible approaches when trying to produce such a
demonstration.

The first is to verify a specific interface against the safety requirements directly.
How complicated this is will depend on the extent the requirements were opera-
tionalised. An example of this approach is discussed in Section 1.5.2.

The second approach aims to simplify the process of demonstrating that a spe-
cific user interface adheres to the relevant set of user requirements. It facilitates the
dialogue between regulators and manufacturers by means of an intermediate layer,
the interface hierarchies. This layer essentially develops a refinement based hierar-
chy (classification) of user interfaces. The idea is that user requirements are verified
once for most abstract classes of interfaces. More concrete classes of interfaces at
the lower levels of this hierarchy are then guaranteed to satisfy the requirements by
construction. Now, instead of directly verifying a specific interface against the re-
quirements it suffices to demonstrate that it is an instance of some concrete class
of user interfaces. This approach, briefly discussed in Section 1.5.3, correlates with
the current FDA pre-market review process which involves providing evidence that
a new device is ‘substantially equivalent’ to already approved and legally marketed
medical devices.

6 From Action System to Distributed Systems: The Refinement Approach

1.2 Sample User Interface Requirements from FDA

The regulator’s aim is to be assured that risks associated with the use of a device
are as low as reasonably practicable. As previously discussed part of this assurance
is achieved through a credible demonstration that safety requirements are true of
the device. Before showing how this demonstration can be achieved in the proposed
framework, we describe a subset of user related safety requirements developed by
the FDA.

These requirements relate to two aspects of infusion pump designs: the usabil-
ity of their data entry systems and the safeguards against inadvertent changes of or
tampering with infusion settings. The subset considered is relevant to the volumet-
ric infusion pump used by clinicians that forms the basis of the example contained
in this paper. The safety requirements are taken from a larger set produced by the
FDA [17]. This larger set is intended specifically for PCA (Patient Controlled Anal-
gesic) pumps. As a result it has more emphasis on patient tampering than clinician
errors, and therefore the overall focus is slightly different than is relevant to the vol-
umetric infusion pump. The aim is to show how these independently determined
properties can be framed in our framework.

The requirements from the FDA document, considered in the subsequent sec-
tions, are listed below:

R1 The flow rate and vtbi (volume to be infused) for the pump shall be pro-
grammable. This safety requirement aims to mitigate hazards due to incor-
rectly specified infusion parameters (e.g., flow rate is too high or low).

R2 The vtbi settings shall cover the range from vy, t0 Vyya, ml.

R3 The user (clinician) shall be able to set the vtbi in j ml increments for volumes
below x ml.

R4 The user (clinician) shall be able to set the vtbi in k ml increments for volumes
above x ml.

RS Clearing of the pump settings and resetting of the pump shall require confirma-
tion. This requirement aims to safeguard against clinicians changing infusion
settings inadvertently.

R6 To avoid accidental tampering of the infusion pump’s settings such as flow
rate/vtbi, at least two steps should be required to change the setting.

Developing and Verifying User Interface Requirements for Infusion Pumps 7

1.3 Background

This section briefly discusses approaches to interface refinement and introduces
the Event-B formalism used in our approach.

1.3.1 Interface refinement approaches

Several previous projects on formal refinement for user interface design had dif-
ferent foci to our work. For example, the main focus of Bowen and Reeves [2, 3]
is on a description of the actions that the user can engage with and how these ac-
tions can be refined. The refinement process involves actions being replaced by more
concrete actions in terms of more concrete structures. The refinement described by
them is more akin to trace refinement. Although they argue that their interest is in
ensuring that requirements are true of the more refined system, there is less concern
with how the requirements are transformed through the levels of refinement. Duke
and Harrison [7] are concerned with data refinement. They note that abstract repre-
sentations of objects can be refined in two directions, into what is perceivable and
into the architecture of the device. Darimont and van Lamsweerde [6] are concerned
with requirements described in terms of the refinement of goals using the KAOS
language. The interesting innovation in their proposal is that the formal refinement
process may be achieved through a set of patterns.

The approach we take here has most in common with the work of Yeganefard
and Butler [19] who demonstrate a similar refinement process, in this case for con-
trol systems, using Event-B. They describe an approach to requirements structuring
to facilitate refinement-based formalisation. Their work considers control systems
consisting of plants, controllers and operators. In these terms, our focus is narrower,
encompassing phenomena shared between controller and the operator. Also, we em-
phasise the formalisation of high level requirements and their clarification through
refinement, whereas Yeganefard and Butler focus attention on requirements struc-
turing. The structure developed is then mapped to a formal model in the stepwise
refinement process. Moreover, their work is yet to address non-functional require-
ments, considered here.

In our previous work [11, 9], we explored a different approach to formalisation
and refinement of user-related requirements. First, an abstract logic model is created
that encapsulates key notions and relationships presented in the textual description
of the requirements. Second, a mapping relation is established between the abstract
logic model and a concrete model of a device being verified. This mapping relation
is used as a basis to instantiate requirements for the concrete device model. The
concrete model is then mechanically verified against the instantiated requirements.

8 From Action System to Distributed Systems: The Refinement Approach

1.3.2 Event-B/Rodin framework

Event-B specifications are discrete models that consist of a state space and state
transitions. A state includes constants and variables that describe the system. State
transitions are specified as events. A specification of an event consists of two parts
as seen in the example below. The first is a list of guards. Each guard is a predicate
over the state variables and constants. All the guards are combined using logical
conjunction which is implicit in the Event-B syntax. These guards together define
the necessary conditions for the event to occur. The second part is a list of actions
which describe how the state variables are modified as a result of event execution.

Specifications are structured in terms of machines and contexts. Machines spec-
ify the dynamic aspects of a system, whereas contexts specify its static aspects. A
machine includes state variables and events. Invariant properties are expressed as
machine invariants, i.e., predicates that must hold in all machine states. A context
includes constants defined by a set of axioms. A machine may reference constants
from the contexts it ‘sees’.

Intuitively, machine execution means that one of the events, with all guards being
true, is chosen. The machine variables are modified as specified by the actions of that
event. The basic syntactic form of an event is given below, other features of Event-B
are introduced when needed.

Event E = when G(v) then T(v)end

Here v is a list of variables. G(v) denotes the guards of E and 7(v) denotes the ac-
tions associated with E. The formal semantics of events is given using before-after
predicates that encode the relation between the machine variables before and after an
event occurrence. A detailed description of Event-B can be found in [1].

1.4 The requirement hierarchies

In this section, the informal requirements from Section 1.2 are first formalised
in Event-B then made more precise through gradual refinement. The requirements
R1-R4 related to data entry interfaces are considered first.

1.4.1 Requirements for data entry

The informal requirements R1 and R2 provide a basis for the abstract specifica-
tion of user requirements relevant to data entry. R3 and R4 are introduced in a later
refinement.

1.4.1.1 Requirements R1 and R2

The requirement R1 (The vtbifflow rate for the pump shall be programmable)
is expressed as the following machine in Event-B. This abstract description simply

Developing and Verifying User Interface Requirements for Infusion Pumps 9

requires that a variable called data has the attribute that it is programmable. The
requirement asserts that data commences with a value named source and describes
the event programmable as changing the value to farget. The possible values of data
are given as the set Numbers. All three constants, Numbers, source and target, are
defined in the context ReqParams1 below.

MACHINE Regsl SEES ReqParamsl

VARIABLES data INVARIANTS data € Numbers
EVENTS

Initialisation begin data := source end

Event programmable = begin data := target end
END

The invariant of Reqs1 simply gives typing of data. The initialisation event as-
signs the source value to it. Since the programmable event expresses an abstract
requirement, its guard is assumed to be always true, and the when clause is omitted
in the above specification.

The requirement R2 (The vtbi settings shall cover the range from vy, t0 Vypq, ml)
is specified in the context ReqParams1 which defines the corresponding constants
Min, Max. It is assumed that Max exceeds Min and that Min is non-negative. The set
constant (type) Numbers is assumed to be the interval 0.. Max. The context defines a
number of other constants: RefValues, source and target. It is assumed that the source
value belongs to the interval Numbers and it is assumed that farget is a member of
the set of reference values (RefValues) that covers the required range of settings. At
this stage, no other assumptions are made as to what these values are.

CONTEXT ReqgParamsl
CONSTANTS Min Max Numbers RefValues source target
AXIOMS

Min >0 Max > Min Numbers =0 .. Max

RefValues C Numbers N {x|x > Min}

source € Numbers target € RefValues

END

Because the R1 requirement is specified in a non-operational form it is neces-
sary to refine the machine. Informally, machine refinement means verifying three
constraints. The first concerns event refinement: a concrete event must refine the cor-
responding abstract one (new events must refine an implicit event that does nothing).
The second constrains new events: they must ‘converge’ (i.e., not run forever on
their own). The third states that the concrete machine must not deadlock before the
machine it refines.

The following refinement of Reqs1 provides guidance about how R1 can be im-
plemented. The operational version of R1 has a number of new characteristics. Two
new variables are introduced: entry and disp. Whether a number is being entered is
indicated by entry, whereas disp gives the displayed value of the number entered.
The initial state requires that data and disp are both initialised to the source value

10 From Action System to Distributed Systems: The Refinement Approach

and entry is false, indicating that entry of the target number has not commenced. The
new requirement decomposes the event representing R1 into three events. The first
one (choose) is used to elect to enter the target value, while the second one models
the modification of the display value (this is not necessarily the data value). The final
event is triggered when the display and target values are equal. At this step the data
value is set to be equal to the display value and entry becomes false. This operational
requirement indicates more about the programming process but says little about how
the value is entered.

MACHINE Reqsll REFINES Reqsl SEES ReqParamsl
VARIABLES data disp entry INVARIANTS disp € Numbers entry € BOOL
EVENTS
Initialisation begin data := source disp := source entry:= FALSE end
Event choose= Status anticipated
when entry= FALSE then disp :=data entry:=TRUE end
Event modify = Status anticipated when entry = TRUE then disp :€ Numbers
end
Event set = refines programmable
when disp = target entry = TRUE then data = disp entry := FALSE
end

END

The machine Reqs11 specifies that set refines the abstract event programmable
(intuitively, both events assign farget to data). The other two events, choose and
modify, are new. For the machine Reqsl1 to refine Reqsl these newly introduced
events must ‘converge’ (i.e., they must not execute forever). The specification does
not attempt to prove that. Rather than requiring their convergence, the specification
assumes, as indicated by the keyword ‘anticipated’, that choose and modify will not
run forever. If necessary, this assumption can be proven later.

1.4.1.2 Requirements R3 and R4

In the case of R3 (The user shall be able to set the VIBI in j ml increments
for volumes below x ml) and, similarly, R4, the requirements are expressed in a suf-
ficiently concrete form to proceed directly to their operationalised versions. They
are captured in the following context ReqParams11 which extends ReqParams1 by
adding three relevant constants—T7hreshold (x in R3 and R4), j and k—with three
associated axioms:

CONTEXT ReqParamsll EXTENDS ReqParamsl CONSTANTS Threshold j k

AXIOMS

Threshold € Min + 1 .. Max — 1 j < Threshold k < Threshold
RefValues C {x-x >0 A j*x < Threshold | j* x} U {x-x > 0| Threshold + k * x}

END

Developing and Verifying User Interface Requirements for Infusion Pumps 11

The fourth axiom restricts the reference set (RefValues) to the values obtained
using the increments j and k. This context is used by Reqs111 which is the same
machine as Reqs11 otherwise:

MACHINE Reqgsl1l REFINES Reqsll SEES ReqParamsll ...

The last step in the refinement of requirements has a more technical nature. It
decomposes Reqs111 so that the assumptions about the user behaviour are removed
from the requirements for the pump interfaces. In particular, one guard (disp = target)
in the event set encompasses the notion of a target. Though the latter is relevant to
the user behaviour, it would be meaningless to apply it to the pump interface. The
decomposition introduces a machine that replaces the constant target by a variable
that represents the display value ‘passed’ to the user. The details are omitted here,
since this does not affect the actual data entry.

1.4.2 Safeguards against inadvertent changes or tampering

In this section, the requirements RS and R6 are formally developed.

1.4.2.1 Requirement RS

The informal requirement RS (Clearing of the pump settings and resetting of the
pump shall require confirmation) simply states that an attempt to clear the pump
settings (such as vtbi and flow rate) cannot take its effect immediately but should
result in a request for confirmation. The requirement is captured by the event clear
in the following Event-B machine Reqs5. The variable require set to true represents
arequest for the confirmation of the clearing action. The event clear is enabled when
the clearing action has not already been attempted (require = FALSE). In that case,
it initiates a request to confirm the clearing action (require := TRUE). Note that this
specification, faithful to the informal requirement, says nothing about the effect of
the clearing action on the pump settings:

MACHINE Reqgs5
VARIABLES require INVARIANTS require € Bool

EVENTS

Initialisation begin require := FALS E end

Event clear= when require = FALSE then require := TRUE end
END

Though it is not stipulated explicitly, the requirement RS also implies that there
should be some kind of acknowledgement for the clearing request. By making this as-
sumption explicit in the following refinement of the machine Reqs5, the requirement
becomes more precise and rigorous. In the refinement Reqs51, the acknowledgement
is modelled as a new event, acknowledge. Reqs51 also introduces a new variable, ack.
When set to true, this variable represents an acknowledgement of the clearing action:

12 From Action System to Distributed Systems: The Refinement Approach

MACHINE Reqs51 REFINES Reqs5
VARIABLES require ack INVARIANTS ack € BOOL

EVENTS
Event Initialisation extends Initialisation then ack := FALSE end
Event clear extends clear end
Event acknowledge = Status anticipated
when ack = FALSE require =TRUE then ack:=TRUE end

END

The event acknowledge is enabled when there is an unacknowledged request for
confirmation and sets ack to true. For the remaining events, the keyword extends
indicates that the event in question incorporates (and refines) the corresponding event
in Reqs5. In addition, the refined initialisation event sets ack to false.

The requirement as modelled by Reqs51 captures mode transitions in the pump
behaviour. However, it puts no constraints on the changes to the pump settings asso-
ciated with those transitions. The need to be more rigorous about that is addressed in
the next refinement of Reqs51. Not to be bound by any specific interpretation what
is included into the concept of pump settings, we assume that they are expressed as
an abstract type (set), Settings. Constant blank from Settings represents the pump
settings being cleared. These assumptions are modelled as the following context:

CONTEXT ReqParams5
SETS Settings CONSTANTS blank
AXIOMS

blank € Settings

END

The refinement Reqs511 introduces new variable data. It is an abstract represen-
tation of the pump settings. The requirement RS is once again made more precise
by distinguishing two possibilities associated with the acknowledgement event. The
first one is that the clearing request is actually confirmed by the pump user. This
is modelled by the event confirm which extends acknowledge by updating data to
blank (the pump settings are cleared). The second possibility is that the user changes
their mind and cancels the clearing request. This is modelled by the event quit which
leaves data unchanged:

MACHINE Reqs511 REFINES Reqs51 SEES ReqParams5
VARIABLES require ack data INVARIANTS data € Settings
EVENTS
Event Initialisation extends Initialisation then data :€ Settings end
Event clear extends clear end
Event confirm extends acknowledge then data := blank end
Event quit extends acknowledge end
Event other = Status anticipated

when require = FALSE then data :€ Settings end

END

Developing and Verifying User Interface Requirements for Infusion Pumps 13

A new event (other) is added to Reqs511 to avoid constraining changes to the
pump settings when there is no request to clear them. In such states (require =
FALSE), event other allows the pump settings to be updated in an arbitrary way
(data :€ Settings).

1.4.2.2 Requirement R6

Expressed in natural language, the requirement R6 (7o avoid accidental tamper-
ing of the infusion pump’s settings such as flow rate / vtbi, at least two steps should
be required to change the setting) is open to several interpretations. For example,
the ‘two step’ condition can be interpreted as one change of the setting followed
by another. However, in the context of safeguarding against accidental tampering, a
more plausible interpretation of R6 seems to be that any attempt to change a setting
like vtbi should require a separate confirmation step. Such an interpretation relates
R6 to RS. Therefore, it would be plausible to view R6 as a part of the requirements
hierarchy formally developed for the requirement RS, since a two step (request -
acknowledgement) structure has already been specified in the machine Reqs51. In
particular, R6 can be formally introduced as a refinement of Reqs51.

At the same time, there are several aspects in which R6 is different from RS.
Firstly, it applies to any change to a particular pump’s setting, not just clearing of
that setting. Secondly, R6 refers to the changes to a particular setting as opposed to
the simultaneous clearing of all settings as stated in RS. Though, due to the abstract
nature, the type Settings in our specification can be interpreted as both, a particular
pump’s setting and all the settings combined, it is not obvious what advantages a
formal linkage of R6 and RS would provide.

Taking these considerations into account, the requirement R6 is formalised in a
separate development. Its starting point captures the ‘two step’ condition, modelled
as the following Event-B machine:

MACHINE Reqs6
VARIABLES change INVARIANTS change € Bool

EVENTS

Initialisation begin change :€ Bool end

Event update= when change = TRUE then change := change end
Event acknowledge= when change = TRUE then change := FALSE end
END

The variable change represents the mode of pump operation where changes to
a particular pump’s setting can be made. When the pump is in such a mode, the
event update (first step) stands for all the possible updates to that setting. These
updates leave the mode of pump operation unchanged (change := change). The event
acknowledge (second step) stands for the confirmation of changes, which results in
the pump exiting the change mode (change := FALSE).

Next, we look in more detail at how the two steps specified in Reqs6 relate to
the actual changes to the pump’s setting considered. The informal requirement R6
suggests that any changes to the relevant setting are ‘provisional’. In that respect,

14 From Action System to Distributed Systems: The Refinement Approach

however, R6 can be interpreted in two ways at least. The first interpretation is that
the changes, before they are confirmed, do not affect the actual pump’s setting. In-
stead, they are recorded in a temporary pump’s parameter. Only the confirmation step
updates the relevant setting with the new value from the temporary parameter. The
second interpretation is that the changes are applied to the relevant setting immedi-
ately. However, they still have to be confirmed in the confirmation step. Otherwise,
the setting is restored to its old value. Both interpretations are below formalised as
refinements of Reqs6. Both refinements introduce a new variable, param, that repre-
sents the relevant pump’s setting. We start with the first interpretation.

In addition to param, the refinement Reqs61 introduces another variable, new,
that models provisional changes to param. This variable is initialised to the value of
param:

MACHINE Reqs61 REFINES Reqs6 SEES ReqParams5

VARIABLES change param new

INVARIANTS param € Settings new € Settings

EVENTS

Event Initialisation extends Initialisation then param :€ Settings new := param
end

Event update extends update then new :€ Settings end

Event confirm extends acknowledge then param :=new end

Event cancel extends acknowledge end

END

The event update extends the same event from Reqs6. It guarantees that any
changes to the setting are provisional and temporary recorded in the variable new.
Both events confirm and cancel refine the old event acknowledge. The confirmation
of the changes to the setting is modelled by confirm. It extends acknowledge by
updating param with the new value for this setting (new). Any changes are cancelled
by the event cancel.

The second, perhaps less natural, interpretation of R6 is formalised as the fol-
lowing refinement Reqs62. In addition to param, it introduces another variable, old.
This variable stores the old setting and is initialised to param:

MACHINE Reqs62 REFINES Reqs6 SEES ReqParams5

VARIABLES change param old

INVARIANTS param € Settings old € Settings

EVENTS

Event Initialisation extends Initialisation then param :€ Settings old := param
end

Event update extends update then param :€ Settings end

Event confirm extends acknowledge end

Event cancel extends acknowledge then param :=old end

END

According to this specification, the setting param is changed with each update
event. However, the changes are disregarded by the event cancel, if this option is
selected instead of confirm.

Developing and Verifying User Interface Requirements for Infusion Pumps 15

The difference between these formal interpretations of the requirement R6 is
quite subtle. If the changes to the setting are finished in a normal way by confirming
or cancelling them, the two formal requirements make no difference. Only when the
changes are abruptly interrupted (e.g., the pump is switched off before the confir-
mation step), Reqs61 and Reqs62 will result in different requirements for the pump
design. It is up to the regulators of medical devices to decide which version of the re-
quirement R6 is preferable, or whether they both are equally acceptable. Formalising
several alternative interpretations highlights the issue but also raises the possibility
of exploring the consequences for safety of each choice formally.

1.5 Verification of concrete interfaces

Having produced an operational but abstract definition of the requirements, the
next stage is to make sense of the requirement in terms of the particular device that
the developer wishes to certify. The aim of this section is to show how an inter-
face specification of a specific device can be shown to satisfy user related require-
ments. Ideally, such a specification would be provided by the device manufacturer.
Alternatively, it can be reverse engineered by interactively exploring the actual de-
vice [16, 9].

To illustrate our approach, we consider the number entry module of the Alaris
GP Volumetric Pump [4]. A specification of this module has been reverse engineered
in PVS and SAL [12]. The specification given below is its direct translation to Event-
B. The purpose of using this translation is to demonstrate two ways of verifying the
relevant user requirements for the independently developed specifications of concrete
interfaces.

1.5.1 Specification of the vtbi entry in Alaris

The Alaris pump uses a chevron based number entry interface. In this type of
interface, the current data value is updated by pressing the ‘up’ (increase) and ‘down’
(decrease) chevron keys. The fast versions of these keys are used to speed up data
entry. For example, a fast ‘up’ chevron increases the current value by a larger amount
compared to a slow ‘up’ one.

In the PVS and SAL versions, the behaviour of the Alaris chevrons (slow and fast
up/down keys) is captured using functions that specify how the current value is mod-
ified by pressing each chevron. In Event-B, the corresponding functions, alaris_up,
alaris_dn, alaris_UP and alaris_DN, are defined in the following context. It extends
RealDefinitions which provides an Event-B model for the real numbers supported
by the Alaris pump. The definitions of alaris_dn, alaris_UP and alaris_DN (omitted
here) are similar to that of alaris_up:

16 From Action System to Distributed Systems: The Refinement Approach

CONTEXT AlarisDefinitions EXTENDS RealDefinitions
CONSTANTS trim alaris.up alaris_dn alaris . UP alaris_-DN init
AXIOMS

trim € Z — real alaris_up € real — real init € real
Vx-(x < minAlaris = trim(x) = minAlaris) A
(x > maxAlaris = trim(x) = maxAlaris) A
(x > minAlaris A x < maxAlaris = trim(x) = x)
Vx-x € real = (x < r100 = alaris_up(x) = trim((floor(x = 10) + r1)/10)) A
(x = r100 A x < r1000 = alaris_up(x) = trim(x + r1)) A
(x > r1000 = alaris_up(x) = trim((floor(x/10) + r1) = 10))
END

The behaviour of the four chevrons when entering vtbi values is described by the
events up, dn, UP and DN. E.g., up is specified below:

Event up = Status anticipated

when topline = dispvtbi entrymode = vtmode then display :=
alaris_up(display) end

Here the condition topline = dispvtbi indicates that the pump is in the mode where
the vtbi value can be changed, whereas entrymode = vtmode says that the changes
are performed by updating the vtbi value with the chevron keys. The display variable
represents the displayed value of vtbi. This event does not change the actual vtbi
setting represented by the variable vtbi. The specifications of the remaining chevrons
are similar.

The machine Alaris_vtbil includes these four chevron events and two events that
model the acknowledgement (confirmation and cancellation) of the changes made to
the vtbi value using the chevrons. The confirmation case is specified as follows:

Event confirm=

when topline = dispvtbi entrymode = vtmode then vtbi := display topline :=
ptop(infstate) entrymode := pentry(inf state) end

This event updates the vtbi setting with the entered value recorded by display.
The mode of pump operation (topline) and the data entry mode (entrymode) go back
to their previous values. These are given as the values of functions prop and pen-
try, respectively. They depend on whether the pump is in the infusing state or not,
which is modelled as the boolean variable infstate. The functions ptop and pentry are
defined in the context AlarisDefinitions. The cancellation case is modelled similarly.

Now we illustrate two ways of verifying that the Alaris vtbi entry module satis-
fies the requirements formalised in Section 1.4. First, the requirement R6 is verified
directly for the machine Alaris_vtbil.

1.5.2 Requirement R6

In this illustration, our first interpretation (machine Reqs61) is used for the infor-
mal requirement R6.

Developing and Verifying User Interface Requirements for Infusion Pumps 17

Since the structure of Alaris_vtbil is not that different from Reqs61, it is feasible
to demonstrate the refinement relation between them directly. However, as a prepara-
tory step, the abstract set Sertings and constant blank used in Reqs61 must be instan-
tiated to the concrete set Numbers and value 0, respectively, used in Alaris_vtbil. In
Event-B, this is automatically done by applying the generic instantiation plugin to
Reqs61 (we will use the same name for the instantiated machine).

To establish refinement between the instantiated machine Reqs61 and
Alaris_vtbil, one has to provide a ‘glueing’ invariant that relates the concrete vari-
ables in Alaris_vtbil and the abstract variables they replace in Reqs61. The ab-
stract variables in question are change, param and new. As discussed earlier, change
= TRUE models the mode where a relevant pump’s setting can be changed. In
Alaris_vtbil, the corresponding mode for the vtbi entry is defined by the condition
topline = dispvtbi A entrymode = vtmode. Assuming this condition is true, the vtbi
setting vtbi and its provisional value display are identified with their counterparts in
Reqs61. The resulting glueing invariant allows one to prove the following refinement:

MACHINE Alaris_vtbil REFINES Reqs61 SEES AlarisDefinitions
INVARIANTS

(change = TRUE) & (topline = dispvtbi A entrymode = vtmode)
(topline = dispvtbi A entrymode = vtmode) = (vtbi = param A display = new) ...
EVENTS
Event up= Status anticipated refines update
when topline = dispvtbi entrymode = vtmode with new’ : new’ = display’
then display := alaris_up(display) end
END

Similarly to up, the remaining chevron events (dn, UP and DN) in Alaris_vtbil
refine the requirement event update. Finally, the acknowledgement events confirm
and cancel refine their counterparts in Reqs61.

1.5.3 Requirements R1-R4

This section illustrates an alternative approach for demonstrating that the data
entry systems in infusion pumps satisfy relevant safety requirements. A number of
such systems are already used in infusion pumps [13] and there is future scope for
many more. The approach presumes that a refinement-based hierarchy of user inter-
faces has been previously developed that is relevant for various modes of data entry
in infusion pumps [14]. It is also assumed that the relevant requirements have been
verified for the classes at the top of the hierarchy. If so, then the interface classes at
the lower levels are guaranteed to preserve them by construction. To verify a specific
interface against those requirements, it then suffices to show that the interface is an
instance of some class in the hierarchy. This principle is demonstrated for the Alaris
vtbi entry system.

We will show that the Alaris vtbi entry is an instance of the class of interfaces with
four chevron keys. This class, represented by the machine Chevron_Entry11, has al-

18 From Action System to Distributed Systems: The Refinement Approach

ready been shown to satisfy the formalisation of the requirements R1-R4 [14]. Thus,
the demonstration that the Alaris vtbi entry interface is an instance of that class boils
down to proving refinement between Chevron_Entryl1 and Alaris_vtbil. For such a
proof, the generic parameters (such as j, k and Threshold) used by Chevron_Entry11
must be instantiated with the concrete values from the Alaris specification (context
AlarisDefinitions) as, for example, shown below:

CONTEXT ChevronAlarisParams EXTENDS ChevronDefinitions11 AlarisDefini-
tions
AXIOMS

Min = minAlaris Max = maxAlaris
j=101 k=rl Threshold = r100

END

To specity the behaviour of four chevron keys, Chevron_Entry11 already includes
the events up, revtdn, UP and DN. These must be refined by the corresponding events
in Alaris_vtbil. Finally, the invariants of Alaris_vtbil must include a glueing invariant
that specifies the connection between the state spaces of both machines:

MACHINE Alaris_vtbil REFINES Chevron_Entryll SEES ChevronAlarisParams

INVARIANTS
(entry = TRUE) & (topline = dispvtbi A entrymode = vtmode)
(vtbi = data A display = disp)
EVENTS
Event up = Status anticipated refines up
when ropline = dispvtbi entrymode = vtmode with disp’ : disp’ = display’
then display := alaris_up(display) end

END

1.6 Conclusions

We have demonstrated how Event-B can be used to support manufacturers as
they aim to demonstrate that the regulator’s requirements are satisfied by their prod-
ucts. All the refinements described have been proven using the Rodin platform. The
refinement hierarchies thus developed for requirements and user interfaces enable
developers to trace the regulator requirements down to the specialised classes that
match the physical characterisation of their device. Such an approach fits well with
the FDA pre-market review process which involves providing evidence that a new de-
vice is ‘substantially equivalent’ to already approved and legally marketed medical
devices.

Developing and Verifying User Interface Requirements for Infusion Pumps 19

We envisage showing that a device satisfies a full set of requirements by develop-
ing specification fragments. Each fragment would address one or more requirements
and would provably demonstrate that the requirements in question are satisfied. It
then remains an open question as to how one proves that these components are con-
sistent with each other and how they might fit into a larger specification. This is
future work. It would explore work on composition [15] and product lines [8] in
Event-B being carried out at Southampton. The advantage of using Event-B is that
the approach is tool supported. It is feasible that standard refinement processes such
as these can be made easier for developers to use.

Acknowledgments

This work is supported by EPSRC as part of CHI+MED (Computer-Human
Interaction for Medical Devices, EPSRC research grant [EP/G059063/1]). We are
grateful to Michael Harrison who collaborated in various aspects of the work de-
scribed.

Bibliography

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

J-R. Abrial. Modeling in Event-B: System and Software Engineering. Cam-
bridge University Press, 2010.

J. Bowen and S. Reeves. Refinement for user interface designs. Formal Aspects
of Computing, 21:589-612, 20009.

J. Bowen and S. Reeves. Modelling safety properties of interactive medical
systems. In Proceedings of the 5th ACM SIGCHI Symposium on Engineering
Interactive Computing Systems, EICS ’13, pages 91-100. ACM, 2013.

Cardinal Health Inc. Alaris GP volumetric pump: directions for use. Technical
report, Cardinal Health, 1180 Rolle, Switzerland, 2006.

Council of the European Communities. Council directive 93/42/EEC of 14
June 1993 concerning medical devices. http://eur-lex.europa.eu/
LexUriServ/LexUriServ.do?uri=CONSLEG:1993L0042:20071011:EN:
PDF, 2007.

R. Darimont and A. van Lamsweerde. Formal refinement patterns for goal-
driven requirements elaboration. In Proceedings 4th ACM Symposium on the
Foundations of Software Engineering (FSE’03), pages 179-190. ACM Press,
1996.

D.J. Duke and M. D. Harrison. Mapping user requirements to implementations.
Software Engineering Journal, 10(1):13-20, 1995.

A. Gondal, M. Poppleton, and C. Snook. Feature composition - towards prod-
uct lines of Event-B models. In Ist International Workshop on Model-Driven
Product Line Engineering (MDPLE’09). CTIT Workshop Proceedings, 2009.

M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon. Demonstrating that
medical devices satisfy user related safety requirements. In 4th International
Symposium on Foundations of Healthcare Information Engineering and Sys-
tems (FHIES2014), 2014.

R. Jetley, S. Purushothaman Iyer, and P. L. Jones. A formal methods approach
to medical device review. Computer, 39(4):61-67, 2006.

P. Masci, A. Ayoub, P. Curzon, M. D. Harrison, I. Lee, and H. Thimbleby.
Verification of interactive software for medical devices: PCA infusion pumps

21

22

[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

Bibliography

and FDA regulation as an example. In EICS 2013, Proceedings of the 5th ACM
SIGCHI Symposium on Engineering Interactive Computing Systems, pages 81—
90. ACM New York, NY, USA, 2013.

P. Masci, R. Ruksénas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon,
and H. Thimbleby. On formalising interactive number entry on infusion pumps.
Electronic Communications of the EASST, 45, 2011.

P. Oladimeji, H. Thimbleby, and A. Cox. Number entry and their effects on
error detection. In P. Campos et al., editors, Interact 2011, number 6949 in
Lecture Notes in Computer Science, pages 178—185. Springer Verlag, 2011.

R. Ruksénas, P. Masci, M. D. Harrison, and P. Curzon. Developing and veri-
fying user interface requirements for infusion pumps: A refinement approach.
Electronic Communications of the EASST, 69, 2013.

R. Silva and M. Butler. Supporting reuse mechanisms for developments in
event-b: Composition. Technical report, University of Southampton, 2009.

H. Thimbleby. Interaction walkthrough: evaluation of safety critical interactive
systems. In G. Doherty and A. Blandford, editors, Interactive Systems: Design,
Specification and Verification, number 4323 in Lecture Notes in Computer Sci-
ence, pages 52—66. Springer Verlag, 2007.

Safety requirements for the generic PCA pump. http://rtg.cis.upenn.
edu/gip-docs/Safety_Requirements_GPCA.doc. Accessed: 04.04.2013.

US Food and Drug Administration. Guidance for the content of premarket
submissions for software contained in medical devices, May 2005.

S. Yeganefard and M. Butler. Structuring functional requirements of control
systems to facilitate refinement-based formalisation. In Proceedings of the 11th
International Workshop on Automated Verification of Critical Systems (AVoCS
2011), volume 46. Electronic Communications of the EASST, 2011.

