

EPSRC Programme Grant EP/G059063/1

Public Paper no. 204

Combining PVSio with Stateflow

Paolo Masci, Yi Zhang, Paul Jones, Patrick Oladimeji, Enrico
D’Urso, Cinzia Bernardeschi,

Paul Curzon & Harold Thimbleby

Masci, P., Zhang, Y., Jones, P., Oladimeji, P., D’Urso, E.,

Bernardeschi, C., Curzon, P., & Thimbleby, H. (2014).
Combining PVSio with Stateflow. Proceedings of the 6th
NASA Formal Methods Symposium (NFM-2014), 209–214.
Lecture Notes in Computer Science, vol. 8430. Springer.

PP release date: 11 February 2014

file: WP204.pdf

Combining PVSio with Stateflow

Paolo Masci1?, Yi Zhang2, Paul Jones2, Patrick Oladimeji3, Enrico D’Urso4,
Cinzia Bernardeschi4, Paul Curzon1, and Harold Thimbleby3

1 School of Electronic Engineering and Computer Science
Queen Mary University of London, United Kingdom

{p.m.masci,p.curzon}@qmul.ac.uk

2 Center for Devices and Radiological Health
U.S. Food and Drug Administration, Silver Spring, Maryland, USA

{yi.zhang2,paul.jones}@fda.hhs.gov

3 Future Interaction Technology Lab (FITLab)
Swansea University, United Kingdom

{p.oladimeji,h.thimbleby}@swansea.ac.uk

4 Dipartimento di Ingegneria dell’Informazione
Universitá di Pisa, Italy

e.durso@studenti.unipi.it,c.bernardeschi@unipi.it

Abstract. An approach to integrating PVS executable specifications
and Stateflow models is presented that uses web services to enable a
seamless exchange of simulation events and data between PVS and State-
flow. Thus, it allows the wide range of applications developed in Stateflow
to benefit from the rigor of PVS verification. The e↵ectiveness of the ap-
proach is demonstrated on a medical device prototype, which consists of
a user interface developed in PVS and a software controller implemented
in Stateflow. Simulation on the prototype shows that simulation data
produced is exchanged smoothly between in PVSio and Stateflow.

Keywords: Simulation, PVSio, Stateflow.

1 Introduction

Model based engineering is being increasingly adopted to develop complex con-
trol systems that demand high assurance of safety and quality. Designing a
complex system often requires a combination of modeling and verification tools,
such as PVS and Simulink. Reasons include: (i) di↵erent modeling tools have
their own strengths and limitations, making them suitable for di↵erent tasks;
(ii) one modeling tool might have been used to develop legacy models that are
reused in a new project that depends on another tool; (iii) di↵erent development
teams may prefer di↵erent tools, based on their expertise.

PVS [9] and MathWorks Simulink [2] are two modeling frameworks widely
used in both industry and academia, each of which has a native simulation

? Corresponding author.

2 Combining PVSio with Stateflow

environment for model animation. PVSio [7] is the simulation environment of
PVS. Simulink enables the simulation of system models with mixed discrete and
continuous control logic; its Stateflow component [3] models the discrete control
of these systems.

The integration of PVS and Simulink environments can benefit system de-
signers, allowing them to model part of the system in PVS and the rest in
Simulink. However, in reality, PVSio and Simulink (and Stateflow in particular)
are not interoperable. That is, PVS specifications and Stateflow models that
correspond to di↵erent parts of a system cannot be simulated together. As a
result, designers have to sacrifice freedom and flexibility, and model the discrete
control of the entire system in either PVS higher-order logic or Stateflow.

Contributions. We present a new, flexible approach for integrating PV-
Sio with Stateflow. Specifically, our approach establishes web services to create
a communication infrastructure between these two frameworks. An illustrative
example is presented that applies the approach to a non-trivial medical device
prototype, with a user interface specified in PVS and a software controller de-
veloped in Stateflow. Simulation of the prototype demonstrates that the PVSio
and Stateflow components can interoperate e↵ectively. The tools and example
models are available at http://www.pvsioweb.org .

Related work. Research on integration of Stateflow with other modeling
tools is generally based on the idea of performing a translation between Stateflow
models and another formal specification. For example, in [5], a formal seman-
tics of Stateflow is developed to enable the translation of Stateflow models into
SAL (Symbolic Analysis Laboratory) specifications. Similarly, in [12], a tool is
presented that translates Stateflow models into Lustre specifications. In [11],
Stateflow models are generated from formal specifications based on Event-B se-
mantics. A good overview of similar approaches can be found in [4, 10]. Such
approaches have the advantage of allowing formal verification of whole systems.

2 The approach for integrating PVSio with Stateflow

The most significant challenge in integrating PVS with Stateflow is the lack of
a publicly available formal semantics for Stateflow. As argued in [5], a formal
operational semantics can be defined only for a subset of Stateflow. It is therefore
not possible to faithfully translate Stateflow models that use constructs outside of
the formalized subset. Similarly, Stateflow models translated from other models
can use only the formalized subset of its semantics. In contrast, our approach
alleviates this issue by enabling communication between PVSio and Stateflow
models, rather than performing model translation. This o↵ers designers more
freedom and reliability, since no restricted translation is involved.

Our approach establishes two web services, PVSio-web [8] and Stateflow-web,
to create a communication protocol between PVSio and Stateflow (see figure 1).
Each model runs in parallel, sending data and events (when they occur) the other
needs to continue the simulation. The protocol is “tool-neutral” in the sense that
it enables seamless exchange of events and data between PVSio and Stateflow

http://www.pvsioweb.org

Combining PVSio with Stateflow 3

Fig. 1. The developed approach for integrated simulation.

during simulation, without changing either of these environments. Thus, it pre-
serves the underlying semantics of PVSio and Stateflow environments.

PVSio-web, our web-server for PVSio, comprises a tool-specific communica-
tion interface to connect to the PVS environment, and a tool-neutral communi-
cation interface to exchange simulation events with Stateflow-web. The former
is tailored to the PVSio environment, while the latter utilizes the Websocket
standard (a low-latency communication protocol) and encodes simulation events
in the widely-used open-standard format JSON (JavaScript Object Notation).
Handlers defined within PVSio-web programmatically intercept and inject sim-
ulation events, thus enabling interaction with the Stateflow environment.

Handlers in PVSio-web are implemented as JavaScript functions, which inter-
act with PVSio by submitting PVS higher-order logic expressions to the PVSio
command prompt and then reading PVSio responses. The handlers also convert
PVS expressions into simulation events that can be exchanged with and under-
stood by Stateflow-web. To ease the conversion, PVS expressions are specified as
transition functions over a PVS record type state. Each field of state speci-
fies data or commands that need to be exchanged with the Stateflow model. The
original PVS theory is kept unchanged.

Stateflow-web has a similar design to PVSio-web. Its handlers are specified
as either Statechart diagrams (i.e., state machines) or C++ classes. Statechart
diagram handlers are used to trigger transitions in the Stateflow model based on
the commands received from PVSio-web, and to update simulation data in the
Stateflow model accordingly. These handlers also intercept simulation events and
data produced by Stateflow and translate them into the format that PVSio-web
understands. C++ handlers are responsible for exchanging simulation events
with PVSio-web based on a Websocket communication library.

3 Example: A Patient Controlled Analgesia (PCA) device

The e↵ectiveness of the approach is illustrated using a medical device prototype:
the Generic Patient Controlled Analgesia (PCA) pump [1]. PCA infusion pumps
are widely used for delivering pain-relief drugs to patients. PCA pumps o↵er a
patient-controlled feature (“bolus”) to briefly boost drug delivery on demand.
Bolus features are controlled, so a patient cannot voluntarily give themselves too
high a dose.

4 Combining PVSio with Stateflow

Fig. 2. The visual appearance of the GPCA user interface.

The aim of the Generic PCA (GPCA) pump is to capture functionalities
shared by existing commercial PCA pumps and provide a common basis for
healthcare stakeholders to discuss and assess their safety.

3.1 The Generic Patient Controlled Analgesia (GPCA) model

The two primary software components of the GPCA pump are the user interface
and software controller. While the user interface manages the interaction with
the users (nurse or patient), the software controller regulates the drug infusion
process and handles alarms and warnings. These two components exchange in-
formation (events and data) during model execution to simulate typical infusion
scenarios. The information exchanged can be divided into four categories: in-
fusion parameters, including the infusion volume and rate programmed by the
user through the user interface; user actions, which are commands (such as start
or stop infusion) that the user issues through the user interface; current state,
the current operational status of the software controller; and infusion status, the
status of currently active infusion, including bolus dosage, infusion rate, and the
volumes of drug delivered and to be infused.

A model of the GPCA was previously developed in Stateflow, in which a näıve
user interface was implemented for demonstration purposes. For this paper, we
replaced this näıve user interface with a more sophisticated one [6], which was
implemented as a PVS executable specification. This sophisticated user interface
has been verified in PVS for basic safety properties (see [6] for details).

The objective of this study, then, is to use the presented approach to connect
the PVS-based user interface with the Stateflow-based software controller, and
perform a simulation over the entire GPCA pump model.

3.2 Simulation of GPCA model

We were able to run simulations over the integrated GPCA model using our
approach. During the simulation, users interact with the PVS-based user inter-
face by pressing buttons and reading display elements of the graphical front-end
shown in figure 2. Each user interaction is captured by PVSio-web handlers,
which in turn send PVS expressions to PVSio for model animation. PVSio-web
links with Stateflow-web to exchange simulation events generated by the soft-
ware controller simulated in parallel within Stateflow. For example, figures 3(a)

Combining PVSio with Stateflow 5

(a) PVSio simulation of the user interface. (b) Stateflow simulation of the controller.

Fig. 3. Close-up view of the simulator’s output during an execution of the GPCA.

and 3(b) respectively demonstrate the simulation state in PVSio and Stateflow
for the scenario where a pump successfully passes the power-on self test.

To allow the GPCA to be simulated, dedicated handlers were implemented
in PVSio and in Stateflow to enable communication of events and data. On the
PVSio-web side, three Javascript functions were defined:

– Create a connection: gipConnect establishes a Websocket connection
with Stateflow-web on a given port. It calls functions provided by Node.js5.

– Messages from Stateflow-web: gipReceive is invoked every time a
message is received over the Websocket connection. It receives tool-neutral
simulation events and data from Stateflow-web. These events and data
specify the current state of the software controller and the infusion status.
They are converted into PVS expressions that can be evaluated in PVSio.

– Messages to Stateflow-web: gipSend parses predefined fields of the state
returned by PVSio after it has evaluated a PVS expression. The values of
these fields are used to generate tool-neutral messages containing
simulation events and data to be sent to the software controller.

On the Stateflow-web side, two Stateflow blocks were defined:

– Communicating with PVSio-web: Websocket communication bridge is
a System Function block implemented in C++. A standard communication
library is used to send and receive messages over Websocket connections.
Two input buses are used to intercept the state variables of the software
controller and thus generate tool-neutral simulation events and data for the
user interface. Three output buses are used to inject simulation events and
data received from the user interface software.

– Driving Stateflow model: UI Commands dispatcher is a Statechart
block that forwards simulation events and data to appropriate blocks in the
Stateflow model. This Statechart has one input line that receives
commands originated from the user interface; 21 output lines for
redirecting received commands to the appropriate components in the
GPCA Stateflow model. The number of output lines would of course vary
for di↵erent Stateflow models.

5 Node.js, a popular scalable network framework, is the Javascript runtime environ-
ment used to implement PVSio-web.

6 Combining PVSio with Stateflow

4 Conclusions

The approach presented in this paper for integrating PVS and Simulink uses
standard web services to connect PVSio (the simulator of the theorem proving
system PVS) and Stateflow (the discrete modeling component of Simulink). The
approach thus provides a seamless and e↵ective way to integrate these two main-
stream modeling and verification tools. In this way, the hazards of translating
design models composed in di↵erent tools are avoided, and fast and realistic
prototyping becomes possible for designs modeled with multiple tools.

In the case study, a model written in Stateflow was connected to a formally
verified user interface implemented in PVS. The success of this case study sug-
gests an alternative way to verify Stateflow models: for example, the correctness
of Stateflow models can be evaluated through PVS using methods like black-box
testing (guided by PVSio) and assume-guarantee reasoning (supported by PVS).

Acknowledgments. This work is part of CHI+MED (EPSRC grant EP/G059063/1).

References

1. GPCA project. http://rtg.cis.upenn.edu/medical/gpca/gpca.html.
2. Mathworks Simulink. http://www.mathworks.com/products/simulink.
3. Mathworks Stateflow. http://www.mathworks.com/products/stateflow.
4. C. Chen, J. S. Dong, and J. Sun. A formal framework for modeling and validating

Simulink diagrams. Formal Aspects of Computing, 21(5):451–483, 2009.
5. G. Hamon and J. Rushby. An operational semantics for Stateflow. In Fundamental

Approaches to Software Engineering (FASE), volume 2984 of Lecture Notes in

Computer Science, pages 229–243. Springer Berlin Heidelberg, 2004.
6. P. Masci, A. Ayoub, P. Curzon, I. Lee, O. Sokolsky, and H. Thimbleby. Model-

Based Development of the Generic PCA Infusion Pump User Interface Prototype
in PVS. In Computer Safety, Reliability, and Security, volume 8153 of Lecture

Notes in Computer Science, pages 228–240. Springer Berlin Heidelberg, 2013.
7. C. Muñoz. Rapid prototyping in PVS. Technical Report NIA Report No. 2003-03,

NASA/CR-2003-212418, National Institute of Aerospace, 2003.
8. P. Oladimeji, P. Masci, P. Curzon, and H. Thimbleby. PVSio-web: A tool for

rapid prototyping device user interfaces in PVS. In 5th International Workshop on

Formal Methods for Interactive Systems (FMIS2013), 2013. Tool and application
examples available at http://www.pvsioweb.org.

9. S. Owre, J.M. Rushby, and N. Shankar. PVS: A Prototype Verification System.
In 11th International Conference on Automated Deduction (CADE), volume 607
of Lecture Notes in Artificial Intelligence, pages 748–752, 1992.

10. P. Roy and N. Shankar. SimCheck: a contract type system for Simulink. Innova-

tions in Systems and Software Engineering, 7(2):73–83, 2011.
11. M. Satpathy, S. Ramesh, Colin Snook, N.K. Singh, and M. Butler. A mixed ap-

proach to rigorous development of control designs. In IEEE Multi-Conference on

Systems and Control (MSC 2013), August 2013.
12. N. Scaife, C. Sofronis, P. Caspi, S. Tripakis, and F. Maraninchi. Defining and trans-

lating a safe subset of Simulink/Stateflow into Lustre. In 4th ACM International

Conference on Embedded Software. ACM, 2004.

http://rtg.cis.upenn.edu/medical/gpca/gpca.html
http://www.mathworks.com/products/simulink
http://www.mathworks.com/products/stateflow
http://www.pvsioweb.org

	Combining PVSio with Stateflow
	Introduction
	The approach for integrating PVSio with Stateflow
	Example: A Patient Controlled Analgesia (PCA) device
	The Generic Patient Controlled Analgesia (GPCA) model
	Simulation of GPCA model

	Conclusions

