
The benefits of using interactive device simulations as
training material for clinicians: an experience report with a

contrast media injector used in CT

Cinzia Bernardeschi
Department of Information Engineering

University of Pisa, Italy
cinzia.bernardeschi@unipi.it

Paolo Masci
∗

INESC TEC and Universidade do Minho
Braga, Portugal

paolo.masci@inesctec.pt
Davide Caramella

Dipartimento di Ricerca Traslazionale e delle
Nuove Tecnologie in Medicina e Chirurgia

University of Pisa, Italy
davide.caramella@med.unipi.it

Ruggero Dell’Osso
Dipartimento di Ricerca Traslazionale e delle

Nuove Tecnologie in Medicina e Chirurgia
University of Pisa, Italy

ruggero.dellosso@med.unipi.it

ABSTRACT
This paper reports on our experience in developing training ma-
terial for a hospital, in the form of an interactive simulation of a
medical device routinely used in the hospital. The subject device
is a commercial contrast media injector used in Computed Tomog-
raphy (CT) scans. The specification of the device was reverse en-
gineered using in combination the user manual, direct interaction
with the real device, and the results of a field study we conducted
that focused on how expert users routinely operate the device. The
interactive simulation greatly helped to identify critical workflows
that could induce accidental use errors that lead to dangerous situ-
ations such as failure to correctly detect air-in-line before starting
the injection. The interactive simulation proved also useful to stim-
ulate a constructive discussion within a multidisciplinary team of
engineers and clinicians, about possible design improvements to
the device that could prevent the identified critical workflows.

Keywords
Contrast media injectors; Interactive simulation; Training material
for clinicians.

1. INTRODUCTION
Contrast media injectors are medical devices routinely used in

diagnostic imaging exams such as computed tomography (CT), mag-
netic resonance imaging (MRI) and angiography (XA), to inject in-
travenously a fluid, called contrast media, necessary to enhance the
visibility of normal body structures as well as lesions.

Iodinated media can be nephrotoxic, being a known cause of

∗Corresponding author

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

MCPS-18 2018, Porto, Portugal
© 2018 ACM. ISBN xxx-xxxx-xx-xxx/xx/xx. . . $15.00

DOI: xx.xxx/xxx_x

possible acute renal failure in hospitalised patients [12]. To min-
imize the risk of adverse health problems, it is therefore important
to set up the injector so that it delivers the minimal amount of con-
trast media necessary for the diagnostic task. This is especially
important for elderly patients (they are more vulnerable to contrast
media), and for patients undergoing multiple diagnostic imaging
scans in a short period of time. Modern injectors typically provide
a watch-dose function that helps clinicians validate the volume of
contrast media entered in the device, based on the patient’s physical
parameters, pathology, and organ or tissue to be analyzed with the
diagnostic imaging exam.

Use error with infusion devices, as well as with other medical
devices, is a known source of incidents in healthcare [1, 9]. Whilst
use error is defined as an act of omission or commission performed
by the user that causes a device to respond unexpectedly [4], it
is important to highlight that incident investigations usually reveal
that use errors are due to latent design flaws in the device, rather
than careless behavior or lack of training of clinicians (see [14] for
a more in-depth discussion of use errors with medical devices). An
example design flaw that can induce use errors is the data entry
system of a device silently discarding decimal point key presses for
certain range of values [5]. These types of flaws create traps for the
users, that can be hard to avoid even for experienced users.

Advanced analysis tools can be used to facilitate early detec-
tion of latent software issues. Verification tools based on formal
methods technologies, for example, can be used by manufacturers
within the development process to analyze the source code of their
products (e.g., see the analysis presented in [7]). Similar tools can
also be used by healthcare providers, to improve procurement deci-
sions and to develop training material (e.g., interactive simulations
of a device) suitable to raise awareness about latent design flaws in
user interface software. In this paper, we focus on the healthcare
provider perspective.

Contribution. We describe how we used a prototyping and anal-
ysis toolkit to support the development of an interactive simula-
tion of a contrast media injector used in a large academic hospital.
The simulation was created to support training of clinicians, and
helped to identify and raise awareness among clinicians of critical
workflows that could induce accidental use errors that have safety
implications.

xx.xxx/xxx_x

Figure 1: The injector system: workstation (on the left) and
injector device (on the right).

2. RELATED WORK
Work on formal modelling and simulation of human-machine in-

teraction with medical systems has gained momentum in these last
few years, with various research groups focusing on the topic. For
example, in [11], a library of patient and medical device models
are developed to support the validation of medical cyber-physical
systems. In [10], control theory is used as a basis to develop a
simulation of a human operator interacting with a device provid-
ing both continuous control (e.g., joysticks) and discrete controls
(e.g., buttons). Their simulation builds on the infrastructure of the
PVSio-web toolkit we have used in the our work for creating the
interactive prototype. However, these and other similar tools are
designed to support the work of engineers. Their target is therefore
different from our work, which aims to support multi-disciplinary
analysis of human-centred medical systems, as well as create train-
ing simulations for clinicians.

3. THE CONTRAST MEDIA INJECTOR
The subject device of this work is a dual-syringe injector that

performs injection of contrast and saline into the bloodstream of
patients, commonly used in CT. Figure 1 shows the complete injec-
tion system that includes a workstation and an injector. Clinicians
need to use both devices to carry out an injection.

The workstation allows clinicians to set up and manage personal-
ized injection protocols for different patients, based on parameters
such as patient weight, past scan procedures, current scan settings,
diagnostic tasks, etc. The workstation seamlessly communicates
with the injector, allowing clinicians to monitor progress of the in-

jection directly from the workstation screen. The two syringes of
the injector are displayed using color-coded pictures on the work-
station screen (green for contrast, and blue for saline). Interaction
with the workstation is carried out through a touchscreen display.

The injector has a front panel with a number of buttons and dis-
plays that allows clinicians to set up specific amounts of contrast
media and saline. The body of the device includes an injector head
(where syringes are inserted), plungers for controlling the volume
of liquid in the syringes (plungers are automatically advanced and
retracted when syringes are inserted and removed), and tubes/nee-
dles (used to connect syringes and the patient).

The front panel of the injector uses a number of displays and
LEDs to provide feedback to the clinician about the state of the de-
vice. Two seven-segments displays labelled VolumeA and VolumeB
report, depending on the device mode, either the volume of liquid
in the syringe, or the position of the plunger. Each display has three
significant digits, and can render only integer numbers. One LED
light placed next to a lock symbol indicates whether the injection
protocol has been set and locked from the workstation. Two large
LED lights indicate whether an injection is running.

Various buttons on the front panel of the injector allow clinicians
to operate the device. An autoload button, can be used to move the
plungers and load the volume of saline and contrast configured by
the clinician on the workstation. Two buttons, plus (+) and minus(-
), allow clinicians to increase/decrease the target volume of saline
and contrast to be loaded in the syringes. Two buttons FillA and
FillB activate the autoload sequence for the syringes. A Manual
load button enables manual adjustment of the plunger position us-
ing the chevron keys available on the front panel of the injector.
The speed at which the volume is increased/decreased depends on
where the chevron keys are pressed – pressing next to the tip of
the chevron key leads to quicker changes. A Prime button can be
used to remove air-in-line. A Check-Air button is for checking air-
in-line. An Arm button is used to make the system ready for an
injection. An Abort button terminates an injection procedure and
disarms the injection. A Start/Hold button allows to start the injec-
tion (when the injection is not started), and to pause the injection
(this function is active when an injection is running).

4. THE INTERACTIVE SIMULATION
We developed an interactive simulation of the complete injec-

tion system using the PVSio-web [6] prototyping. A screenshot of
the simulation is in Figure 2. A live version of the simulation is
available online at http://www.pvsioweb.org/demos/stellantV21.

Developing the PVSio-web simulation involved three main steps:
(Step 1.) Build an executable specification of the behavior of

the system in the PVS language. The specification of the injector
was obtained by reverse engineering the real system. We used a
combination of information from the user manual, observation of
the device behavior through direct interaction with the real device,
and the results of a field study we conducted to understand how
expert users operate the device.

(Step 2.) Take a picture of the user interface of the real system
that could be used as a basis to create the visual appearance of the
interactive simulation.

(Step 3.) Use the PVSio-web library to create interactive wid-
gets over the picture of the system. The library is implemented in
JavaScript. Input widgets translate user actions over buttons into
expressions of the executable PVS model to be evaluated to com-
pute the system response. Output widgets mirror state attributes of

1Google Chrome ver 62.x or newer version of the web browser is
required to correctly execute the live demo.

http://www.pvsioweb.org/demos/stellantV2

Figure 2: Interactive simulation of the injector system.

the PVS model and resemble the look & feel of the real system in
the corresponding state. For example, in the screenshot shown in
Figure 2, output widgets are used to represent a system state where
the syringes are plugged into the injector and spiked to a bag with
saline and contrast liquids, and the injector has completed the pro-
cess of loading the saline and contrast liquids in the syringes (the
two seven-segments displays on the front panel of the injector indi-
cate the volume of liquid loaded in the two syringes).

4.1 Executable specification
The executable PVS specification of the injection system was de-

veloped using the modelling approach described in [2]. It involves
two main steps:

• Specify the system state as a PVS record type with relevant
state attributes;

• Specify the behavior of the system as a set of transition func-
tions that range over system states.

System state. The PVS record type for the injector system in-
cludes 57 state attributes: 38 attributes for the injector state; 14 for
the workstation state; and 5 for the state of the syringes.

In the following, some aspects of the developed PVS model are
illustrated. This illustration is not meant to be detailed or pedantic,
as our aim is only to give the reader an understanding of what the
PVS specification looks like. A detailed description of executable
PVS specifications of medical devices can be found, e.g., in [3, 7].

A snapshot of the system state is in Listing 1. The syntax to spec-
ify a PVS record type is [# a1: t1, ..., aN: tN #],
where a1 ... aN are attribute identifiers, and t1 ... tN
are attribute types. PVS provides an expressive specification lan-
guage, which allowed us to select the most suitable attribute type
from a wide range of pre-defined types, including basic types (bool,
integer, reals, etc.), enumerations, arrays, sets, lists. Sub-types and
user defined data-types can also be created.

state: TYPE = [# mode: Mode,
vol_saline: Volume,
vol_contrast: Volume,
lock_LED: LED,
... #]

Listing 1: System state represented as a PVS record type

In the developed specification, we extensively used PVS sub-
types as the PVS system automatically generates proof obligations
for them — this is useful for checking well-formedness of the spec-
ification, including aspects such as correct use of types, coverage
of conditions, and disjointness of conditions. An example sub-type
is Rate, which is defined as a non-negative real number smaller
than 200 (see Listing 2).

Rate: TYPE = { x: nonneg_real | x < 200 }

Listing 2: PVS sub-type for modelling infusion rate values

Transition functions. The developed PVS specification includes
33 transition functions: 26 for modelling the behavior of the in-
jector, and 7 for modelling the workstation. The main focus of
the simulation was the injector: this is the reason behind the small
number of transition functions used for modelling the workstation.
The size of the PVS specification is approx. 800 lines.

An example transition function created in the developed speci-
fication is click_btn_manual (see Listing 3), which models
the effect of pressing the Manual load button available on the front
panel of the injector to enable manual adjustment of the plungers
position using the chevron keys of the injector. Other transition
functions in the developed specification have a similar structure.

1 click_btn_manual(st: state): state =
2 st WITH [
3 mode := MANUAL,
4 vol_saline := plunger_saline(st),
5 vol_contrast := plunger_contrast(st),
6 vol_saline_confirmed := FALSE,
7 vol_contrast_confirmed := FALSE,
8 btn_manual_timeout := BTN_MANUAL_TIMEOUT
9]

Listing 3: Example transition function in PVS

The function has one argument st of type state, which repre-
sents the current system state. The function returns the next system
state, which is constructed by modifying the value of relevant state
attributes in the current state. The PVS language provides a syntax
to write an override expression that can be used for this purpose
(WITH [a1 := new_a1, ... aN := new_aN]). For
this specific function, the override expression indicates that:

• The new device mode is MANUAL (see line 3 in Listing 3);
• Volumes of saline and contrast shown in the displays of the

injector is calculated based on the position of the current po-
sition of the plungers (see lines 4-5 in Listing 3);

• Flags indicating whether the volumes have been confirmed
are reset – these flags are used by a safety mechanism of
the injector, which checks that clinicians have explicitly ac-
knowledged the entered volumes before starting the injection
(see lines 6-7 in Listing 3);

• A countdown timer (btn_manual_timeout) is set to a
value given by the constant BTN_MANUAL_TIMEOUT – this
timer is used to check inactivity of the user during manual
mode; it is part of a safety mechanism of the injector that
guards against mis-configuration of the injector due to acci-
dental button presses (see line 8 in Listing 3)

4.2 Interactive widgets
The interactive simulation includes the following PVSio-web wid-

gets: 33 buttons, 9 displays, 5 LEDs, and 2 syringes.
Each button widget is seamlessly linked to a transition function

in the PVS model: this is done through the APIs of the PVSio-
web widget, which include a parameter for specifying the name of

the transition function to be evaluated when a given user action is
performed on the widget. Listing 4 shows an example use of the
PVSio-web APIs for creating a widget for the Manual load button:

• Button is the widget constructor. The new operator is used
to create a new object of type Button. The created widget is
stored in a field btn_manual of a variable sys.

• The first argument of the constructor is a string defining the
widget identifier. The PVSio-web toolkit uses this string as
a basis to derive the name of the transition function in the
PVS model to be linked to the widget – the full name of the
transition function is constructed by concatenating the user
action that activates the widget with the widget identifier. For
example, when the user clicks on the button, the transition
function that will be evaluated is click_btn_manual.

• The second argument is a structure defining the coordinates
and size of the widget. This is necessary to create an inter-
active overlay area of the correct size for the image used as
a basis for the visual appearance of the prototype, and to po-
sition the interactive area in the correct place (i.e., over the
Manual load button in this case).

• The third argument provides information about the callback
function to be invoked for refreshing the visual appearance of
the prototype when the evaluation of the transition function
associated with the button generates a new system state.

var sys = {};
sys.btn_manual = new Button("btn_manual", {

top:792, left:210, width:38, height:38
}, {
callback: render

});

Listing 4: Example button widget

Each display and LED widget is seamlessly associated with a
state attribute defined in the PVS specification. The creation of
these widgets follows a pattern that is similar to that we have il-
lustrated for button widgets. For example, Listing 5 shows how to
create an LED widget:

• LED is the widget constructor;
• The first argument is the widget identifier;
• The second argument defines position and size of the widget;
• The third argument specifies the LED color.

sys.lock_LED = new LED("lock_LED", {
top:916, left:221, width:13, height:13

}, {
color: "green"

});

Listing 5: Example display widget

The visual aspect of all widgets is periodically refreshed every
time the PVS specification is evaluated. The evaluation of the spec-
ification occurs either when the user interacts with an input widget
(e.g., presses a button), or periodically (if the device has internal
timers that are ticking). A JavaScript function render contains
the code for refreshing the widgets.

In its basic form, the render function simply parses the PVS
state and invokes the render method of the widgets (see List-
ing 6). This function can be extended with custom JavaScript code
necessary for mimicking specific aspects of the system that cannot
be reproduced using just the widget. For example, in the developed
simulation, we used custom code for rotating the injector upside
down (this reflects the actual use of the injector, which clinicians
need to rotate upside-down before starting the injection), and to

create a simulation control panel that could be used to perform ac-
tions such as plugging the syringes into the injector head, spiking
the syringes with the saline and contrast bags, and connecting the
tubes to the syringes.

function render(err, event) {
var res = stateParser.parse(event.data);
if (res) {

sys.btn_manual.render(res);
sys.lock_LED.render(res);
...

}
}

Listing 6: Render function

5. USING INTERACTIVE SIMULATION AS
TRAINING MATERIAL

The development of the interactive simulation of the injection
system was key to enable active engagement and constructive dis-
cussion in our multidisciplinary team of engineers and clinicians.
This allowed the entire team to look closely and in a systematic
manner into various design aspects of the system. This greatly
helped engineers understand how clinicians use the system, and
greatly helped the entire team to discuss and demonstrate vari-
ous corner cases that could potentially have safety consequences
in specific contexts. Under this perspective, the interactive simula-
tor proved useful as training material for the system. Some of the
identified corner cases are now discussed.
Risk of incorrect injection settings. The Volume displays avail-
able on the front panel of the injector normally report a value corre-
sponding to the volume of liquid loaded in the syringes. However,
in certain operating modes for the injector, the display values have
a different meaning:

• When the syringes are not plugged into the injector head, the
display values indicate the maximum value of volume that
can be loaded in the syringes;

• When the syringes are connected but empty, the display val-
ues indicate the current position of the syringe plungers;

• When button AutoFill available on the front panel of the in-
jector is pressed, the display values indicate the target vol-
ume of liquid that will be loaded in the syringes, according
to the injection protocol defined on the workstation. This
value is reset to 0 as soon as buttons FillA or FillB available
on the front panel of the injector are pressed.

Information on the front panel of the injector is not always suffi-
cient to discriminate these different cases.
Risk of undetected air-in-line. For patient safety, it is important
to check that air bubbles are purged from syringes and tubing before
the injection. For this reason, the arming phase of the injector is
disabled if the CheckAir button available on the front panel of the
injector has not been pressed.

However, this button is only a placeholder, i.e., a functionality
provided by the device to remind the clinician to verify the absence
of air (the injector does not have any sensor for detecting air-in-
line). In other words, pushing the CheckAir button does not trigger
any actual check from the device – the clinician needs to look into
syringes and tubes and make sure there are no air bubbles. If air
bubbles are present, the clinician can use the Prime button to re-
move the air. This was not clear from the manual.
Risk of misprogramming the injector. The injector provides two
main modalities for filling syringes, and two modalities for prim-
ing: automatic and manual. In manual mode, clinicians use the

chevron keys on the front panel of the injector to load the volume
prescribed by the protocol and prime the syringes. In automatic
mode, a single button press on FillA and FillB buttons on the front
panel of the injector allows clinicians to load liquid in each sy-
ringe, and then a single button press on the Prime button primes
the syringes. These two modalities can be interleaved, e.g., one can
perform automatic fill of a syringe, and then manually prime the sy-
ringe. It is important to note that the volume of liquid loaded using
automatic mode is larger than the volume prescribed by the proto-
col: +1 mL for the contrast, and +5 mL for the saline. The reason
for this is that the automatic prime function pushes exactly 1 mL of
contrast and 5 mL of saline out of the syringes. If clinicians inter-
leave the two modalities and accidentally omit to check the volume
on the injector display, there is a risk of injecting a volume of saline
and contrast that is slightly different than the intended values.

Risk of misreading values. Another issue concerns the phase in
which the injector needs to be connected to the patient to start the
injection. In this phase, the injector needs to be rotated of 180 de-
grees. The rotation moves air up in the syringes – this is a safety
precaution for preventing air being injected in the veins of the pa-
tient. However, the rotation causes the displays provided on the
front panel of the injector to be upside-down. This is particularly
unfortunate, because the device uses seven-segments displays and
certain numbers can be accidentally mis-read when the display is
upside-down (e.g., 51 can be misread as 12, see also [13] for a
more detailed discussion of problems with using seven-segments
displays in medical devices).

6. CONCLUSION
We presented our work on the development of an interactive sim-

ulation of a medical device in a hospital. The simulation facil-
itated the multidisciplinary work necessary to obtain results that
have strong impact and immediate utility to different stakehold-
ers. Engineers have the knowledge on the technology, in our case
on modelling and rapid prototyping of user interfaces. Clinicians
played a fundamental role in the identification of critical scenarios,
as well as in the description of how the medical device is routinely
used in the real-world. A possible use of the simulation tool is to
enhance the proficiency of the clinical users of the injector, helping
them to avoid possible traps, thus increasing patient safety.

As further work, we intend to use formal methods technologies
to verify the developed formal model against use-related safety re-
quirements such as the movement of plungers always disables the
check-air flag. This is made possible by the theorem prover avail-
able in the PVS framework. Finally, we intend to explore the pos-
sibility of automatic code generation from the formal model, using
a source code generator we are developing for the PVSio-web en-
vironment [8].

7. ACKNOWLEDGMENTS
Paolo Masci is funded by the ERDF (European Regional De-

velopment Fund) through the Operational Programme for Compet-
itiveness and Internationalisation – COMPETE 2020 Programme
within the project POCI-01-0145-FEDER-006961, and by National
Funds through the Portuguese funding agency FCT (Fundação para
a Ciência e a Tecnologia) as part of project UID/EEA/50014/2013.

8. REFERENCES
[1] Association for the Advancement of Medical

Instrumentation (AAMI). AAMI/FDA summit on ventilation
technology, 2015.

[2] M. D. Harrison, J. C. Campos, and P. Masci. Reusing models
and properties in the analysis of similar interactive devices.
Innovations in Systems and Software Engineering,
11(2):95–111, Jun 2015.

[3] M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon.
Verification of user interface software: the example of
use-related safety requirements and programmable medical
devices. IEEE Transactions on Human-Machine Systems,
47(6):834–846, 2017.

[4] International Organization for Standardization. ISO 14971:
medical devices-application of risk management to medical
devices. 2000.

[5] P. Masci, P. Oladimeji, P. Curzon, and H. Thimbleby. Using
pvsio-web to demonstrate software issues in medical user
interfaces. In M. Huhn and L. Williams, editors, Software
Engineering in Health Care, pages 214–221, Cham, 2017.
Springer International Publishing.

[6] P. Masci, P. Oladimeji, Y. Zhang, P. Jones, P. Curzon, and
H. Thimbleby. PVSio-web 2.0: Joining PVS to HCI. In
Computer Aided Verification, pages 470–478, Cham, 2015.
Springer International Publishing.

[7] P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby.
Formal verification of medical device user interfaces using
pvs. In S. Gnesi and A. Rensink, editors, Fundamental
Approaches to Software Engineering, pages 200–214, Berlin,
Heidelberg, 2014. Springer Berlin Heidelberg.

[8] G. Mauro, H. Thimbleby, A. Domenici, and C. Bernardeschi.
Extending a user interface prototyping tool with automatic
MISRA C code generation. arXiv preprint
arXiv:1701.08468, 2017.

[9] B. Middleton, M. Bloomrosen, M. A. Dente, B. Hashmat,
R. Koppel, J. M. Overhage, T. H. Payne, S. T. Rosenbloom,
C. Weaver, and J. Zhang. Enhancing patient safety and
quality of care by improving the usability of electronic health
record systems: recommendations from AMIA. Journal of
the American Medical Informatics Association, 20, 2013.

[10] G. Niezen and P. Eslambolchilar. A human operator model
for medical device interaction using behavior-based hybrid
automata. IEEE Transactions on Human-Machine Systems,
46(2):291–302, 2016.

[11] L. C. Silva, H. O. Almeida, A. Perkusich, and M. Perkusich.
A model-based approach to support validation of medical
cyber-physical systems. Sensors, 15(11):27625–27670, 2015.

[12] M. Ten Dam, J. Wetzels, et al. Toxicity of contrast media: an
update. Neth J Med, 66(10):416–22, 2008.

[13] H. Thimbleby. Reasons to question seven segment displays.
In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems, pages 1431–1440. ACM, 2013.

[14] M. Thomas and H. Thimbleby. Computer bugs in hospitals:
A new killer. 2018.

	Introduction
	Related work
	The contrast media injector
	The interactive simulation
	Executable specification
	Interactive widgets

	Using interactive simulation as training material
	Conclusion
	Acknowledgments
	References

