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ABSTRACT
The number of recalls of medical device with embedded com-
puters due to safety issues in recent years suggests there is
a need for new approaches to support the process. There
is increasing concern about the impact of systematic use
errors. There has been little research focusing on model-
based tool support for the assurance and certification of
medical devices with respect to systematic use error, how-
ever. The CHI+MED project (http://www.chi-med.ac.
uk) aims to address this gap. It is concerned with the de-
sign of safer medical devices with a specific focus on human-
computer interaction. We are developing a range of inte-
grated model-based engineering methods and other formal
and semi-formal techniques to support the certification pro-
cess, both pre- and post-market, including their use in the
wider system context. In this position paper we review our
approach and the contributions to date.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verifi-
cation

Keywords
Model-Based System Development, Human-computer inter-
action

1. INTRODUCTION
As in other safety critical industries, computer-based medi-
cal equipment is subject to a process of certification before it
can be marketed. Typically approaches combine pre-market
review and post-market surveillance. Manufacturers are re-
quired to “demonstrate the safety and effectiveness of a de-

vice” to gain approval, with the form of the approval pro-
cess depending on the degree of risk for the given class of
device. Post-market surveillance involves monitoring mech-
anisms that identify potential safety issues with marketed
devices including those that only become apparent after the
device has been in service with a large user population for
several years.

Most marketed medical devices are classified as medium risk
‘Class II’ devices [29]. They require ‘special controls’ that
include verification against safety requirements. Medical de-
vices are recognised as medium risk when manufacturers can
demonstrate substantial equivalence to already legally mar-
keted devices. A new device is substantially equivalent to an
existing device when it has the same intended use and tech-
nological characteristics that raise no new questions of safety
or effectiveness. The manufacturer can satisfy the regulator
by demonstrating that the new device is at least as safe and
effective as the existing device [30]. This review process is
known as 510(k) clearance. Currently more than five thou-
sand new devices require 510(k) clearance each year. The
applications must be substantively reviewed within 90 cal-
endar days of the date at which they were filed [32]. Device
approval in this system is entirely based on written doc-
uments and does not involve any direct evaluation of the
product. The typical size of a 510(k) submission is tens of
thousands of printed pages.

The FDA is currently reviewing the 510(k) clearance pro-
cess because of a series of unexpected incidents involving
cleared medical devices. There are a growing number of
device recalls issued for products that could cause serious
health consequences including death [9]. A review of inci-
dents with external drug infusion pumps, suggests “software
errors” and “human factors errors” [31] are major concerns.
This suggests that new supporting tools and processes are
needed, including ones that focus on human factors errors.

There has been use of formal model-based tools in indus-
trial contexts across a wide-range of industries dating back
several decades [4]. There have been industrial strength ap-
plications of formal methods in aerospace, chip design, rail-



ways, air traffic control, nuclear industries as well as more
recently by Microsoft. A wide variety of tools and techniques
have been successfully used.

There is also a long history of research considering the ap-
plication of formal methods to human computer interaction
issues. More recently there has been research applying for-
mal methods techniques, in some cases with a user-centred
focus, specifically to medical device case studies. For ex-
ample, work at the University of Pennsylvania in collabo-
ration with the FDA is based around the development of
a Generic Infusion Pump. Their aim is to develop a set
of generic safety requirements for the software executed by
programmable drug infusion pumps. Kim et al. [13], for ex-
ample, applied a model-based engineering approach for gen-
erating software for a prototype infusion pump from verified
specifications. Campos and Harrison [6] have used Modal
Action Logic and the IVY tool to analyse the interactive
behaviour of the BBraun and Alaris pumps. Bolton and
Bass [3] verified a model of the Baxter iPump using SAL,
including whether basic normative tasks such as sequences
of actions described in user manuals are properly supported
by the device. Bowen and Reeves [5], inspired by our own
work, have also explored the use of ProZ for model check-
ing safety properties of medical devices. This work suggests
that model-based methods may be able to contribute to the
problem of assurance and certification of medical devices.

Our project, CHI+MED, is a UK EPSRC funded project
concerned with the interdisciplinary study of a wide range
of aspects related to the design of safer medical devices. It
brings together researchers from Queen Mary University of
London (QMUL), Swansea University, UCL, and City Uni-
versity. Work at QMUL and Swansea has included a partic-
ular focus of developing an integrated formal model-based
tool-set that supports the assurance and certification of crit-
ical medical devices. We have used infusion pumps as an
exemplar device through much of the work. We are also
looking at supporting the certification life-cycle both pre-
and post- market. This work has been in part in collabo-
ration with the US Food and Drug Administration (FDA)
and the University of Pennsylvania.

We have been working on a range of separated strands with
the long term aim of drawing them together into an inte-
grated and accessible tool set that supports the development
of verifiably safer medical devices.

Generic Reference Architecture In section 2 we describe
our development of a reference architecture for infu-
sion pumps. This idea is central to several of the other
approaches.

Formal Safety Requirements In section 3 we describe
our work on formalising safety requirements including
a hazard analysis based around the reference architec-
ture. Such formal safety requirements are the basis
for the remainder of our work. We are building on a
preliminary set of requirements developed by the FDA.

Model-based Engineering of user interfaces The core
of our work is exploring model-based engineering ap-
proaches to the verification of medical devices from

formal requirements. This work is overviewed in sec-
tion 4.

Developing user interface prototypes We are also in-
vestigating ways to make the tools developed acces-
sible to actual existing development processes and in
particular the rapid prototyping of user interfaces from
formal models. This work (described in section 5) has
also involved the integration of control and user inter-
face models developed in different formalisms.

Modeling the wider system Whilst the above strand fo-
cuses primarily on the devices themselves, a further
strand (section 6) is looking at how modelling of the
wider system can support not just verification, but also
understanding of devices in use, that could be of ben-
efit in post-market review, ultimately leading to new
safety requirements.

2. REFERENCE ARCHITECTURE
Much of our work linked to verification and certification is
based around the development of generic reference specifi-
cations for the medical devices under consideration. This
approach follows that adopted by the University of Pennsyl-
vania with the FDA on the Generic Infusion Pump project.
It aims to develop safety models that can be used as a ref-
erence specification verified with respect to formal safety
requirements [1]. Such a reference model can, for example,
demonstrate how exemplar designs can in practice meet a
given set of requirements. It can also be used to generate
test cases, and be the basis for model-based engineering ap-
proaches to development.

The University of Pennsylvania work has focused primarily
on the (internal) control system of the generic infusion pump
and only included an abstract human-computer interface.
Our work has developed this part of the reference model,
with a focus on the part of the wider system relevant to
safety requirements intended to prevent or otherwise manage
use hazards, such as systematic human error in the use of
the devices [24].

To date we have developed a Generic Infusion Pump User
Interface (GIP-UI) architecture the software components of
which are outlined in Figure 1. It is organised around doc-
umentation, physical widgets (e.g., the actual buttons and
display), their software drivers, and a set of core software
modules. The core modules consist of interaction logic that
processes input events and determines the feedback, the out-
put status manager that determines what feedback is pre-
sented to the user, and the renderer that determines how
information is presented. Finally, a further input interpreter
which deals with more complex input mechanisms that, un-
like physical buttons, need processing to determine what is
being input such as gestures on a touch screen. The diagram
focuses only on software components, though the full refer-
ence architecture includes other hardware pathways. For
example, user interfaces may include safe emergency but-
tons that are purely electrical/hardware controls (e.g., an
emergency stop button). These buttons directly change the
hardware state of the device. In these situations, the GIP-
UI software will receive notifications about new device states
from the GIP controller, which listens for hardware events,
and updates the user interface state accordingly.



Figure 1: Architecture of the GIP user interface (GIP-UI) showing key functional components of the system.

The architecture can be used to reason about design defects
in infusion pump user interface software that may poten-
tially cause use hazards [24]. We have used it to support a
preliminary hazard analysis, as described in section 3, which
demonstrates its utility. It has also been used as part of a
model-based engineering process. In particular we have used
it to create an initial prototype, verified against a selected
set of safety requirements, discussed in section 4.

3. FORMAL SAFETY REQUIREMENTS
The techniques we are developing are founded on having for-
mally specified safety requirements concerned with human-
computer interaction issues. Such a set would differ for each
device and depend on the context in which the device was
to be used. However there are likely to be many common-
alities: for example safe number entry is likely to lead to a
core set that are common. Currently a comprehensive set of
such requirements for devices such as infusion pumps do not
exist even informally. The FDA have developed an initial set
of safety requirements for infusion pumps based on software
hazards. However, it only partially addresses use hazards.
A more complete set of safety requirements are needed.

The first step in the development of such formal safety re-
quirements, then, is to conduct a hazard analysis around
which a complete set of requirements can be developed [12].
Once a set of safety requirements is obtained they then need
to be formalised, and the formal versions verified against the
natural language versions.

3.1 A Preliminary Hazard Analysis
As this first step in the development of a hazard analysis of
use hazards we have conducted an analysis of infusion pump
incident reports and other information sources including ear-
lier CHI+MED research (e.g., [20]). This has led to a review

of the common use hazards in infusion pumps on the mar-
ket related to number entry tasks, and the completion of a
preliminary hazard analysis [14, 24].

We used the formal user interface reference architecture, de-
scribed in section 2, to identify and reason about design
errors commonly present in infusion pump number entry
software and their relation to use hazards. In particular,
this allowed us to better understand the ramifications of
the use hazards identified and to make concrete links to re-
ported software design errors that could cause them. While
this analysis focused on the number entry sub-systems of
infusion pumps, much of the analysis is relevant to simi-
lar subsystems of other devices. Examples include ignored
key presses (e.g., decimal point key presses being ignored in
some situations leading to out by 10 errors in drug doses)
and inappropriate and incorrect feedback.

Having identified a large number of use errors and poten-
tial flaws, we conducted an informal survey of other devices.
This involved examining a range of devices in a major hospi-
tal, together with other devices we had access to. The main
focus of the hazard analysis was on number entry, so we tar-
geted devices with number entry interfaces. In addition to
a general, if limited exploration of the interface, we inputed
sequences known to be problematic from the hazard analysis
and our other work (e.g., entering double decimal points and
checking boundary cases). This showed that similar design
flaws crop up in many devices, from many different man-
ufacturers and across many different classes of device, not
just infusion pumps. Over 30 software design issues that
could have serious clinical consequences were discovered in
the hazard analysis. The issues were observed across 9 med-
ical devices from 6 different manufacturers. This suggests
the problem is systemic and certainly not just a problem for



any single manufacturer.

As a consequence of finding such a large range of problems
we were asked by the hospital to develop a training video for
clinicians that overviews specific problems to look for [15].

3.2 Formalising safety requirements
Our work developing a comprehensive set of use error based
safety requirements for infusion pumps is still in progress. In
parallel, we have explored approaches to the formalisation
and use of such human factors based safety requirements
based on a small set of existing requirements. In particular,
an FDA draft document [2] includes safety requirements for
PCA pumps, some of which are related to use error. They
were intended to be easily translated into a specification in
either a programming or formal language.

Examples include:

• “Clearing of the pump settings and resetting of the
pump shall require confirmation.”

• “The pump shall issue an alert if paused for more than
t minutes.”

We have developed a process for formalising safety require-
ments based around a generic reference model [16]. We first
identify terms in the safety requirements, such as ‘clear set-
tings’, ‘reset pump’, and ‘require confirmation’, that specify
functionalities of the reference architecture. These are rep-
resented as uninterpreted predicates on the machine state
at this stage. They are combined into logical statements,
corresponding to the intended semantics of the requirement.
These statements are still abstract as they do not include
a semantics for the terms introduced. They are uninter-
preted only in the logical sense - their link to the require-
ments gives them an informal interpretation that should be
made explicit. The logical statements that contain them give
formal relational constraints that must be verified to meet
the corresponding safety requirement. These constraints are
then formed into PVS axioms specifying a state transition
system in a form that supports structural induction: that
the constraint holds of the initial state and is preserved by
the transitions. This gives an abstract reference model of
any device intended to meet the requirements. It gives a
formal semantics to the generic architecture based directly
on the requirements. Such an abstract reference model is
also a suitable format for performing model refinement as
discussed in section 4.

At this point the formalised safety requirements are not
device specific. A manufacturer would need to instantiate
them to a form consistent with the user interface of a par-
ticular device to be certified. Part of the assurance case
would then be an argument that the instantiation chosen is
appropriate.

4. MODEL-BASED ENGINEERING
4.1 Modelling a device user interfaces
Given a formalised set of requirements the next step in a
model-based development process is to create a formal model

specifying the user interface of the device. In our process
this model specifying a concrete device is given as a state
transition machine. Actions on the interface are specified
as transition functions over states of the user interface. We
have modelled several commercial infusion pumps at various
levels of abstraction. We have also developed a preliminary
user interface prototype for a Patient Controlled Analgesia
(GPCA) pump based on the reference architecture described
in section 2 in this way.

Developing PVS specifications can be a complex, time con-
suming and error prone process, however. To address this,
we have developed a design support tool, Emulink [8]. It
allows users to develop formal PVS specifications using a
graphical formalism similar to Statecharts. Emulink presents
itself as a typical Statecharts editor environment with func-
tionalities such as creating nodes and adding transitions. As
soon as users add graphical objects on the diagram a PVS
specification, in a form suitable to fit the rest of our pro-
cess, is created and updated, reflecting the behaviour of the
diagram. It is configured as a plug-in for our development
environment PVSio-web described in section 5 below. This
allows the underlying PVS specification created by Emulink
to be animated. During device simulation, the current and
previous Emucharts states are highlighted so that users can
follow the device behaviour both looking at the picture and
looking at the Emulink diagram. The system currently sup-
ports the following graphical objects: States, Transitions,
Self Transitions, Default Transitions, Transition Condition,
Transition Action. This has been sufficient for our purposes
of modelling trialling the system. However in future work we
will extend the subset with features such as parallel states
and connective junctions. Emulink is similar in concept to,
for example, the DOVE tool [7] for the Isabelle proof system.
Our main contribution is in the way that we are integrating
it with PVS-based tools for the model-based engineering of
interfaces.

4.2 Verifying behavioural specifications
At this point in the process we have a concrete specifica-
tion of a particular device’s user interface. We also have a
set of safety requirements in the form of an abstract model
with the key terms uninterpreted. The next step is to give
semantics to the uninterpreted terms based on the device
user interface model. In our process this is done using PVS
theory interpretation [17, 16]. This involves importing the
safety requirements theory into that of the device model.
As part of the importing process we give definitions for each
of the uninterpreted terms. In doing so PVS automatically
generates obligations to prove that each newly created con-
crete version of the axiom is true. Discharging these proof
obligations demonstrates that the concrete model meets the
given safety requirements.

We have trialled this general approach in several ways. We
have used this process to formally verify our GPCA pump
prototype specification against the formalised set of FDA
user based safety requirements demonstrating the feasibility
of the approach at least to verify that a basic level of safety is
met [17]. We have also applied the verification approach to a
commercial patient controlled analgesia pump [16]. In this
case for practical reasons the specification of the interface
was reverse engineered from a combination of exploring the



behaviour of actual pump and the user manual. Whilst such
reverse engineering would not be done by a manufacturer,
this case study does demonstrate the verification approach
is applicable to a real device.

4.3 Refinement from requirements
Stepwise refinement techniques provide an alternative way
to demonstrate that a formalised set of requirements is sat-
isfied by the user interface of a device that we are exploring.
We are using the Event-B/Rodin platform to develop us-
age models [11] that are correct by construction. A usage
model is a formal representation that describes the common
characteristics and behaviour of software for broad classes
of devices. The goal is to develop usage models that satisfy
core sets of safety requirements that can mitigate against
typical hazards. Event-B is used to express the high level
safety requirements such as those proposed by the FDA. Re-
finement is used to demonstrate that the requirement can
be cascaded into a hierarchy that encompasses different in-
put/output technologies. We have proposed a refinement
approach based on three verification layers [27].

In the requirements layer, a minimal set of requirements,
relevant to some safety aspects of device interfaces, is first
developed. The aim is that these requirements should be suf-
ficiently abstract to encapsulate the behaviour of the largest
class of possible devices. Refinements are then used to de-
tail these requirements in a sequence of steps. It is also
possible that refinement can lead to alternative interface re-
quirements that also provide assurance of the safety of the
device. These modified requirements would be developed
as a contract between regulator and manufacturer. Having
produced an abstract version of the requirements, the next
stage is to make sense of them in terms of the particular
devices that the developer wishes to certify.

In the interface hierarchy layer, a refinement-based classifi-
cation of user interfaces has been developed that is relevant
for various modes of data entry in infusion pumps. Each re-
finement step introduces specific features, thereby creating
a hierarchy of user interface classes. The aim is that re-
quirements are verified once for the most abstract classes of
interfaces. More concrete classes of interfaces at the lower
levels of this hierarchy are then guaranteed to satisfy the
requirements by construction.

Having an interface hierarchy already verified against the
relevant requirements simplifies the process of demonstrat-
ing that a specific interface satisfies these requirements. In
the concrete interface layer, it suffices simply to demonstrate
that the specific interface is an instance of some class in the
interface hierarchy.

4.4 Verifying existing implementations
The ideal is that model development (and verification) is di-
rectly integrated into the design process. However, that does
not match the reality of the way code for medical devices is
currently developed. Even in the longer term there is liable
to be legacy code that needs to be used and so assured. We
have also therefore explored ways of using formal methods
for the assurance of existing user interface software. In this
situation a manufacturer (or regulator) would not reverse
engineer the interface but have the source code.

To this end, in collaboration with the FDA, we developed an
approach that allows design issues related to user interaction
to be detected in existing software [22, 21] based around
configuration diagrams [28].

The first step is to translate the source-code implementation
of user interface software into an equivalent formal specifi-
cation. This is done by a direct translation of the source
code constructs into PVS. From this a behavioural model,
in the form of a configuration diagram, is constructed using
theorem proving. Configuration diagrams are a form of tran-
sition diagram based specification, built directly around the
invariant property to be verified. Nodes, or configurations,
correspond to groups of states for which both the invariant
and some other property specific to that node hold. Edges
are conditions that transition the state between the con-
figurations. In our use the invariants are interaction design
properties such as consistency of actions and feedback. They
would ultimately be derived from safety requirements. The
configuration diagram is created node by node by symboli-
cally executing the implementation model from an initially
specified configuration that is reachable from the initial state
of the device. As each new node in the diagram is created,
it is verified whether the property holds of it or not.

Sequences of test inputs can then be produced for situations
where the invariant does not hold, by exploration of the
configuration diagram. These test cases can be executed on
the actual implementation to ensure that the issues detected
in the behavioural model do apply to that implementation.
This addresses the problem that the model cannot be guar-
anteed to be an accurate description of the implementation,
at least with respect to false positives.

We have trialled the approach by using PVS to analyse the
user interface of an existing commercial medical device im-
plemented in C++. In doing so we found several previously
unknown interaction design issues in the device, which may
potentially lead to severe consequences. Problems discov-
ered include: valid input key sequences that are incorrectly
registered without the user’s awareness; inappropriate feed-
back being given to the user for error conditions; ill-formed
input key sequences that are silently accepted without the
user’s awareness; and digits keyed after a decimal point that
are silently discarded without making the user aware [22,
21].

Ultimately such verification should not be against ad-hoc
properties, but against properties derived from formal safety
requirements as set by the regulator.

5. EXECUTABLE PROTOTYPES
In practice, multiple stakeholders are involved in the de-
velopment, procurement and regulation of a product. For
formal verification to be a useful and effective tool, effec-
tive communication between formal verification experts and
stakeholders both within development teams and externally,
such as with regulators, is needed. That requires integrated
tools that enable the use of verification techniques while hid-
ing the complexity involved in creating and interacting with
classic verification tools. One way to bridge this communi-
cation gap is to be able to quickly create prototypes from
the engineered models to allow the behaviour of a specifica-



tion to be explored in a way that can be easily understood.
For human-computer interaction issues that means an ac-
tual interactive mock-up of the interface. Such a prototype
allows early validation of the interaction design and can be
used, for example, for more traditional usability evaluation.
Changes to the specification can then be quickly mirrored
in executable models. To date we have developed a way
to rapidly prototype user interfaces driven from the formal
model and to combine the execution of the prototypes with
control logic developed in Simulink.

5.1 Prototyping user interfaces
We have developed PVSio-web [25], as an environment that
facilitates the easy creation of realistic prototypes for inter-
active systems that are driven by PVS specifications. The
environment allows animation of a PVS specification using
a graphical user interface corresponding to the interactive
device being modelled. Users define interactive input and
output areas over a picture of the interactive device being
modelled. Input areas drive commands that are executed
using PVS and the output areas are used to visualise state
information about the interactive system. This is built upon
the PVSio simulation environment of PVS.

We have developed a variety of executable models in PVSio-
web, including a prototype of our GPCA specification. This
demonstrates the final step of a model-based engineering ap-
proach that ultimately develops an executable prototype of a
user interface derived from a reference architecture and that
is verified against a set of safety requirements. We have also
used PVSio-web as a simulation tool to visualise problem-
atic input sequences with safety consequences on a variety of
devices, illustrating the use of the approach as a way of com-
municating results of verification to non-verification expert
stakeholders.

The focus of our work has been on verification against re-
quirement specifications. The integration with such proto-
typing and simulation tools can also be used to support val-
idation against user needs. Such tools give the design team
an early opportunity to validate the models.

5.2 Integrating PVS and Simulink
Developing new verification tools, however powerful, is not
enough for them to be usefully adopted in practice. A de-
sign process might typically involve a range of different mod-
els and tools, as different tools have different strengths and
weaknesses. New tools need to integrate with existing com-
binations of design, modeling and verification tools. For ex-
ample, MathWorks Simulink is a modeling framework widely
used in industry and can be used to develop control software
for medical devices. As with PVS which we use to develop
models of the human-computer interfaces of devices, it has
native simulation tools. Irrespective of the formal verifi-
cation approach used, simulation is a standard approach to
help validate models. Therefore, ways to co-simulate models
developed in each framework are needed.

We have developed a new, flexible approach for integrat-
ing PVSio (the simulation tool of PVS) with Stateflow, the
Simulink control logic tool [23]. It establishes web services
to create a communication infrastructure between the two
frameworks. This allows simulations of control and interface

models to be executed in parallel each driven by communi-
cation of events from the other. It also opens the possibility
for the wide range of applications developed in Stateflow to
benefit from the rigor of PVS verification.

We have illustrated its use with a simple case study in-
volving the GPCA pump prototype, the interface for which
we developed as described in the previous sections. We
combined it with a software controller that had previously
been developed in Stateflow as part of the infusion pump
project. Simulation of the prototype demonstrated that
the PVSio and Stateflow components inter-operate effec-
tively. Our tools and example models are available at http:
//www.pvsioweb.org.

6. MODEL-BASED UNDERSTANDING OF
THE WIDER SYSTEM

The research described so far focuses primarily on the device
and its interface. There is potential benefit in considering
more explicitly the wider system including the users and
their cognitive limitations, other artifacts (interactive de-
vices, user manuals), other people that relevant information
flows through, as well as the wider socio-technical system.
We have therefore also been exploring ways that aspects of
this wider system can be modelled and reasoned about in
ways that support the assurance of the device under consid-
eration.

6.1 Modelling cognitive assumptions
The first step outwards from the device is to consider the
behaviour of the user and in particular cognitive limitations
that lead to systematic error. When evaluating an interac-
tive system design from this perspective it is necessary not
only to formally describe assumptions about the device de-
sign but also the assumptions that are being made about
the user in terms of their cognitive capabilities and context.

We have developed a modelling framework [26] that can
be used to highlight error prone interaction design given
such a set of cognitive assumptions. We have also pro-
vided an approach to exploring the consequences of such as-
sumptions that combines formal verification techniques with
laboratory-based empirical studies [26].

The main idea here is to model, and explore the conse-
quences of, assumptions about how medical devices will be
used [26]. Abstract models of prototype designs and use as-
sumptions can then be analysed using model checking tech-
niques in order to predict, before deployment, design aspects
that might compromise the safety and usability of a device.

The purpose of the user model is to restrict the device be-
haviours to those that are consistent with user behaviour
given the cognitive assumptions. In our approach, the spe-
cific user model analysed is based on an instantiation of a
generic user model. This generic model provides the means
to use different sets of cognitive assumptions to allow dif-
ferent scenarios to be considered. It can be instantiated
with the particular task assumptions relevant to the analy-
sis. Used in conjunction with empirical study of device use,
this makes it possible for the experimenter to make, and ex-
plore, conjectures about how the device will be used. We



believe that this approach gives increased analytical power
to empirical results.

We have also used a formal model of cognitive assumptions
to undertake a more fine-grained analysis based on informa-
tion needs and the resources afforded by a designed system.

6.2 Understanding actual use in context
The certification process does not in reality end at the point
a device is brought to market. Ultimately, they are used in,
and their use adapted to, specific contexts whether in a hos-
pital or home. This can lead to them being used in ways or
contexts that were not imagined when certified. Also issues
arise due to novel use situations or just unforeseen circum-
stances that can lead to accidents and so potentially recalls.
Approaches are then needed for understanding device use
in such wider socio-technical contexts, either to determine
ways to improve the system after incidents, or in a more pre-
emptive way to understand practice as it develops or based
on a precursor device.

To do this in a formal way involves modelling more than just
individual interfaces and users but, for example, modelling
artifact rich contexts and information flow through them.
We have done some preliminary exploration of the develop-
ment of formal models and proof-based tools that support
taking a wider socio-technical view of medical device de-
sign [19, 18].

One strand of work has been to model information resources
and their transformation through the wider socio-technical
system within which a device is used. A variety of views can
be taken — what documentation says happens, what actu-
ally happens determined by observation, what stakeholders
claim happens, etc. By modelling the different processes as
described by different sources and comparing them we can
highlight potential areas of concern.

Specifically, we developed a constructive method to support
incident investigation [19]. It centres on models of informa-
tion resources used by those involved in the incident (such
as the infusion rate printed on a medication order), together
with models of how information resources are transformed
as they propagate through the system (e.g., how a medica-
tion order is entered into the pharmacy information system).
Once the information resources have been developed we for-
mulate and verify conjectures about how resources were used
(such as that relevant resources were available at critical
moments to relevant actors) and facts about the prescribed
use of information resources based on procedures and reg-
ulations. We have applied this method, using PVS, to the
details of an actual incident where an infusion pump was
incorrectly programmed leading to it delivering an incorrect
drug dose to a patient in an oncology out-patients unit [10].
The analysis highlighted potential areas for improvement of
the system not mentioned in the report. For example, nei-
ther the label nor the pump provided information about safe
limits: it was not easily available to the nurse at the point
when it was needed. This shows that such an approach can
potentially help detect safeguards and weaknesses.

We have also explored how a relatively simple use of PVS can
support a field researcher understanding a medical system.

In particular it can help externalise assumptions and facts,
verify the consistency of the logical argument framed in the
descriptions, help uncover latent situations that may war-
rant further investigation by the field researcher, and verify
conjectures about potential hazards linked to the observed
use of information resources. This approach was originally
applied to a medical dispatch system [19], but has more re-
cently been used to support a field researcher studying the
introduction of a new glucometer within a hospital ward
context.

7. CONCLUSIONS
A key long term goal of the CHI+MED project is to make
formal techniques accessible to developers so they can be
practically used within the certification/assurance process.
The intention is that they both focus on the device and the
wider systems and processes in which they are embedded.
This involves developing an integrated and accessible toolkit
that combines theorem proving, model checking, simulation
and visualisation techniques based around formal HCI safety
requirements.

We have shown how user interfaces can be developed using
a model-based engineering approach. Starting with a refer-
ence architecture for the device in question, a hazard analy-
sis leads to the development and formalisation of safety re-
quirements. Abstract versions of these requirements would
ultimately be issued by the regulator which would require
manufacturers to demonstrate they met them. The manu-
facturer would develop concrete versions of the requirements
for particular devices in negotiation with the regulator.

We also present approaches a manufacturer could use to then
verify both new and legacy code against the requirements.
The model specifying the user interface behaviour that is
verified can also form the basis of an interactive prototype
of the interface that inter-operates with Stateflow models of
the device’s control software. We have created tools that
support this process. We have also shown its feasibility by
developing a prototype of a PCA pump, verified against
safety requirements, as well as applying elements to com-
mercial infusion pumps.

We have also shown how model-based approaches can sup-
port empirical work aimed at understanding the wider sys-
tem in which medical devices operate, including exploring
the ramifications about limitations of users and the way in-
formation propagates around the system.

8. FURTHER WORK
The approaches described have mainly been applied to the
case studies around which they were developed. In future
we need to apply the toolkit to a wider range of medical
case studies around different classes of device, and further
explore its integration into the certification/assurance pro-
cess. A key prerequisite of this is to develop and formalise
a comprehensive set of user-based safety requirements for
the devices concerned. To date we have focused mainly on
number entry systems and infusion pumps. We need to ex-
plore wider aspects of infusion pumps and wider classes of
devices.

An area needing attention is for devices where complex and



potentially remote data entry is involved. The research car-
ried out so far has ignored features of new technologies where
the devices are driven by data — for example Drug Error
Reduction (DER) software uses pharmaceutical databases to
reduce the likelihood of mistaken data entry at the bedside.
Other technologies, for example radiotherapy machines, are
driven by complex prescribed patient data. Another future
direction is to apply similar approaches to the security and
integrity of the data and the devices.

Our existing tools make it possible to visualise the scenar-
ios and to prove that certain properties of the wider system
are true, subject to information resource constraints. We
need to explore the possibilities here in more depth. We
also propose to go a step further building on existing work
to produce stochastic simulations or fluid flow models that
enable consideration of typical uses of the system. This will
enable a consideration of issues associated with the perfor-
mance of the system.

The resulting multi-level toolkit could be used to support
system design, system redesign linked to incident investiga-
tion and pre-emptive system redesign. Different methods,
tools and levels of formality are needed for different aspects
of the socio-technical system and exactly what works at the
different levels will be a focus of future research.

An additional area to look at is the integration of our tools
and approaches with existing standards such as IEC 62366:
2007. It specifies a process for manufacturers to analyse,
specify, design, verify and validate usability with respect to
safety of a medical device. However, it follows a very tradi-
tional usability engineering approach and does not provide
ways to look at exhaustive coverage as our model-based ap-
proaches potentially do. Model-based approaches such as
ours could help plug this major gap.

An additional interesting direction would be to apply our
techniques to analyse the consequences of possible actions
of users in situations where hazards have arisen including in
the event of system errors such as software bugs manifesting.
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[27] R. Rukšėnas, P. Masci, M. D. Harrison, and
P. Curzon. Developing and verifying user interface

requirements for infusion pumps: A refinement
approach. In J. Bowen and S. Reeves, editors,
Proceedings of the 5th International Workshop on
Formal Methods for Interactive Systems. EASST, June
2013.

[28] J. Rushby. Verification diagrams revisited: disjunctive
invariants for easy verification. In Proceedings of
Computer Aided Verification (CAV2000), pages
508–520. Springer, April-May 2000.

[29] US Food and Drug Administration. Learn if a Medical
Device Has Been Cleared by FDA for Marketing, 2009.

[30] US Food and Drug Administration. Premarket
Notification (510k), 2009.

[31] US Food and Drug Administration. Total Product Life
Cycle: Infusion Pump - Premarket Notification
[510(k)] Submissions - Draft Guidance, April 2010.

[32] US Food and Drug Administration. FDA and Industry
Actions on Premarket Approval Applications (PMAs):
Effect on FDA Review Clock and Goals, October 2012.


