
Automated synthesis of dependable mediators for heterogeneous
interoperable systems

F. Di Giandomenico a, M.L. Itria a, P. Masci c, N. Nostro a,b,n

a ISTI-CNR, Pisa, Italy
b University of Florence, Italy
c Queen Mary University of London, United Kingdom

a r t i c l e i n f o

Article history:
Received 10 January 2013
Received in revised form
30 July 2014
Accepted 9 August 2014
Available online 19 August 2014

Keywords:
Model-based analysis
Dependability
Performance
Dependability mechanisms
Dynamic networked systems
Interoperability

a b s t r a c t

Approaches to dependability and performance are challenged when systems are made up of networks of
heterogeneous applications/devices, especially when operating in unpredictable open-world settings.
The research community is tackling this problem and exploring means for enabling interoperability at
the application level. The EU project CONNECT has developed a generic interoperability mechanism which
relies on the on-the-fly synthesis of “CONNECTors”, that is software bridges that enable and adapt
communication among heterogeneous devices. Dependability and Performance are relevant aspects of
the system. In our previous work, we have identified generic dependability mechanisms for enhancing
the dependability of CONNECTors. In this work, we introduce a set of generic strategies for automating the
selection and application of an appropriate dependability mechanism. A case study based on a global
monitoring system for environment and security (GMES) is used as a means for demonstrating the
approach.

& 2014 Elsevier Ltd. All rights reserved.

1. Introduction and motivation

The classic and well understood way of building dependable
systems [1] is based on the application of rigorous development
methods. Special programming techniques are used for software,
such as model-driven development [2], and specific architectures
are used for hardware, such as modular redundancy [3].
Dependability-critical domains, such as avionics and power plants,
require by law the adoption of these techniques, and define
standards that must be followed.

This classic approach to dependability is challenged when
critical systems are made up of networks of heterogeneous devices
from different manufacturers. The GMES (Global Monitoring for
Environment and Security) European Programme for the estab-
lishment of a European capacity for Earth Observation provides an
excellent example of heterogeneity in interoperable applications
and devices for critical applications. It started in 1998, and
includes six main thematic areas: land monitoring, marine envir-
onment monitoring, atmosphere monitoring, emergency manage-
ment, security and climate change. The emergency management
service directs efforts towards a wide range of emergency

situations; in particular it covers different catastrophic circum-
stances: floods, forest fires, landslides, earthquakes and volcanic
eruptions and humanitarian crises. As another example, in the
healthcare domain, currently there is not a standard for medical
device interoperability. Nevertheless, this has not prevented the
adoption in hospitals of networks of heterogeneous technologies.
In some cases the lack of interoperation just causes minor
disturbances, e.g., patients not recognised by palm-sized wireless
medical devices because the devices are not enabled to gather this
information on-the-fly from a central database [4]. In other cases,
problems are more serious, e.g., surgical fires caused by lack of
dependable interoperation between electrosurgical devices and
oxygen-delivery devices [5].

The problem is that standardised interoperability at the
application level is essentially non-existent. In fact, standards
like Universal Serial Bus (USB) and IEEE 802.11 (WiFi) enable
interoperability at a level lower than the application logic. The
consequence of this is that heterogeneous networked devices
might be able to interoperate but at the same time they might
not be able to fully benefit from each other's services. This
situation might create serious problems, e.g., in safety-critical
systems safety interlocks defined at the application level may be
ignored or overridden. Even more challenging is the situation
where the heterogeneous systems have a dynamic and evolving
behaviour, thus requiring adaptation if interoperability is to be
enabled.

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/ress

Reliability Engineering and System Safety

http://dx.doi.org/10.1016/j.ress.2014.08.001
0951-8320/& 2014 Elsevier Ltd. All rights reserved.

n Corresponding author at: ISTI-CNR, Pisa, Italy.
E-mail addresses: f.digiandomenico@isti.cnr.it (F. Di Giandomenico),

massimiliano.leone.itria@isti.cnr.it (M.L. Itria),
paolo.masci@eecs.qmul.ac.uk (P. Masci), nicola.nostro@unifi.it (N. Nostro).

Reliability Engineering and System Safety 132 (2014) 220–232

www.sciencedirect.com/science/journal/09518320
www.elsevier.com/locate/ress
http://dx.doi.org/10.1016/j.ress.2014.08.001
http://dx.doi.org/10.1016/j.ress.2014.08.001
http://dx.doi.org/10.1016/j.ress.2014.08.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.08.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.ress.2014.08.001&domain=pdf
mailto:f.digiandomenico@isti.cnr.it
mailto:massimiliano.leone.itria@isti.cnr.it
mailto:paolo.masci@eecs.qmul.ac.uk
mailto:nicola.nostro@unifi.it
http://dx.doi.org/10.1016/j.ress.2014.08.001


1.1. Problem statement

The problem at stake is application-level interoperability in net-
works of heterogeneous devices. Interoperability is the ability for a
device to connect to or be used with another device, and perform
individual functions without alteration of the individual device. In
heterogeneous networks, devices may have compatible transmit-
ters and receivers that allow us to exchange messages, but inter-
operability may still be not enabled because of mismatches in
communication protocols used at the application level by the
devices. For instance, assume two devices D1 (e.g., a mobile phone)
and D2 (e.g., a printer) which need to interoperate to accomplish a
task (e.g., print an electronic document). If D1 requires handshake H
1 to start communication, and device D2 only accepts handshake H
2, then the two devices are not able to interoperate at the
application level, and so the task cannot be accomplished. Another
example is when the two devices have identical protocols but
different dependability or performance requirements. For instance,
device D1 requires maximum latency X, but device D2 can only
guarantee latency Y4X during communication. In this case too, the
application-level interoperability is not possible.

To enable interoperability, different communication protocols
need to be harmonised. A generic approach to harmonise hetero-
geneous communication protocols relies on the synthesis of
mediators that bridge functional (i.e., semantic) gaps between
communication protocols, and non-functional (i.e., dependability-
or performance-related) mismatches between protocols.

Generic approaches for addressing functional mediation have been
investigated since Yellin and Strom's seminal work on component
adaptors [6]. Communities that are particularly active on this topic are
those of Self-Adaptive Systems (e.g., see [7,8]) and Service Oriented
Architectures (e.g., see [9–11]).

Generic approaches for addressing non-functional mediation
have been largely neglected. Only few examples can be found in
the literature. In [12], the control science theory is used to define a
framework with composable modules and an overlay of agents
that enable security, privacy and dependability in heterogeneous
networks of embedded systems. Another example is [13], where
an approach based on stochastic modelling is explored to synthe-
sise mediators that meet given performance requirements.

In our previous work [14,15] we have presented a generic model-
based framework to support the synthesis of dependable mediators,
that is mediators that meet dependability and performance require-
ments. Recently, in [16], we have identified generic templates which
can be used in several practical cases to enhance the dependability
and performance level of synthesised mediators. In this work, we
unify the two contributions of our previous works, and illustrate in
detail the model-based approach used to automate the synthesis of
dependable mediators.

1.2. Contribution

The contributions of this work are (i) an automated approach
to select and instantiate generic dependability and performance
templates during the synthesis of dependable mediators; (ii) a
detailed example based on a global monitoring system for envir-
onment and security (GMES) that demonstrates the proposed
approach.

1.3. Structure of the paper

The presentation proceeds as follows. In Section 2, we provide
an overview of the CONNECT framework, as this work is contextua-
lised within it. In Section 3, the performed model-based depend-
ability analysis is presented. In Section 4, we illustrate the proposed
generic methodology for selecting dependability mechanisms in

networks of heterogeneous interoperable devices. In Section 5, we
demonstrate the benefits of the proposed approach within an
example based on a global monitoring system. The selected
scenario is one of the demonstrative examples developed in the
CONNECT project. Section 6 describes related work and conclusions
are drawn in Section 7.

2. Context

The context of this work is that of CONNECT,1 a research project
that explored generic approaches to the automated synthesis of
“CONNECTors”, software mediators that enable application-level
interoperability. A model-based approach is used to identify gaps
and mismatches between communication protocols, and then
generate a CONNECTor that bridges the identified gaps and mis-
matches. Modelling is composed of two phases: (i) building of a
model that reflects the behaviour of the components of the system
and their interactions; (ii) analysis of the model to obtain
a CONNECTor that enables application-level interoperability. The
CONNECT framework supports this model-based approach using an
overlay network of five types of active units: Discovery, Learning,
Synthesis, Dependability, and Monitoring. The role of these five
units is now illustrated.

Discovery and Learning: These units gather information about
functionalities requested and provided by networked systems.
Specifically, the Discovery unit discovers mutually interested
devices, and retrieves information about their interface beha-
viours. The unit assumes that devices are discovery enabled, i.e.,
they provide a minimal description of their intent and function-
alities. When a networked system just provides a partial specifica-
tion of its behaviour, the Learning unit completes the specification
through a learning procedure (e.g., usage on model-based testing
and model inference [17]).

Synthesis: This unit performs the dynamic synthesis of mediat-
ing CONNECTors to enable functional interoperation among mutually
interested devices. The unit performs a graph-based analysis to
identify mismatches between the communication protocols iden-
tified by Discovery and Learning. A formal definition of the
synthesis approach has been presented in [11]. The approach
consists of the following steps:

1. The functional specification of the protocols identified by Dis-
covery and Learning is translated into Labelled Transition Systems
(LTSs). An LTS is a directed labelled graph used to represent state
machines: nodes in the graph represent machine states; directed
edges represent transitions between states; labels on the edges
identify the event that triggers the transition. In this case, nodes
represent protocol states.

2. Ontologies [18] are used to establish a mapping relation
between events in the heterogeneous protocols.

3. Communication protocols are “sliced” according to the mapping
relation, and the trace of events is systematically generated for
each slice. Differences between traces generated for correspond-
ing slices identify mismatches between the protocols.

4. A new LTS (the CONNECTor) is generated to reconcile mismatch-
ing traces and thus enable interoperability.

Dependability: This unit supports Synthesis during the genera-
tion of CONNECTors to estimate whether given non-functional
requirements are met by the synthesised CONNECTor. To this end,
the unit performs a stochastic model-based analysis that takes
into account the structure of the synthesised CONNECTor and the

1 http://www.connect-forever.eu

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232 221

http://www.connect-forever.eu


non-functional aspects of the system used for CONNECTor deploy-
ment. If the analysis reveals that given dependability and perfor-
mance requirements may not be satisfied by the CONNECTor, then
the Dependability unit instructs Synthesis about enhancements
that can be applied to the CONNECTor. This is done using a set of
generic templates of dependability and performance mechanisms,
such as Retry, Probing or Error Correction. A detailed illustration
of the Dependability unit and of a core set of essential depend-
ability and performance templates is presented further below, in
Sections 3 and 4.

Monitoring: This unit becomes operational when the CONNECTor
is deployed. The unit continuously monitors the CONNECTor in order
to update the other units of the CONNECT framework with run-time
data. This allows adaptation and evolution of the CONNECTor.

2.1. CONNECTors life-cycle

The life-cycle of a CONNECTor starts with a networked device
broadcasting a “CONNECT request”. This happens whenever a device
requires a service. The CONNECT request contains a functional
description of the required service, together with a specification
of dependability requirements associated with it. The request is
processed as follows within the CONNECT framework:

1. Discovery captures the CONNECT request and looks for net-
worked devices that can provide the requested service.
Learning completes the specification of the available net-
worked systems through a learning procedure when needed.
If a device is found that can satisfy the request, Synthesis is
activated and a CONNECTor that enables functional interopera-
tion is generated (a null CONNECTor will be generated if the
communication protocols of the two networked devices are
already compatible).

2. Synthesis generates the specification of a mediating CONNECTor.
This is done on the basis of the specification of the commu-
nication protocols. Before deploying the synthesised CONNECTor,
Synthesis activates the Dependability unit to assess whether
the CONNECTed system meets given dependability requirements.

3. Dependability performs a model-based evaluation of the CON-

NECTed system. When given dependability requirements are not
met, the unit informs Synthesis about how the synthesised
CONNECTor can be improved. In [19] the adaptive approach under
development has been illustrated, which shows the integration
between Synthesis and Dependability modules at design time
and run-time. The suggestion on how to strengthen the
CONNECTor, from the point of view of dependability and perfor-
mance, is derived from the analysis results obtained by exercis-
ing the model, automatically improved with a dependability
mechanism selected from the predefined library, described in
detail in [16], until a successful mechanism is found. From the

point of view of the synthesis of CONNECTors, the implementa-
tion of the mechanism identified to improve the CONNECTor is
performed in the same way by selecting the equivalent
mechanism from a set of generic templates.

4. Once the CONNECTor is deployed, its runtime behaviour is
monitored through the Monitoring unit, which will notify the
other units of relevant changes of functional and non-
functional aspects of the deployed CONNECTor.

More details about the CONNECTor life-cycle in a dynamic setting
can be found in [19].

3. Dependability unit: architecture and model-based analysis

The Dependability unit is the focus of this work. It performs a
state-based stochastic analysis that uses state-space mathematical
models to express probabilistic assumptions about time durations
and transition behaviours. State-space models allow explicit spe-
cification of complex relationships concerning failure and repair
processes, as well as sequencing information.

The input–output relation between the Dependability unit and
the other units of the CONNECT framework is shown in Fig. 1: the
non-functional requirements for the CONNECTed system are pro-
vided by the Discovery/Learning unit; the specification (nominal
behaviour and exceptional conditions) of the connected system is
provided by the Synthesis unit; run-time statistical data on the
execution of the deployed CONNECTor is provided by the Monitoring
unit; dependability and performance enhancements for a synthe-
sised CONNECTor are identified by the Dependability unit and used
by Synthesis.

To support the above input–output relations, the Dependability
unit is logically split into four main functional modules (see Fig. 2):
Builder, Analyser, Evaluator and Enhancer.

Builder: This module generates a model of the CONNECTed system
for dependability and performance analysis. The model is obtained
by decorating the functional specification provided by Synthesis
with non-functional information about the CONNECTor deployment.
Examples of non-functional information include time to complete
given events, typical failure modes, and typical failure probability.

Analyser: This module uses the decorated model to perform a
quantitative assessment of given non-functional requirements.
This is done by specifying dependability and performance metrics
through reward functions that collect information on the CONNECTed
system state. Depending on the non-functional requirements that
need to be evaluated, information is collected either at precise
instant of time or accumulated over a period of time.

Evaluator: This module checks the results of the quantitative
assessment of given non-functional requirements. If the results
indicate that the requirements are met, the Evaluator acknowledges

Fig. 1. Input–output relations of the Dependability unit.

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232222



Synthesis of the analysis success. Otherwise, the Evaluator sends a
warning message to Synthesis, which in turn may send back a
request to identify possible enhancements that can be applied to
improve the dependability level of the CONNECTed system.

Enhancer: This module becomes operational when Synthesis
sends a enhancement request. The module explores whether
alternative CONNECTor deployment is available (e.g., deployment
on a system with lower failure rates), or dependability/perfor-
mance mechanisms (e.g., message retransmission techniques) can
be used to improve the non-functional characteristics of the
CONNECTor. If a suitable enhancement is found, the Enhancer
module reports the specification of the new CONNECTor to Synthesis,
and the enhanced CONNECTor will be deployed.

4. Automated selection and application of dependability and
performance templates

A novel approach for the automatic selection of a dependability
mechanism for enhancing synthesised CONNECTors is now pre-
sented. First, in Section 4.1, the rationale behind the approach
for automatic selection and application of dependability mechan-
isms is illustrated; second, the approach is implemented in the
context of CONNECT in Sections 4.2 and 4.3.

4.1. Rationale behind the approach

The selection of dependability mechanisms for enhancing
CONNECTors is typically driven by (i) application constraints imposed
by the application domain, e.g., remote-control applications may
have different constraints in terms of timing and tolerance to
degraded service from video-based applications; (ii) fault and
failure assumptions for devices during their operational life, e.g.,
transient faults or permanent faults; (iii) dependability metrics
relevant to given dependability requirements that must be met,
e.g., message delivery time, coverage of receivers.

Application constraints may have an impact on the system toler-
ance to degraded service (meaning degradation both in
the value and time domains), and the ability to deploy
specific solutions. In some cases this may hinder the
benefits of certain dependability mechanisms. For
instance, consider a dependability mechanism based on
error-correction that can be used to detect transmission
errors and thus reconstruct the original error-free data.
Given that the CONNECT framework aims to modify
only the CONNECTor, the mechanism can be applied only
if the original error-free data are available at the

transmitter-side of the CONNECTor, e.g., either when the
CONNECTor can be deployed on the transmitter, or when a
reliable channel exists between the transmitter and the
infrastructural element with the deployed CONNECTor.

Fault and failure assumptions are at the basis of dependability
and performance models. They are typically based on
assumptions about the malfunctions that may under-
mine the (dependability or performance) indicators of
the system under analysis during its operational life. The
nature of the assumed faults and/or failures guides the
selection of countermeasures. Avizienis et al. [1] pro-
posed a taxonomy of the faults and failures in the
dependability community. For the generic dependability
and performance mechanisms considered in this work,
the interest is mainly in (i) the persistence of the fault,
that is whether the fault is transient (maybe, in bursts,
but lasting a limited amount of time) or permanent;
(ii) the objective of the fault, that is if it is accidental or
intentionally introduced in the system; (iii) the failure
domain, that is content failures when the content of the
information delivered at the service interface deviates
from implementing the system function, or timing fail-
ures when the time of arrival or the duration of the
information delivered at the service interface deviates
from implementing the system function. We will discuss
further below how the dependability mechanisms we
adopt relate with these faults and failures assumptions.

Dependability metrics guide the definition of the assessment
model, which has to faithfully include all the system
aspects with a relevant impact on the measure under
evaluation while abstracting or even neglecting all the
other behaviours/phenomena with negligible impact,
in order to keep the model as much as possible
manageable and controllable. The measure also influ-
ences the choice of the dependability mechanism,
characterised by differing structure and operational
behaviours. In the context of CONNECT, we mainly
addressed two categories of measures for stochastic
quantitative analysis: performance-related one (e.g.,
variants of the latency indicator), and dependability-
related one (e.g., different forms of coverage as percen-
tage of networked services receiving/offering a service
with respect to the full population).

In the literature, there is no evidence that relying just on one of
the factors illustrated above is the best choice. Therefore, our
proposed selection method (illustrated further below in Section
4.2) will consider a combination of these identified factors.

Fig. 2. Architecture of the Dependability unit.

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232 223



4.2. A method for automatic selection of dependability mechanisms

The CONNECT project uses ontologies [18] as the basis for
specifying the behaviour of networked systems. That is, a semantic
description of the behaviour of the networked systems is used
to identify peers that need to be connected to enable a service.
In CONNECT, this semantic description is referred to as affordance.
Given semantically matching affordances, their associated com-
munication protocols must be checked for the potential to inter-
operate, possibly under the mediation of a CONNECTor. According to
the classification of CONNECTors adopted by the CONNECT project, and
the related reference ontology, the following coordination models
have been identified: client-service, message-orientation, publish-
subscribe and shared memory.

Following an ontology-based approach similar to the one used
for functional mediation, a general method for selecting a depend-
ability mechanism for CONNECTors is now outlined. It consists of the
following main steps:

Step 1: An ontology-based characterisation of the dependability
mechanisms is created that points out how the mechan-
ism is linked to application constraints, fault and failure
assumptions, and dependability metrics.

Step 2: A semantic matching based on the developed ontology is
performed when a dependability mechanism is required
for the CONNECTor. The aim is to identify and give a rating
to those dependability mechanisms that are relevant to
the type of mismatch revealed by the performed model-
based dependability and performance analysis of the
CONNECTor.

Step 3a: If only one identified mechanism is rated the highest,
then this mechanism is selected.

Step 3b: If more than one mechanism have same (highest) rating,
then a prioritisation among application constraints, fault
and failure assumptions, and dependability metrics are
used for ranking the identified mechanisms.

The Step 1 of the method has been implemented by creating
a table of the ontology of dependability mechanisms for CONNEC-

Tors. Table 1 shows such an ontology and defines a mapping
relation among dependability mechanisms, mitigated threats,
affected dependability metrics (both enhanced and deteriorated),
and application constraints to be satisfied. Specifically, Table 1
specifies the following for threats: type (e.g., omission or value),
duration (transient or permanent) and nature (accidental, i.e.,
natural or human made but without malicious intent, or inten-
tional [1]) of the threat (column Mitigated Threat). Concerning the
dependability metrics, the table indicates which metrics can be

enhanced by the dependability mechanism (column enhanced
metric), and which are potentially deteriorated (column deterio-
rated metric). We focused on the classical dependability and
performance metrics (e.g., reliability, safety, integrity, latency);
however, it is possible to extend this set to include other depend-
ability and performance related metrics, such as the coverage
metric analysed in the case study at Section 5. Finally, Table 1
shows, in the last column (satisfied constraint application), the
application constraints satisfied by the mechanism. As briefly
discussed, such application constraints are application specific
and are mainly related with the ability of the application to
tolerate degraded services and to provide enabling facilities to
deploy dependability and performance mechanisms. Since we do
not target any specific application, only the classical timing
constraint is considered at the moment, grading it into none, soft,
medium, and hard. Again, extensions to consider other kinds of
application constraints can be easily accommodated. The ontology
table includes the five basic dependability mechanisms already
defined in [16] as a suitable core to enhance, especially, CONNECTor
dependability. Let us focus on the Retry mechanism. This mechan-
ism consists in re-sending messages that get corrupted or lost
during communications. A typical implementation of the Retry
mechanism uses time-outs and acknowledgements: after trans-
mitting a message, the sender waits for a message of the receiver
that acknowledges successful communication. If the acknowl-
edgement is not received within a certain time interval, the sender
assumes that the communication was not successful, and re-
transmits the message. The ontology therefore indicates that the
Retry mechanism can be used to enhance the reliability of a
CONNECTor when non-intentional transient faults result in omitted
data or data with wrong values. The ontology indicates, however,
that the mechanism is likely to deteriorate two other quality
parameters of the CONNECTor: latency and throughput. Given the
longer execution time due to the Retry, it complies with applica-
tions having none or soft timing constraints only.

In the following, we define the characteristics of the other
dependability mechanisms included in Table 1. For these mechan-
isms, the entries in the table are built following the same approach
illustrated for the Retry mechanism.

� Probing: This mechanism exploits redundant paths and periodic
keep-alive messages for enabling reliable communication in
face of path failures. The basic idea is to continuously collect
statistics about the characteristics of the communication chan-
nels, and to select the best channel on the basis of such
statistics. Table 1 shows that the Probing mechanism is useful
to enhance the reliability and the latency of the CONNECTor,
and it is compliant with hard timing constraints. However,

Table 1
Example of ontology of dependability enhancement mechanisms for CONNECTors.

Ontology of dependability mechanisms for CONNECTors

Mechanism Mitigated threat Enhanced metric Deteriorated
metric

Satisfied application
constraint

Retry Transient, accidental, omission or value failure Reliability Latency, throughput Soft timing
Probing Transient or permanent, accidental, omission failure Reliability, latency Throughput Hard timing
Majority voting Transient or permanent, accidental or intentional,

value failure
Integrity, safety, reliability, maintainability Latency, throughput Medium/Hard timing

Error correction Transient, accidental or intentional, omission or
value failure

Reliability, integrity Latency,throughput Medium timing

Parallel retry Transient or permanent, accidental, omission or
value failure

Latency, reliability, maintainability Throughput Hard timing

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232224



implementing such mechanism leads to a throughput dete-
rioration of the system, due to additional procedures to select
the best channel.

� Majority Voting: This is a fault-tolerant mechanism that relies
on a decentralised voting system for checking the consistency
of data. Voters are software systems that constantly check each
other's results, and have been widely used for developing
resilient systems in the presence of faulty components. In a
network, voting systems can be used to compare message
replicas transmitted over different channels. It is rather expen-
sive in redundancy, with benefits from the point of view of
enhancements of several properties (integrity, safety, reliability,
and maintainability). But the redundancy degree, the synchro-
nisation among the multiple executions and the additional
voting execution result in a degradation of latency and
throughput aspects with respect to the non-redundant
CONNECTor solution.

� Error Correction: This mechanism deals with the detection of
errors and re-construction of the original, error-free data. A
widely used approach for enabling hosts to automatically
detect and correct errors in received messages is forward error
correction (FEC). The mechanism requires the sender host to
transmit a small amount of additional data along with the
message, thus causing a worsening of latency and throughput,
but providing an improvement on reliability and integrity. With
respect to potential timing constraints imposed by the applica-
tions, this mechanism is classified as suitable to comply with
up to a medium level.

� Parallel Retry: This is similar to the Retry mechanism already
introduced, but exploits channels redundancy (instead of
successive retries on the same channel) to speed up the
communication time. In this way it allows us to improve
latency, reliability, and maintainability, but at the same time
it may reduce the throughput of the system due to the
redundancy. Concerning its ability towards timing constraints,
this mechanism appears to be suitable to satisfy up to hard
constraints.

Two final notes about Table 1 are the following: First, it has
been built considering general characteristics of the selected
dependability mechanisms. Of course, a more accurate matching
with respect to their ability to enhance (or decrease) dependability
and performance metrics, as well as to satisfy application con-
straints depends on the specific implementation of such mechan-
isms, and on the quantification of the grades of timing constraints
(here simplified in none, soft, medium, hard), which maybe
application dependent. The second observation is that the
mechanisms listed in the table primarily address dependability
improvements, with the consequent negative impact on perfor-
mance related metrics. In the considered set, only Probing and

Parallel Retry mechanisms have ability to also enhance latency.
More solutions targeting performance enhancements can be
however added, once defined.

By using the defined ontology, the proposed approach for
automated selection of a dependability mechanism for CONNECTors
illustrated at the beginning of this section leads to Table 2. The
table presents the mechanisms following general risk assessment
principles: it establishes a relationship among threats, application
constraints, and risk reduction strategies (dependability mechan-
isms). In this table, combinations of threats and application con-
straints are presented, and for each of them a set of dependability
mechanisms suitable to cope with them are selected from Table 1.
Of course, this initial table is not exhaustive; it is expected to be
extended with additional combinations of threats and application
constraints, as well as additional dependability and performance
mechanisms to enable CONNECTors enhancement in different appli-
cation scenarios.

4.3. Where to apply the dependability mechanism

The most accurate method to identify element(s) of the
CONNECTor that should be enhanced through the selected depend-
ability mechanism is based on a systematic exploration of the
benefits of the mechanism to each individual element in the
CONNECTor. The element for which the benefit is the highest is the
best candidate. While very accurate, this approach is time con-
suming. We have developed an alternative method that provides a
good trade-off between time and accuracy in several practical
cases. The idea of the approach is to perform an exploratory
investigation based on simple probabilistic formulations for find-
ing out where to apply the dependability mechanism. The
approach is tailored to two specific cases: dependability-related
metrics and performance-related metrics.

The exploratory investigation is now illustrated in detail. A
typical situation encountered in model-based analysis of interoper-
able devices is considered. Communication protocols are specified
in terms of timed activities. Each timed activity ai is characterised
by a time to complete ti and a failure probability qi, independently
from the others. For the illustrative purpose of this work, we
assume that dependability-related metrics are mainly influenced
by failure probability, while performance-related metrics are mainly
influenced by the time to complete. Under these assumptions, two
automated strategies (one for dependability-related metrics, one for
performance-related metrics) can be defined for identifying ele-
ments in the CONNECTor that should be enhanced with dependability
mechanisms.

4.3.1. Dependability-related metrics case
We start with the simple case where (i) the metric under

analysis is a function of the failure probabilities of all the activities

Table 2
Example of table for automated selection of dependability mechanisms for CONNECTors.

Table for automated selection of dependability mechanisms for CONNECTors

Threat Application constraint Mechanism

Transient, accidental, omission failure Hard timing Parallel Retry, Probing
Transient, accidental, omission failure None Parallel Retry, Probing, Error Correction Retry
Transient, accidental, omission failure Medium timing Parallel Retry, Probing, Error Correction Retry
Permanent, accidental, omission failure Medium timing Parallel Retry, Probing
Transient, accidental or intentional, value failure None Majority Voting, Error Correction Retry
Transient, accidental or intentional, value failure Medium timing Majority Voting, Error Correction Retry
Permanent, accidental, value failure Medium timing Majority Voting, Parallel Retry
Permanent, accidental, value failure None Majority Voting, Parallel Retry
Permanent, intentional, value failure Medium timing Majority Voting
Permanent, accidental, value failure Hard timing Parallel Retry, Majority Voting

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232 225



in the model representing the CONNECTor; (ii) each activity can
either be successfully completed or fails. This means that there is
only one path in the model that results in a successful execution of
the CONNECTor. Fig. 3(a) illustrates this case.

Let us consider that N activities are included in the model of
the CONNECTor under analysis. Then, the selection of the activity to
be enhanced is simply determined through the following steps:

1. for each activity ai, determine the new value qi resulting from
applying the dependability mechanism to activity ai;

2. for each activity ai, compute the value of the failure probability
Qi of the whole CONNECTor when using the new value qi. The
general formulation of the CONNECTor failure probability Q is
given by the expression

Q ¼ q1þ ∑
N

i ¼ 2
qi � ∏

i�1

j ¼ 1
ð1�qjÞ

For each index i, Qi is obtained by substituting qi to qi in the
formula of Q;

3. select the activity aj whose new probability value qj determines
a Qi that is the minimum among the N values of Qi.

To exemplify the approach, let us consider the model in Fig. 3
(a) and the failure probabilities qi for two dependability mechan-
isms (Majority Voting and Retry), as reported in Table 3. According
to the values in the table, activity a1 should be enhanced when
applying majority voting, while activity a3 should be enhanced
when using Retry.

Generalisations of this simple case can be performed in order to
take into account that (i) not all the activities ai are involved in the
dependability metric under analysis, and (ii) more than one path is

possible within the dependability model to reach ai from the start
activity (e.g., as illustrated in Fig. 3(b)).

With respect to point (i), the generalisation is easily performed
by determining the new values qi only for those activities ai
involved in the formula expressing the metric and consequently
restricting the calculation of Qi only to the qj computed. Then, the
last step remains the same.

The second generalisation does not require any actual mod-
ification to the described basic method. What changes is just the
formula expressing the CONNECTor failure probability Q, which has
to take into account the different paths which may lead to failure.
The formulation is straightforward and omitted here to save space.

An interesting observation concerns the formula expressing
the improvement in reliability gained through the application of
the schemes for which a dependability model has been generated
(e.g., those in Table 2), necessary to derive the new values qi

associated with activities ai. It could be stored together with the
mechanism model as a parametric reliability expression, and be
efficiently adapted with the current probability failure parameter
qi of the activity at hand when a specific CONNECTor needs to
be enhanced. This allows us to speed up the application of the
selection procedure.

Finally, by executing a campaign of experiments starting with
basic failure probabilities qi lower than 0.01, we found that the
approach described above could be reasonably approximated by
directly choosing the activity with the highest failure probability
value. Again, this promotes efficiency of the selection process.

4.3.2. Performance-related metrics case
In the case of performance-related metrics, the choice of the

model elements to be enhanced is expected to be made among
those representing communications with longer time to complete.
We recall that performance metrics we are dealing with are
classical metrics, typically the degree to which a system or a
component accomplishes its designated functions within given
constraints, such as speed, accuracy, or memory usage, as defined
in [20]. Therefore, with reference to our CONNECT context, the
dependability mechanisms should act to improve transmission
time essentially in the presence of possible congestion of the
communication channels, responsible for longer times. Among the
dependability mechanisms shown in Table 2, Parallel Retry and

Fig. 3. Example of a basic CONNECTor model (a), and of a more complex CONNECTor with two branches (b).

Table 3
Illustrative example of the selection approach for dependability-related metrics.

Activity qi qi(Maj. Voting) qi(Retry) Qi(Maj. Voting) Qi(Retry)

a1 0.20 0.104000 0.0400 0.66104320 0.6368320
a2 0.03 0.002646 0.0009 0.68882555 0.6882808
a3 0.35 0.281750 0.1225 0.66558280 0.5914360

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232226



Probing are the only ones adequate to address performance
improvements: by using redundant transmission channels, these
mechanisms allow us to exploit the most performable ones, e.g.,
the Probing mechanisms, by continuously monitoring the effi-
ciency of both channels available for transmission, at each sending
uses the most efficient one.

The approach to select the activity to improve is similar to the
dependability-related metric case, but specular under the time
domain. The steps are as follows:

1. identification of those activities that are involved in the
performance metric (unless we are dealing with an end-to-
end metric, a subset of activities is typically involved);

2. for each activity ai in the involved set, re-determine the value of
the transmission time parameter t i resulting from applying the
dependability mechanism;

3. since it is expected that the performance-related metric is
based on the summation of the execution time of the activities
under consideration, select the activity aj for which the
difference between the original time parameter value ti and
the new one t j, as calculated at Step 2, is the largest.

Similar to Table 3, Table 4 elaborates a simple example for the
performance-related case, using the Probing and Parallel Retry
(using three channels) as dependability mechanisms.

From the table, it can be observed that the Parallel Retry results
in much better values than those of the Probing, at the cost of a
higher redundancy. The choice of the tuning of the mechanisms
parameters (such as the number of additional channels for the
Parallel Retry) depends on the level of performance that needs to
be guaranteed for the specific application at hand.

4.3.3. General observations
Following the above developments, some indications about

further extensions are addressed in the following.
First, in this study we concentrated separately on dependability

and performance properties, since it is rather common for applica-
tions to have requirements which pertain either one or the other.
However, it is also true that dependability and performance
properties are more and more required to be considered in strict
relationship in a variety of critical applications. Therefore resorting
to separate evaluation models would result inadequately, since
they fail to capture the consequences of failures on the degrada-
tion of the performance. Performability metrics have been pro-
posed [21] as a unification of performance and dependability, that
is system's ability to work in the presence of errors and failures. In
contrast with pure performance, which refers to how efficiently a
system delivers a specified service assuming that it is delivered
correctly, with performability effects of faults being considered
and, at the same time, failures due to faults are not the only
relevant phenomena to assess.

Although not fully addressed in this paper, we outline a basic
approach to address performability as a criterion to select where a
fault tolerance mechanism would bring a significant benefit to the
system at hand. Once a dependability mechanism suitable to cope
with both dependability and performance aspects has been

selected (e.g., the Probing mechanism, according to Table 2), its
impact on each of the activities the CONNECTor under enhancement
is determined in terms of both reliability (following the steps at
Section 4.3.1) and execution time (following the steps in Section
4.3.2). Therefore, for each activity ai, both the failure probability Qi

and the execution time Ti of the CONNECTor are determined and
obtained when the dependability mechanism is applied to activity
ai. Then, a performability measure M can be defined in terms of a
reward structure that assigns a cost C in case of connection failure
and a gain G when the connection completes within the calculated
time T:

M¼ ð1�Q Þ � G
T

�ðQ � CÞ

According to the above formulation, in case the connection
fails, the cost C (whose value is chosen in agreement with the
criticality of the applications willing to interoperate) has to be
afforded, while in case of success the gain G is obtained, whose
amount (again, chosen depending on the applications under
consideration) decreases at increasing the connection duration
time, to favour efficient CONNECTors. By properly evaluating the
values of Qi and Ti resulting from applying the dependability
mechanism to ai (for each ai) and assigning values to C and G
(cost and gain, respectively), the activity ai which leads to the
highest Performability_Measure (by substituting Qi and Ti to Q and
T in the performability formula) can be determined. Full explora-
tion of the approach, as well as investigating other formulation for
a performability measure and related trade-offs of costs and gains,
is postponed to future work.

Another aspect that we would like to point out is that, after the
application of our method to select a model element for enhance-
ment through the dependability mechanism (either for depend-
ability- and performance-related measures), and the consequent
extension of the CONNECTed system model for a new analysis phase,
the results that are not yet satisfactory with respect to given
requirements could happen. This means that, iteratively, the
selection of an additional element needs to be carried out on
repeating the same steps as before, until the requirement is met or
the whole model has been enhanced without success. It would be
interesting to investigate methods to predict, with a satisfactory
level of accuracy, the minimum set of elements that would be
necessary for requirement satisfaction within the next analysis
phase. This would greatly reduce the exploration time. Also this
research direction is part of our future research agenda.

5. GMES case study

In this section, we present our demonstrative scenario, based
on the GMES (Global Monitoring for Environment and Security)2

European Programme for the establishment of a European capacity
for Earth Observation, in order to show how the proposed method
can be applied to select proper dependability mechanisms and
where to apply them.

GMES services address six main thematic areas: Land Monitor-
ing, Marine Environment Monitoring, Atmosphere Monitoring,
Emergency Management, Security, and Climate Change. The GMES
emergency management service provides all actors involved in the
management of natural disasters. In particular, it covers different
catastrophic circumstances: floods, forest fires, landslides, earth-
quakes and volcanic eruptions and humanitarian crises.

Table 4
Illustrative example of the selection approach for performance-related metrics.

Activity ti t i(Probing) t i(Parallel
Retry)

ti�t i(Probing) ti�t i(Parallel
Retry)

a1 4.664 4.530 1.589 0.134 3.075
a2 2.490 2.302 0.794 0.188 1.696
a3 1.747 1.497 0.529 0.250 1.218

2 http://www.gmes.info/

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232 227

http://www.gmes.info/


5.1. Forest-fire emergency

In this work, we concentrate on the Forest fire emergency
situation [22]. The scenario describes the management of forest-
fire, close to a border village and a factory between two different
countries, Country A and Country B. Forest monitoring and forest
fire management in the country A are under the responsibility of
Country A Command and Control fire operations centre (C2-A).

The Forest-fire scenario addresses different phases. We focus
on the Reinforcement integration phase, where Country B provides
an unmanned aerial vehicle (UAV) to Country A. The UAV is
equipped with various video cameras that allow us to get a better
view of the fire front close to the village in order to be able to
proceed to its evacuation in time. Country B grants access to its
weather forecast service, in order to continuously provide infor-
mation about temperature, humidity and wind of the area inter-
ested by the fire.

During the crisis phase, Country A's Command and Control fire
operations centre (C2-A) is in charge of the management of the
forest fire crisis. This phase involves a number of sensors and
human actors. In case the fire goes wider and there is a direct
threat to the village and the factory, Country A asks support to
Country B (reinforcement phase). The reinforcement phase starts
when the support resources, provided by Country B, are deployed
and controlled by C2-A. Once deployed on the emergency area,
resources from Country B are seen by C2-A as resources are
available and usable during the fire-fighting phase. Resources
provided by Country B have the functionalities similar to those
of Country A's resources (e.g., UAVs provide high quality images or
weather information of the area interested by the fire), but use
different protocols.

Networked systems involved in this scenario are C2-A, the
Weather Service, and the UAV with integrated video camera. For
the illustrative purpose of this work we consider only C2-A and
the UAV, as this is sufficient to demonstrate the approach. We
included the UAV instead of the Weather Service because it
provides a more interesting scenario.

The behaviour of the considered networked systems is
described in the following subsections.

5.1.1. Command and Control centre of Country A
The Command and Control centre represents the first net-

worked system which needs to use specific resources. When C2-A
wants to access the resources equipped with one (or more) video
camera(s) and operating in the field, like an unmanned ground
vehicles (UGV), it first needs to authenticate with the resource
sending a getToken message. After that, it receives back a message
containing the token useful to access the resources. Once C2-A has
a token, it can instruct the resource to move forward, backward,
left and right, by sending the corresponding message, which is
followed by an acknowledgement message confirming the move-
ment. At the same time C2-A can select the camera installed on
the resource through the message selectCamera and then it can
receive the video stream with a specified zoom level by sending
the message getVideo.

5.1.2. UAV and integrated video camera of the Country B
The user of the UAV first needs to authenticate with the service

by sending a getIdentifier request. After that it receives back an
identifier (idResp) and can trigger the flight phase through the
takeOff message. After the takeoff, the user can order the UAV to
move left, right, front, back, up or down, or to land. For each order
of movement, the UAV replies with an acknowledgement message.
Moreover, at anytime during the flight phase, the user can get,
from the integrated video camera, the video stream showing in
real time the specified area of interest; the user can also perform
zoom-in and zoom-out commands.

5.1.3. CONNECTing C2-A and the UAV
The application behaviour of the CONNECTed system is depicted

by the sequence diagram in Fig. 4. Given the heterogeneity
between the Command and Control centre and the UAV involved
in this GMES scenario, it is necessary to synthesise on-the-fly a
CONNECTor to allow the communications and the exchange of
information between the two Networked Systems. A CONNECTor is
therefore synthesised and analysed to assess whether it meets the
dependability and performance requirements.

getToken

exit

getIdentifier

takeOffACK

sendToken

orderToMove

idResp

takeOff

streamVideo

move

chooseCamera

exitACK

land

Command & Control 
Center UAV

moveACK

orderToMoveACK
selectCamera

getVideo
getStream
stream

landACK
quit

quitACK

camChosen
camSelected

Fig. 4. Sequence diagram of the CONNECTed system.

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232228



5.2. CONNECTor's model

From the specification of the CONNECTed system, we generated a
model suitable to assess dependability and performance related
metrics. This task is accomplished in the CONNECT project by an
automated process implemented in the Dependability and Perfor-
mance unit mentioned in Section 2. The adopted model formalism
is SAN (Stochastic Activity Network) [23] and the analysis is
carried out through the Möbius tool [24]. The choice of the SAN
formalism is not exclusive, other modelling formalisms presenting
equivalent characteristics could also be used for the purpose.

SANs [23] are a stochastic extension of Petri nets; they are
based on four primitive objects: places, activities, input gates, and
output gates. Places and activities represent the state and the
actions of the modelled system, respectively. There are two types
of activities: instantaneous and timed. Timed activities represent
actions that have a duration expressed via a time distribution
function. Both instantaneous and timed activities may have case
probabilities. Each case probability stands for a possible outcome
of the activity, and can be used to model probabilistic aspects of
the system, e.g., probability for a component to fail. Input gates,
that are red triangle oriented to the left, control the enabling of
activities and define the marking changes that will occur when an
activity completes (fires). Output gates, that are black triangles
oriented to the right, define the marking changes of the state of
the system when an activity completes. The attributes of the SAN
primitives are defined by using sequences of Cþþ statements.

Several SAN models, called atomic models, can be composed
of Join and Rep operators, in order to represent the whole system
with a good modelling efficiency. Join is used to compose two or
more SANs. Rep is a special case of Join, and is used to construct
a model consisting of a number of replicas of a SAN. Models in
a composed system interact via Place Sharing. Place Sharing is
a composition formalism based on the notion of sharing places via
an equivalence relation.

SAN models for the two networked systems (that are, the
Command and Control centre and the UAV) and of the synthesised
CONNECTor are generated. Here, we just show in Fig. 5 the model of
the CONNECTor, since our approach to dependability and perfor-
mance enhancement acts only on it (in fact, the networked
systems are assumed to be observable only through their interface
and there is no possibility to make changes into their internal
structure and operation). Examples containing detailed descrip-
tions of the formalism and SAN models, in the context of the
CONNECT project, can be found in [14,25]. However, to simplify the
reading of the paper, the SAN model of the CONNECTor is briefly
described in the following.

The atomic model CONNECTor, shown in Fig. 5, represents the
synthesised CONNECTor generated to allow communication among C2-
A, the UAV, and the Weather Service. One token in the place p1 (in
the upper left side) means that the CONNECTor is waiting for the first
networked system, that is C2-A, which can be interested to com-
municate with the Weather Service or the UAV. The upper part of
the atomic model shows the CONNECTion between C2-A and the
Weather Service, while the lower and larger part shows the
CONNECTion between C2-A and the UAV. The activation of one of
the two possible CONNECTion is regulated by the input gates ig1 and
ig5, connected to the timed activities getWeather and getToken,
respectively. We focus on the description of the (C2-A–CONNECTor–
UAV) branch, that is the one we analyse in this work. The activity
getToken becomes enabled to complete when the place p1 con-
tains at least one token and the condition expressed by the input
gate ig5 is true, that is the place where sCC3 contains at least one
token ðsCC3�4MarkðÞ40Þ. The place sCC3 represents a shared
place between the two atomic SANs: C2-A and CONNECTor. Tokens are
put in sCC3 by the C2-A in order to activate the communication
with the UAV, representing the getToken message. Once the activity
getToken completes, the CONNECTor sends a getIdentifier request to
the UAV, represented by the activity getIdentifier; when this
activity completes, it adds one token in the place p8 and, through
the output gate og5, one token in the place sUAV1, that is a shared
place between the two atomic SANs: CONNECTor and UAV. At this
point the UAV processes the received request and responds with an
identifier. The identifier is received back by the CONNECTor; it is
represented by the activity idResp, which is enabled by predicate
expressed in the input gate ig6: at least one token in the share place
sUAV2. The description of the model proceeds following the
description of the behaviour of the CONNECTed system, shown in
Fig. 4. As a general rule, we can observe that each activity has two
cases the first from the top represents the correct operation, while
the second one represents the failure of the activity, with a specified
failure probability. The name of each shared place is preceded by the
suffix s, followed by the name of the networked system that shares
this place (e.g., UAV), finally an identification number is appended to
the name to distinguish the various places.

5.3. Analysis

In order to cover both performance and dependability aspects,
the measures assessed in the evaluation are, respectively, latency
and coverage. It is important to note that the measures assessed
refer to two different and independent analyses, detailed in the
following.

Fig. 5. SAN of the CONNECTor.

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232 229



5.3.1. Analysis of performance
Latency is evaluated as a performance indicator and is mea-

sured from when the Command and Control centre sends one of
the possible orders to move (orderToMove) to when it receives an
acknowledgement back (orderToMoveACK). Given the initial
parameter values characterising the timing aspects of the ele-
ments involved in the CONNECTed system model (namely, the time
to communicate between the networked systems and the CON-

NECTor), and the latency requirement stated beforehand, the
analysis reveals that the CONNECTor does not satisfy this last. It
implies that some enhancement is necessary, and this is the point
where our approach plays its part. In this case study, we limit our
identification of the appropriate mechanism to select to those
listed in Table 2.

In the case of latency requirement not satisfied, Probing
and the Parallel Retry mechanisms are the candidate mechan-
isms to improve the CONNECTed system with respect to timing
constraints. In the presence of limited availability of channels
in exclusive usage by the CONNECTed system under analysis,
preference goes to the Probing mechanism, which we applied
to our example. Then, the second phase is to select the possible
model element(s) to enhance with Probing. Following the steps
delineated in Section 4.3, the element for which the mechanism
brings the highest benefit in decreasing the latency metric is the
move activity.

Fig. 6 shows the results obtained considering the measure of
interest (on the y-axis expressed in time units) at varying rates of
the distribution of the transmission time of the communication
channel between 0.1 and 1 (on the x-axis). The plots in Fig. 6 show
the latency results distinguishing the first movement, which
includes the time needed for the takeoff operations, from all the
other movements that are performed during the flight.

As expected, the latency during the first phase, which
includes the takeoff, is greater than the flight phase. Fig. 6 also
shows the results obtained including the use of the Probing
mechanism [16] in the model of the CONNECTed system, thus
allowing the enhancement of the requirements of latency in
both the phases.

5.3.2. Analysis of dependability
The second analysis aims to assess aspects of dependability of

the CONNECTed system through the Coverage, defined as the per-
centage of stream video the Command and Control centre cor-
rectly receives from the UAV, with respect to the number of video
requests made.

Fig. 7 shows the trend of coverage (on the y-axis) at increasing
values of streams requests from C2-A (on the x-axis). Moreover, the
coverage threshold is shown in the figure at value of 0.75, as
specified in the requirement. The figure shows that the analysis
results, obtained considering the basic model of the CONNECTed
system, satisfy the requirement only when the number of requests
is at most 13.

As for the performance analysis, Table 2 needs to be examined
to find the proper mapping between the mechanism and the
characterising aspects when the coverage requirement is not met.
Here, timing constraints are rather soft, while correctness is
mainly relevant. Therefore, the viable candidate mechanisms are
Retry and Majority Voting. For the sake of saving in additional
resources to employ, the Retry mechanism is selected. By applying
the procedure that selects the model element(s) that needs to be
enhanced, we find that getStream is the activity that leads to the
greatest improvement with the Retry mechanism. This activity
models two communication channels between the CONNECTor and
the UAV. The results in Fig. 7 confirm that Retry applied to that
activity provides an improvement on the measure of coverage
with respect to the original model. The enhanced CONNECTor meets
the requirement up to a maximum of 18 requests.

In order to verify a further possible improvement, analyses
were performed by applying the Retry mechanism on a further
activity, stream, that is the second critical activity obtained
through the selection procedure.

It is possible to note that the use of this dependability mechan-
ism on two different activities allows us to fully meet the require-
ment of coverage.

For illustrative purposes, in Fig. 8, the portion of the CONNECTor
model where the getStream activity has been replaced by the
Retry Mechanism between the places p21 and p22 of Fig. 5 is

Fig. 6. Latency assessment at varying of the rate of the distribution. Fig. 7. Coverage assessment at varying of number of streams request.

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232230



shown. As explained in [16], the mechanism models are developed
according to rules that allow us to automate the procedure for
embedding them in the model of the synthesised CONNECTor.

6. Related work

A number of solutions have been presented in the literature to
deal with critical applications requiring degrees of fault tolerance
or efficiency, including classical architectural mechanisms such as
N-Version Programming, Recovery Block, Cooperative Backup and
dynamic mechanisms such as dynamic function allocation [26–29].
The set of dependability mechanisms considered in this paper has
fully inspired them. There are also studies where the most popular
fault tolerance solutions are discussed and classified according to a
variety of key characteristics, e.g., the main direct benefits of the
mechanism in terms of improved system resilience or assurance of
key system properties and the types of system within which this
mechanism can be applied [26], with the intention to assist in the
selection and configuration of mechanisms at design-time and run-
time. Also, modelling and analyses of fault tolerant systems have
been widely pursued, to help understanding the adequacy of
employed fault tolerance mechanisms in terms of dependability,
resilience and security indicators, under a variety of failure modes
and critical system scenarios. Applied approaches include reliability
block diagrams, fault trees, Markov models, Petri nets, Bayesian
models, semantic technologies; a very rich literature has been
produced which documents performed studies (such as [27,30–33]
just to mention a few). A review of several technologies supporting
dynamic selection of components and services, such as Multi-Agent
Systems, GRID computing, Web Services, is also included in [26]. In
[34] the authors address the interoperability problems raised by
semantic heterogeneities in Web service communities by using a
context-based approach that separates shared knowledge from the
local contexts of Web service providers and developing mediation
mechanisms that handle semantic data discrepancies between Web
services and communities, thus enabling seamless interoperation at
the semantic level. In [35] the authors examine challenges to
interoperability; classify the types of heterogeneities that can occur
between interacting services and present a possible solution for data
interoperability using the mapping support provided by WSDL-S.
Here, we are not tight to any specific technology, but rather
we are focusing on generally applicable solutions in the specific
context of dependable networks interoperability in heterogeneous
environments.

Solutions for automatic addition of fault tolerance to fault
intolerant programs have also been proposed, both resorting to a
set of symbolic heuristics for synthesizing fault-tolerant distrib-
uted programs such as in [36] and by developing formal algo-
rithms working in presence of a specific set of faults, a safety
condition, and a reachability constraint as in [37], where it is also
shown that the synthesis problem in the context of distributed
programs is NP-complete in the state space of the given intolerant
program. Further investigations on theoretical aspects and the
development of a software framework for the synthesis of fault-
tolerant programs are in [38].

Also, in the context of reflective systems, i.e., systems having the
property of enabling observation and control of its own structure
and behaviour from outside itself, independent development of
fault tolerance libraries and applications has been carried out as a
means to enhance the flexibility of dependable systems. The aim
was to provide properties like ease of use and transparency of
mechanisms for the application programmer, seamless reuse and
extension of both functional and non-functional software and
composition of mechanisms [39]. Moving to autonomic systems
[40], their control loop requires assistance by a methodology and
supporting technique to select and apply countermeasures to
faults experienced during the system lifetime, possibly resorting
to a library of fault tolerance patterns. However, to the best of our
knowledge, there is no general approach in the literature, devel-
oped to select from a library of fault tolerance mechanisms, whose
efficacy to meet specified dependability and performance require-
ments is checked through model-based analysis. Our work has
been tailored to explore this direction.

7. Conclusions

We have illustrated an approach to automate the selection of a
suitable dependability mechanism. This has been discussed in the
context of networks of interoperable systems, as targeted by the
EU project CONNECT. In particular, the approach targets generic
mechanisms based on the synthesis of mediating software bridges
(CONNECTors) that allow interoperability among heterogeneous
devices. In addition, we have investigated a generic method for
identifying elements in the CONNECTor that must be reinforced with
the selected dependability mechanism in order to improve per-
formance- and dependability-related metrics. The approach has
been demonstrated through a case study based on the GMES
European Programme. Specifically, a scenario describing the man-
agement of forest-fire at the border between two different
countries has been considered. In this scenario, resources provided
by both countries provide the same functionalities but use
different protocols and therefore a CONNECTor is necessary to allow
interoperation.

The proposed method for automating the selection of depend-
ability mechanisms is based on ontologies. Alternative methods
could be based on a sensitivity analysis. In fact, a sensitivity
analysis, carried out on ranges of values for the model parameters,
would point out which model parameters mostly impact the
dependability measure that must be improved (e.g., time to
complete a transition and its failure probability). Then, knowing
the target parameter(s) values able to satisfy the dependability or
performance metric under analysis, the most suitable depend-
ability mechanism qualified to improve that (those) parameter
(s) can be identified.

The work presented in this paper sets the basis for an
automated approach to select a dependability mechanism and
how to apply them on a model of the system in order to meet
given requirements. Further investigations would be valuable to
carry on, especially in the directions of (i) detailing the ontolo-
gical matching approach by defining exemplary application-
dependent ontologies for widely used networked applications;
(ii) making more efficient the strategy devoted to select the
elements where the dependability mechanism has to be applied
by investigating methods to predict, with a satisfactory level of
accuracy, the minimum set of elements that would be necessary
for requirement satisfaction within the just one additional
analysis phase; (iii) implement these methods in the depend-
ability assessment tool (the DEPER unit under development in the
CONNECT project).

Fig. 8. Portion of the CONNECTor model, replaced by the Retry mechanism.

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232 231



Acknowledgements

This work is partially supported by the EU FP7 Project CONNECT

(FP7-231167), and by CHIþMED (Computer Human Interaction for
Medical Devices, EPSRC research Grant EP/G059063/1).

References

[1] Avizienis A, Laprie J-C, Randell B, Landwehr C. Basic concepts and taxonomy of
dependable and secure computing. IEEE Trans Dependable Secur Comput
2004;1(1):11–33. http://dx.doi.org/10.1109/TDSC.2004.2.

[2] France R, Rumpe B. Model-driven development of complex software: a
research roadmap. In: 2007 Future of software engineering, FOSE '07.
Washington, DC, USA: IEEE Computer Society; 2007. p. 37–54. doi: http://dx.
doi.org/10.1109/FOSE.2007.14.

[3] Avizienis A, Kelly JPJ. Fault tolerance by design diversity: concepts and experi-
ments. Computer 1984;17(8):67–80. http://dx.doi.org/10.1109/MC.1984.1659219.

[4] Masci P, Furniss D, Curzon P, Harrison M, Blandford A. Supporting field
investigators with pvs: a case study in the healthcare domain. In: Avgeriou
P, editor. Software engineering for resilient systems. Lecture notes in computer
science, vol. 7527. Berlin, Heidelberg: Springer; 2012. p. 150–64.

[5] US Food and Drug Administration, FDA Safety Communication: Preventing
Surgical Fires (October 2011). URL 〈http://www.fda.gov/MedicalDevices/
Safety/AlertsandNotices/ucm275189.htm〉.

[6] Yellin DM, Strom RE. Protocol specifications and component adaptors. ACM
Trans Program Lang Syst 1997;19(2):292–333.

[7] Cheng B, Lemos R, Giese H, Inverardi P, Magee J, Andersson J, et al. Software
engineering for self-adaptive systems: a research roadmap. In: Software
engineering for self-adaptive systems. Lecture notes in computer science,
vol. 5525. Berlin, Heidelberg: Springer; 2009. p. 1–26.

[8] Pastrana J, Pimentel E, Katrib M. Qos-enabled and self-adaptive connectors for
web services composition and coordination. Comput Lang Syst Struct 2011;37
(1):2–23.

[9] Alam S, Chowdhury M, Noll J. Interoperability of security-enabled internet of
things. Wirel Pers Commun 2011;61(3):567–86.

[10] Kyusakov R, Eliasson J, Delsing J, van Deventer J, Gustafsson J. Integration of
wireless sensor and actuator nodes with it infrastructure using service-
oriented architecture. IEEE Trans Ind Informatics 2013;9(1):43–51.

[11] Spalazzese R, Inverardi P. Mediating connector patterns for components
interoperability. In: Proceedings of the fourth European conference on software
architecture, ECSA'10. Berlin, Heidelberg: Springer-Verlag; 2010. p. 335–43. URL
〈http://dl.acm.org/citation.cfm?id=1887899.1887928〉.

[12] Fiaschetti A, Suraci V, Priscoli FD. The shield framework: how to control
security, privacy and dependability in complex systems. In: Complexity in
engineering (COMPENG 2012). Aachen, Germany: IEEE; 2012. p. 1–4.

[13] Di Marco A, Inverardi P, Spalazzese R. Synthesizing self-adaptive connectors
meeting functional and performance concerns. In: Proceedings of the
eighth international symposium on software engineering for sdaptive and
self-managing systems, SEAMS'13. San Francisco, CA, USA: IEEE Press; 2013.
p. 133–42.

[14] Di Giandomenico F, Kwiatkowska M, Martinucci M, Masci P, Qu H. Depend-
ability analysis and verification for connected systems. In: Margaria T, Steffen
B, editors. Proceedings of ISOLA 2010—leveraging applications of formal
methods, verification, and validation. Lecture notes in computer science.
Heraklion, Crete, Greece: Springer; 2010. p. 263–77.

[15] Masci P, Martinucci M, Giandomenico FD. Towards automated dependability
analysis of dynamically connected systems. In: Proceedings of the 2011 10th
international symposium on autonomous decentralized systems, ISADS '11.
Washington, DC, USA: IEEE Computer Society; 2011. p. 139–46. doi: http://dx.
doi.org/10.1109/ISADS.2011.23.

[16] Masci P, Nostro N, Di Giandomenico F. On enabling dependability assurance in
heterogeneous networks through automated model-based analysis. In: Pro-
ceedings of the third international conference on software engineering for
resilient systems, SERENE'11. Berlin, Heidelberg: Springer-Verlag; 2011. p. 78–
92. URL 〈http://dl.acm.org/citation.cfm?id=2045537.2045548〉.

[17] Meinke K, Walkinshaw N. Model-based testing and model inference. In:
Margaria T, Steffen B, editors. Leveraging applications of formal methods,
verification and validation. Technologies for mastering change. Lecture notes
in computer science, vol. 7609. Berlin, Heidelberg: Springer; 2012. p. 440–43.

[18] Gruber TR, Olsen GR. An ontology for engineering mathematics. In: Doyle J,
Sandewall E, Torasso P, editors. KR. Bonn, Germany: Morgan Kaufmann; 1994.
p. 258–69.

[19] Bertolino A, Calabro A, Di Giandomenico F, Nostro N, Inverardi P, Spalazzese R.
On-the-fly dependable mediation between heterogeneous networked systems.
In: ICSOFT 2011, CCIS 303. Berlin, Heidelberg: Springer Verlag; 2013. p. 20–37.

[20] IEEE std 610.12-1990 (n.d.). IEEE standard glossary of software engineering
terminology. 〈http://ieeexplore.ieee.org/〉; 1990.

[21] Ann JFM, Tai T, Avizienis A. Software performability: from concepts to
applications. Norwell, MA, USA: Kluwer Academic Publisher; 1996.

[22] CONNECT Consortium, Deliverable 6.3—experiment scenarios, prototypes and
report iteration 2; 2012.

[23] Sanders WH, Meyer JF. Stochastic activity networks: formal definitions and
concepts. Lectures on formal methods and performance analysis, Ed Brinksma,
Holger Hermanns, and Joost-Pieter Katoen (Eds.). Springer Lectures On Formal
Methods And Performance Analysis, Vol. 2090, Springer-Verlag New York, Inc.,
New York, NY, USA, 2002. p. 315–343.

[24] Daly D, Deavours DD, Doyle JM, Webster PG, Sanders WH. Möbius: ana
extensible tool for performance and dependability modeling. In: Haverkort BR,
Bohnenkamp HC, Smith CU, editors. The 11th international conference, TOOLS
2000. Lecture notes in computer science, vol. 1786. Schaumburg, IL, USA:
Springer Verlag; 2000. p. 332–36.

[25] CONNECT Consortium, Deliverable 5.2—design of approaches for dependabil-
ity and initial prototypes; 2011.

[26] ReSIST Consortium, EU project ReSIST: resilience for survivability in IST.
deliverable d11: support for resilience-explicit computing—first edition, Tech-
nical report. 〈http://www.resist-noe.org/〉; 2007.

[27] Lyu MR. Software fault tolerance. New York, NY, USA: John Wiley & Sons, Inc.;
1995.

[28] Killijian M-O, Courtes L, Powell D. A survey of cooperative backup mechan-
isms. lAAS Technical report 06472; October 2006.

[29] Thildebrandt M, Harrison M. The temporal dimension of dynamic function
allocation. In: Proceeding of 11th European conference on cognitive ergo-
nomics (ECCE); 2002. p. 283–91.

[30] Ghosh R, Kim D, Trivedi KS. System resiliency quantification using non-state-
space and state-space analytic models. Reliab Eng Syst Saf 2013;116:109–25.

[31] Dominguez-Garcia AD, Kassakian JG, Schindall JE, Zinchuk JJ. An integrated
methodology for the dynamic performance and reliability evaluation of fault-
tolerant systems. Reliab Eng Syst Saf 2008;93(11):1628–49.

[32] Flammini F, Marrone S, Mazzocca N, Vittorini V. A new modeling approach to
the safety evaluation of n-modular redundant computer systems in presence
of imperfect maintenance. Reliab Eng Syst Saf 2009;94(9):1422–32.

[33] Fiaschetti A, Lavorato F, Suraci V, Palo A, Taglialatela A, Morgagni A, et al. On
the use of semantic technologies to model and control security, privacy and
dependability in complex systems. In: SAFECOMP; 2011. p. 467–79.

[34] Mrissa M, Dietze S, Thiran P, Ghedira C, Benslimane D, Maamar Z. Context-
based semantic mediation in web service communities. In: King I, Baeza-Yates
R, editors. Weaving services and people on the world wide web. Berlin,
Heidelberg: Springer; 2009. p. 49–66.

[35] Nagarajan M, Verma K, Sheth A, Miller J, Lathem J. Semantic interoperability of
web services—challenges and experiences. In: International conference on
web services, 2006. ICWS '06; 2006. p. 373–82.

[36] Bonakdarpour B, Kulkarni SS. Sycraft: a tool for synthesizing distributed fault-
tolerant programs. In: CONCUR 2008: international conference on concur-
rency theory. Toronto, Canada: Springer Verlag; 2008. p. 167–71.

[37] Kulkarni SS, Arora A. Automating the addition of fault-tolerance. In: The 6th
formal techniques in real-time and fault-tolerant systems; 2000. p. 82–93.

[38] Ebnenasir A. Automatic synthesis of fault-tolerance [Ph.D. dissertation].
Michigan State University; 2005.

[39] Ruiz J, Killijian M-O, Fabre J-C, Thvenod-Fosse P. Reflective fault-tolerant
systems: from experience to challenges. IEEE Trans Comput 2003;52(2):237–54.

[40] Huebscher MC, McCann JA. A survey of autonomic computing: degrees,
models, and applications. ACM Comput Surv 2008;40(3):237–54.

F. Di Giandomenico et al. / Reliability Engineering and System Safety 132 (2014) 220–232232

http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2
http://dx.doi.org/10.1109/TDSC.2004.2
dx.doi.org/10.1109/FOSE.2007.14
dx.doi.org/10.1109/FOSE.2007.14
http://dx.doi.org/10.1109/MC.1984.1659219
http://dx.doi.org/10.1109/MC.1984.1659219
http://dx.doi.org/10.1109/MC.1984.1659219
http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm275189.htm
http://www.fda.gov/MedicalDevices/Safety/AlertsandNotices/ucm275189.htm
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref6
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref6
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref8
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref8
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref8
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref9
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref9
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref10
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref10
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref10
http://www.dl.acm.org/citation.cfm?id=1887899.1887928
dx.doi.org/10.1109/ISADS.2011.23
dx.doi.org/10.1109/ISADS.2011.23
http://www.dl.acm.org/citation.cfm?id=2045537.2045548
http://www.ieeexplore.ieee.org/
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref21
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref21
http://www.resist-noe.org/
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref27
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref27
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref27
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref30
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref30
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref31
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref31
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref31
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref32
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref32
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref32
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref34
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref34
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref34
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref34
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref39
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref39
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref40
http://refhub.elsevier.com/S0951-8320(14)00194-X/sbref40

	Automated synthesis of dependable mediators for heterogeneous interoperable systems
	Introduction and motivation
	Problem statement
	Contribution
	Structure of the paper

	Context
	Connectors life-cycle

	Dependability unit: architecture and model-based analysis
	Automated selection and application of dependability and performance templates
	Rationale behind the approach
	A method for automatic selection of dependability mechanisms
	Where to apply the dependability mechanism
	Dependability-related metrics case
	Performance-related metrics case
	General observations


	GMES case study
	Forest-fire emergency
	Command and Control centre of Country A
	UAV and integrated video camera of the Country B
	Connecting C2-A and the UAV

	Connector's model
	Analysis
	Analysis of performance
	Analysis of dependability


	Related work
	Conclusions
	Acknowledgements
	References




