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Abstract The chapter explores a layered approach to the analysis of the Nuclear
Power Plant Control System described in Chapter 4. A model is specified to allow
the analysis of use-centred properties based on generic templates. User interface
properties include: the visibility of state attributes, the clarity of the mode structure
and the ease with which an action can be recovered from. Property templates are
used as heuristics to ease the construction of requirements for the control system
interface.

1 Introduction

Formal modelling can offer substantial benefits when developing an interactive sys-
tem. It enables systematic clarification of assumptions made about a design and
supports verification that specified requirements have been met. This paper consid-
ers the Nuclear Power Plant Control System described in Chapter 4. The three use
cases introduced in the book offer slightly different perspectives that might suggest
different approaches to analysis. Broadly, analysis approaches may be classified as
task orientated or based on characteristics of the interface. In the first category there
are informal approaches, for example Cognitive Walkthrough [Polson et al., 1992],
and formal approaches such as those of [Bolton et al., 2012]). These approaches
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are concerned with the representation of the intended task and then to analyse the
system that is intended to perform the task. In the second category, analysis may
be based on the characteristics of the interface (for example, Heuristic Evaluation
[Nielsen and Molich, 1990] and formal approaches such as those of [Campos and
Harrison, 2009]). These approaches focus on, for example, the visibility or perceiv-
ability of key attributes of the device and analyse properties of the supported actions
(for example, their predictability or undoability). The approach taken in this paper
supports both styles of analysis. In the case of the task approach, the focus is on the
constraints that determine the activities that the user performs, rather then focusing
on prescribed normative behaviours. Constraints include the visibility of informa-
tion (for example function key displays) that help the user to decide what action to
take next.

A modelling approach based on layers of specification is designed to unify these
two approaches to analysis, with the aim of maintaining the integrity of the specifi-
cation. Analysis of the interactive system is facilitated by the use of property tem-
plates.

The chapter is organised as follows. Section 2 describes the features of the exam-
ple that are relevant to illustrating the analysis. Section 3 discusses the structure of
the model that describes the interactive behaviour of the system. Section 4 describes
the tools, including the set of property templates, that are used to drive the analysis.
Section 5 details the model of the example and describes the process of instantiating
the property templates to be theorems over the model. Finally we describe related
work (Section 6) and conclusions (Section 7).

2 The use case

In the present example two analytic perspectives are taken.

• How well does the interface support operating procedures1 developed to help the
controller start up or close down the system?

• Is the operator able to monitor and make appropriate adjustments to the process?
Is there sufficient information for operators to understand what is happening and
are suitable actions visible and available?

These two perspectives require different styles of analysis. The first is concerned
with how effectively the display, and the actions it supports, can be invoked as re-
quired by an operator who is following the start-up and close-down operating proce-
dures. The second is concerned with the display, the graphics, the status display, the
sliders, the enabled actions and how these change the display and reflect the state
of the underlying process. Whatever the level of analysis of the user interface, it is
important to understand the interface to the underlying system. The interface of the
system should aid understanding: by making parts of the underlying process visible

1 http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.
pdf
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to the user; producing visible feedback to enable the operators to assess what has
been done. Interactive systems of any complexity have a common characteristic that
some elements of the state of the system are perceivable (for example, visible or
audible), and that user actions transform the state [Duke and Harrison, 1993]. Fur-
thermore, not all actions are permitted all of the time, and the behaviour of actions
can depend on distinguished state attributes called modes, see [Gow et al., 2006]
for further discussion. The modes in this case determine, for example, whether the
control rods are being controlled automatically or manually. Modes also determine
specific interactions relating to the behaviour of the mouse: its position and whether
the mouse button is pressed or not. For example when the mouse button is pressed
and the cursor position coincides with a slider on the screen, and the slider is not
in automatic mode, then dragging the cursor moves the position of the slider thus
changing the relevant behaviour of the component of the process that it represents.

Users have difficulty understanding the progress of a system when elements of
the state of the system, that are relevant to that understanding, are not visible in a
form that makes sense to them. At the same time, confusion can arise when actions
relevant to the current activity are, apparently or actually, disabled by the system, or
when the actions have an unexpected or inconsistent effect with respect to the users’
knowledge and experiences of the system. Actions and states are therefore elemental
in understanding interactive behaviour. Modes are also important. It is unusual that
an interactive system is so simple that actions always have the same effect.

To achieve the goals and activities required of the users, most interactive systems
are designed more or less effectively to ensure that the information required (we call
them information resources [Campos et al., 2014]) are made explicitly available,
and in a form that can be easily understood by the users. A role of a model of the
interactive system is therefore to make these information resources explicit so that
assumptions about the constraints they impose may be analysed.

3 Structure of the models

It is important to distinguish between interactive systems and the components of in-
teractive systems. Interactive systems are socio-technical systems involving people,
devices, and artefacts (desks, pieces of paper, pens, tablets and so on). The primary
focus of the modelling approach illustrated here is of the interactive devices that are
the components of the interactive system. The presented property templates capture
aspects of the system that can facilitate device-user interaction.

3.1 The interface specification

The specification of an interactive system includes a definition of the set of actions,
including user actions, that are possible within them. These actions affect and are
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affected by the state of the system. The behaviour of actions is often determined by
the mode of the device. The proposed model of the interactive system also makes
explicit the information resources that are assumed to aid the use of the system.
Assumptions about the activities for which the system is designed are also made ex-
plicit. An action is a transformation supported directly by the interface. An activity
is a means to achieve some work goal, for example achieving a steady state of the
system with maximum voltage.

The interface specification describes what the display shows and captures the
effects of user level actions. The display will show some features of the state of the
reactor, these features may be encoded as part of the interface. It will also show
the user actions that are translated into actions within the reactor. The specification
includes display widgets showing simple status information. These include widgets
labelled RKS, RKT , KNT , T BN, WP, WP, CP, AU . These displays are associated
with a range of colours indicating status. The display also shows actions associated
with the valves: SV, SV, WV, WV and sliders that change the position of the
control rods and the status of the valves.

Analysis of an interactive device is then concerned with proving that relevant
feedback is given on completing an action, that relevant information is available
before an action is carried out, that it is possible to recover from an action in spec-
ified circumstances, that it is always possible simply to step to some home mode
whatever the state of the device and that actions can be completed consistently.

3.2 Structuring specifications

The model of the interactive system is structured as four layers. The first layer sim-
ply specifies the constants and types used throughout the specification. It includes
types relating to the devices involved and the entities that are in the broader sys-
tem. For example, in the case of the reactor these types would include notions
such as pressure, volume and temperature. There would also be types associated
with pumps and valves. Constants would include maximum and minimum values
required to trigger error events in certain situations.

The second layer describes assumptions about the underlying process, managed
or controlled by the devices that are required to enable the analysis of the character-
istics of the interactive device. This layer is often reused across families of device
models when exploring the effects of differing user interfaces. For example, in [Har-
rison et al., 2015a], different brands of IV infusion devices share the same pump
layer. The process layer, in the case of the nuclear process, is the simplest model of
the nuclear reactor that will allow a proper consideration of interactive behaviour of
the control system. A specification of the underlying reactor, describing the details
of the relation between reactor core and turbine, would include attributes defining
water level and pressure for each. The specification at this level would also define
the characteristics of the pumps and valves. The pumps would be associated with
rates per minute and the valves would be on or off. A number of actions will be spec-
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ified at this level. An action tick is used to represent the interval of one minute and
update the attributes to describe the evolving process. There will be further actions
switching pumps on and off, opening and closing valves and changing the value of
flow in the pump, for example.

The third layer describes the interface to the interactive device or system. This
model uses the process description described in the second layer. It makes those as-
pects of the state that are visible explicit through the interface. It describes the user
actions, including for example how the sliders or buttons or other display widgets
work. The third layer of the specification of the nuclear power plant control user
interface specifies how the user sets, controls and views the operation of the reac-
tor. It is specific to this particular interface, whereas the reactor specification (given
in the second layer) may be more generic and therefore used with several user in-
terfaces. It provides opportunity to explore the variety of user interfaces that may
be appropriate for supporting human-machine interactions necessary to control the
reactor.

The fourth, and final, layer makes explicit the information resources that are re-
quired for different actions in different circumstances. It captures constraints on
action based on the goals and activities that the user achieves [Campos et al., 2014].
This layer contains an interactive system view. The activities and actions are “re-
sourced” by user interfaces for devices that are used in the interactive system or,
indeed, any other source of relevant information that is present within the inter-
active system. It adds attributes that are not captured by the devices and includes
(meta-)actions that describe activities that may involve actions of the interactive de-
vices. An example of this fourth layer used in a different context can be found in
[Masci et al., 2012].

The models to be considered have some or all of the following characteristics
depending on layer.

• A set of actions a : A = S 7−→ S where S is a set of states. Actions are partial
functions. They are made total by including a value “undefined” (⊥). A permis-
sion function per takes an action and determines whether it is defined for a value
in its domain per : A→ (S→ T) such that per(a)(s) = true if a(s) 6=⊥.

• A state is a set of attributes. Functions of the form f ilter : S→ C where C is
an attribute will often be used to extract an attribute of the state. The attribute is
itself a domain, for example temperature or pressure. Similarly, some elements
of the state are part of the interface and are perceivable. p f ilter will often be
used to describe the filter that extracts the corresponding visual attribute to the
value extracted by f ilter. Alternatively a predicate vis f ilter : C→ T may be
used to assert that the value of the filtered attribute is visible.

• The function mode is a particular form of f ilter, namely mode : S → MS. It
extracts the modes of the model, where MS is an attribute that ranges over a set
of modes. In the example, one set of modes relates to the types of variable being
entered through number entry.
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4 Tool support

Two approaches to specification and proof are feasible for the kinds of model de-
scribed here: model checking and theorem proving. The theorem proving approach
is appropriate here because a potentially important feature of the analysis, not dis-
cussed further in this short chapter, concerns the mechanisms for number entry.
Since the domain of numbers is relatively large, proof using model checking can
result in analyses of very large models that can be intractable. Interested readers
are redirected to [Harrison et al., 2015b] for example applications of our layered
approach to number entry.

4.1 Representing and proving the model

The automated theorem prover used is the Prototype Verification System (PVS) [Shankar
et al., 1999]. The system combines a specification language based on higher-order
logic with an interactive prover. PVS has been used extensively in several ap-
plication domains. The higher-order logic supports the usual basic types such as
boolean, integer and real. New types can be introduced either in a declarative
form (these types are called uninterpreted), or through type constructors. Examples
of type constructors used in the present specification are function and record types.
Function types are denoted [D -> R], where D is the domain type and R is the
range type. Predicates are Boolean-valued functions. Record types are defined by
listing the field names and their types between square brackets and hash symbols.
Predicate subtyping is a language mechanism used for restricting the domain of
a type by using a predicate. An example of a subtype is {x:A | P(x)}, which
introduces a new type as the subset of those elements of type A that satisfy the
predicate P. The notation (P) is an abbreviation of the subtype expression above.
Predicate subtyping is useful for specifying partial functions. This notion is used to
restrict actions to those that are permitted explicitly by the permission predicates
mentioned when describing the models in general terms. Specifications in PVS are
expressed as a collection of theories, which consist of declarations of names for
types and constants, and expressions associated with those names. Theories can be
parametrised with types and constants, and can use declarations of other theories by
importing them. The prelude is a standard library automatically imported by PVS.
It contains a large number of useful definitions and proved facts for types, including
common base types such as Booleans (boolean) and numbers (e.g., nat, integer
and real), functions, sets, and lists.

The specification of the models takes a standard form as described in Section 3.2.
A model consists of a set of actions and a set of permissions that capture when the
actions can occur.

action: TYPE = [state -> state]

For each action there is a predicate:
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per_action: TYPE = [state -> boolean]

that indicates whether the action is permitted.

4.2 Property Templates

Property templates are generic mathematical formulae designed to help developers
to construct theorems appropriate to the analysis of user interface features. The aim
is to make these programmable devices more predictable and easy to use. The partic-
ular set of templates considered here is derived from [Campos and Harrison, 2008].
A formulation of these properties based on actions, states, and modes is presented,
along with a brief summary of the use-related concerns captured by the template.
There are two types of property, properties that relate states where a specific action
has taken place, and properties that relate a state to any state that can be reached
by any action from that state. The relation transit : S× S relates states that can be
reached by any action. For a particular model transit will be instantiated to connect
states by the actions provided by the system.

Completeness. This template checks that the interactive system allows the user to
reach significant states in one (or a few steps). For example, being able to reach
“home” from any device screen in one step is a completeness property. The com-
pleteness template asserts that a user action will transform any state that satisfies a
predicate guard : S→ T into another state that satisfies a predicate goal : S→ T . The
guard is introduced to make it possible to exclude states that may not be relevant.

Completeness

∀s ∈ S : guard(s) ∧ ∼ goal(s)
⇒∃a ∈ A ∧ per(a)(s) ∧ goal(a(s)) (1)

Feedback. When certain important actions are taken, a user needs to be aware of
whether the resulting device status is appropriate or problematic [AAMI, 2010].
Feedback breaks down into state feedback, requiring that a change in the state (usu-
ally specific attributes of the state rather than the whole state) is visible to the user,
and action feedback, requiring that an action always has an effect that is visible to
the user.

State feedback

∀s,s ∈ S, guard(s) ∧ guard(s) ∧ transit(s,s) ∧
f ilter(s) 6= f ilter(s)

⇒ p f ilter(s) 6= p f ilter(s) (2)
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Action feedback

∀a ∈ S→ S, ∀s ∈ S : per(a)(s) ∧
guard(s) ∧ ( f ilter(s) 6= f ilter(a(s)))

⇒ p f ilter(s) 6= p f ilter(a(s)) (3)

In the case of state feedback the guard may be used, for example, to restrict the
analysis to ensure that the device or system is considered to be in the same mode
as a result of the state transition. Variants of the feedback properties will also be
used that assume separate visible attributes are not specified in the model. Instead a
relevant predicate vis f ilter : S→ T is linked to f ilter : S→ A. vis f ilter(s) is true
for s ∈ S if f ilter(s) is visible. Both these variants will be used in Section 5. The
choice is based on how the model is constructed.
Consistency. Users quickly develop a mental model that embodies their expecta-
tions of how to interact with a user interface. Because of this, the overall structure
of a user interface should be consistent in its layout, screen structure, navigation,
terminology, and control elements [AAMI, 2010]. The consistency template is for-
mulated as a property of a group of actions Ac ⊆℘(S→ S), or it may be the same
action under different modes, requiring that all actions in the group have similar
effects on specific state attributes selected using a filter. The relation consistent con-
nects a filtered state, before an action occurs, with a filtered state after the action.
The description of the filters and the consistent relation capture the consistency
across states and across actions.

Consistency

∀a ∈ Ac ⊆℘(S→ S),s ∈ S,m ∈MS :
guard : S×MS→ T
consistent : C×C→ T
f ilter pre : S×MS→C
f ilter post : S×MS→C
guard(s,m) ∧
consistent( f ilter pre(s,m),

f ilter post(a(s),m) (4)

Consistency is a property of, for example, the cursor move actions when the mouse
button is pressed. It may be used to prove that while the button is down the move
actions will continue to be interpreted in the relevant mode.
Reversibility. Users may perform incorrect actions, and the device needs to provide
them with functions that allow them to recover by reversing the effect of the incor-
rect action. The reversibility template is formulated using a guard : S→ T , and a
f ilter : S→ FS which extracts a set of focus attributes of the state:

Reversibility

∀s ∈ S : guard(s)⇒∃b : S→ S :
f ilter(a(b(s)) = f ilter(s) (5)
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Some properties simply maintain invariants for any state. Examples of such prop-
erties are visibility and universality. There are alternative formulations of these two
properties. The first asserts that a predicate applied to one filtered value is true if and
only if an appropriate predicate is true of the other filtered value. The second asserts
that a filtering of the first value is equal to the determined filter of the second value.
These two formulations are appropriate in different circumstances as will be briefly
explored in Section 5. The style of interface described in this case study lends itself
particularly to the second option.
Visibility. This property describes an invariant relation between a state variable that
is not necessarily visible to the user and a user interface value that is visible to the
user. Examples of these properties are: the current operational mode is always un-
ambiguously displayed; a slider that shows the position of the control rods always
shows the actual position of the control rods in the underlying process; the colour
of the status attribute describes general characteristics of the value of the attribute.
f ilter(s) and p f ilter(s) are the filters for the attribute and its perceivable counter-
part.

Visibility

∀s,s ∈ S : transit(s,s) ∧ visible(s)⇒ visible(s) (6)
where visible = pred f ilter(s)⇔ pred p f ilter(s)
or visible = f ilter(s) = p f ilter(s)

Universality. Universality generalises the visibility property requiring that given
two filters of the state: f ilter and f ilter, there are predicates on the filters that are
equivalently true.

Universality

∀s,s ∈ S : transit(s,s) ∧ universal(s)⇒ universal(s) (7)
where universal = pred f ilter(s)⇔ pred f ilter(s)
or universal(s) = f ilter(s) = f ilter(s)

5 Modelling the Nuclear Power Plant Control User Interface

The fragments of specification described in this section were taken from the de-
scription to be found in chapter 4 and a simulator (see the simulator description
and code2) that includes a version of an interface to the nuclear controller. A more
thorough description of the user interface was required than was available in the use
case material to do a thorough analysis using the property templates. The analysis
of IV infusion pumps described in [Harrison et al., 2015b] illustrates the more thor-
ough approach. If such a detailed description had been available then it could be

2 http://www.hci-modeling.org/nppsimulator/BWRSimulationDescription.
pdf
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further explored using PVSio-web [Masci et al., 2015] to ensure that assumptions
made seem realistic and to demonstrate where properties of the system fail to be
true. This would provide confidence that the behaviour of the interface as specified
conforms with the expected user experience. The issue of validation of the model of
the system is explored in more detail in [Harrison et al., 2014]. The introduction to
the use-case contains the following paragraph.

“The operation of a nuclear power plant includes the full manual or partially manual starting
and shut down of the reactor, adjusting the produced amount of electrical energy, changing
the degree of automation by activating or deactivating the automated steering of certain
elements of the plant, and the handling of exceptional circumstances. In case of the latter,
the reactor operator primarily observes the process because the safety system of today’s
reactors suspends the operator step by step from the control of the reactor to return the
system back to a safe state.”

The interface involves schematics of the process, the availability of actions as but-
tons and graphical indications of key parameters, for example temperature and lev-
els. The specification of the model can be layered using the levels described in
Section 3 as follows.

5.1 Types and constants

This contains generic definitions that will be used throughout other layers of the
theory. It defines types such as:

pump_type: TYPE = [# speed: speed_type,
on: boolean

#]

The pump attribute is defined to have a speed of flow and to be either on or off.
There are several pumps with the same characteristics as defined by the following
function type:

pumps_type: TYPE = [vp_number -> pump_type]

This type definition allows the definition of multiple pumps indexed by an integer
(vp number). This type relates to the process layer. The following types are used in
the interface layer.

cursor_type = TYPE [* x: x_type,
y: y_type *]

The type cursor type specifies the type of the cursor on the controller display.
It is tied to the physical position of the mouse. The details of how this is done will not
be described here. It will be assumed that there is a function mouse that extracts the
current cursor position of the mouse. The slider which is also found in the interface
layer is specified as follows.

slider_type : TYPE =
[# ypos: y_type,

lx: x_type,
rx: x_type,
xpos: x_type #]
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The slider type specifies the current x-position of the cursor when the slider has
been selected (xpos). It specifies the left and right limits of the slider (lx and rx)
and the y position of the slider (ypos). As a simplification for the illustration the
slider is assumed to have no depth. In the real system sliders also have a depth and
therefore the y-coordinates will also have boundaries.

5.2 The process layer

The process layer describes sufficient details of the underlying process of the nuclear
reactor to provide an adequate underpinning for the interface. The interface captures,
for example, those situations where the process automates and therefore removes the
ability of the operator to change settings manually. The model describes the ongoing
process in terms of a single action tick that updates attributes of the pump state as
time progresses.

tick(st: npp): npp =
st WITH
[time := time(st) +1,
sv :=

LAMBDA (n: vp_number):
COND

n=1 -> (#
flow :=
COND

sv(st)(1)‘on ->
(reactor(st)‘pressure -

condensor(st)‘pressure)/10,
ELSE -> 0

ENDCOND,
on := sv(st)(1)‘on

#),
n=2 -> (#
flow :=

COND
sv(st)(2)‘on ->

(reactor(st)‘pressure -
condensor(st)‘pressure)/2.5,

ELSE -> 0
ENDCOND,

on := sv(st)(2)‘on
#)

ENDCOND,
poi_reactor :=

LET num_reactor =
(old_pos_rods_reactor(st) -

pos_rods_reactor(st))
IN (
COND

num_reactor >= 0 ->
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num_reactor / (time(st) -
time_delta_pos(st)),

ELSE ->
- num_reactor /

(time(st) - time_delta_pos(st))
ENDCOND ),

bw := (2*(100 - pos_rods_reactor(st))*
(900-reactor(st)‘pressure))/620,

...
]

This fragment of specification illustrates the form of the process layer. The action
that is described is tick. Its function is to update the process state (defined by type
npp) attributes. Some of these attributes can be changed by actions that can be
invoked by the operator (for example the two valves wv(1) and wv(2)) while
others are internal to the process (for example poi reactor and bw).

Further actions determine transformations of the process that can be invoked
directly through the user interface. For example control rods is an action that
updates the process state to its new position. This position is determined by where
the cursor is, as represented in the control rods slider, when the rod’s position is not
under automatic control.

5.3 The interface layer

The interface layer describes those attributes of the state of the process that are vis-
ible to the user and the actions that can be performed by the operator. The interface
presents the state of the process to provide the operator with situation awareness.
There are also displayed attributes that indicate sliders and buttons that can be used
by the operator to control aspects of the process.

As illustration of the layer consider the mouse actions: move, click and release.
The actions move and release have effects that depend on the modes that the inter-
face is in. The action click changes the mode. The change of mode depends on the
position of the cursor. Two sets of modes are specified. One set relates to the sliders
on the display (slider mode) while the other relates to the actions that are offered
by the display (action). When the mouse has not been clicked or is over a space
in the display that does not correspond to a slider or an action then slider mode
= nulslimo and action = null action. When the mouse is clicked then
a boolean attribute clicked is true. The permission that allows click to be an
available action is as follows:

per_click(st: npp_int): boolean = NOT clicked(st)

click is an action that:

1. assigns a value to slider mode if the cursor is at the appropriate y-coordinate
(ypos) and in the relevant range of x-coordinates for the slider (in reality there
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may also be a range of y-coordinates) otherwise it sets the slider mode to the
relevant null value.

2. assigns a value to action, the action mode, if the x and y coordinates are within
the relevant range of an action button and the action is enabled. If the cursor is
outside the defined button ranges then the action is set to null.

Fragments of the action specification are given below. They show the effect when
the mouse is within the slider for the pump wp and the effect when the mouse is in
the area of the action button that sets control rods to automatic mode.

click(st : npp_int): npp_int =
LET x = cursor(st)‘x AND y = cursor(st)‘y IN
st WITH
[ slidermode :=

COND
y = wp1_slider(st)‘ypos AND
(x >= wp1_slider(st)‘lx) AND
(x <= wp1_slider(st)‘rx) AND

NOT auto_wp1s(st) -> wp1s,
...
ELSE -> nulslimo

ENDCOND,
action :=
COND
((x <= acrarea(st)‘lx) AND
(x >= acrarea(st)‘rx) AND
(y <= acrarea(st)‘dy) AND
(y >= acrarea(st)‘uy)) ->

COND
auto_cr -> acroff,
ELSE -> acron

ENDCOND,
...
ELSE -> null_action

ENDCOND,
...
clicked := true

]

Different actions and therefore modes are specified depending on whether the
pumps or the control rods are in automatic mode. Moving the cursor has different
significance depending on whether the mouse is clicked or not. When the mouse is
clicked outside the sensitive areas or when the mouse button is not depressed then
the cursor coordinates only are changed. If the mouse is clicked within the space
then the appropriate mode is taken. If the mode is related to a slider then the cursor
on the slider is moved.

move(st: npp_int): npp_int =
LET new_cursor = mouse(st) IN
st WITH [

cursor := new_cursor,
new_wp1speed :=
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COND
(slidermode = wp1s) AND
(new_cursor‘x > wp1_slider(st)‘lx) AND
(new_cursor‘x <= wp1_slider(st)‘rx)

-> (wp1_slider(st)‘lx - new_cursor‘x) * max_flow /
(wp1_slider(st)‘lx - wp1_slider(st)‘rx),

ELSE -> new_wp1speed(st)
ENDCOND,

new_wp2speed := ...,
new_cpspeed := ...,
new_crposition := ...,
]

release has the effect of invoking actions in the process layer if the slider mode
is non null and also the action is non null. Hence, for example, if slidermode =
wp1s, that is the flow rate of wp is being changed, then a function is invoked that
changes the flow rate of the pump. This function is defined as part of the interface
layer but it invokes the relevant function in the process layer.

release(st: npp_int): npp_int =
COND
slider_mode(st) = wp1s ->

modify_wp1flow(st),
slider_mode(st) = wp2s ->

modify_wp2flow(st),
slider_mode(st) = cps ->

modify_cpflow(st),
slider_mode(st) = crs ->

modify_crpos(st),
ELSE -> perform_action(st)

ENDCOND

Aspects of the status of the process are captured in indicators (for example RKS,
RKT). The colours of the indicators are linked to states of the underlying reactor
(modelled in the second layer), for example if the value of a process attribute is
outside specified bounds then the indicator shows the colour red. The model also
specifies that the user can perform open/close actions on valves by highlighting the
available option in the display.

5.4 Proving properties of the interface layer

Two examples will be used to illustrate how the template properties are instantiated
in the interface layer. The first example is concerned with the visibility of different
aspects of the underlying process, while the second is concerned with consistency
when releasing the mouse button. The concern in the first example is with the CP
pump as it transports water through the cooling pipes in the condenser. A display,
specified by the attribute that is part of the interaction mode, status cp simply indi-
cates whether the pump flow is normal (green) or out of bounds (red). The property
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to prove is that the display shows these colours correctly. This can be proved by
instantiating the visibility property template (Equation 6 in Section 4.2).

cp_status_visible: THEOREM
FORALL (pre, post: npp_int):

init_state(pre) => cp_visible(pre) AND
transit(pre, post) AND cp_visible(pre) =>

cp_visible(post)

This theorem contains an induction based on the accessible states. The initial
state is specified by the predicate init state. The visibility property to be proved
is:

cp_visible(st: npp_int):
(pred_cp_filter(st) <=> pred_p1_cp_filter(st)) AND
(NOT pred_cp_filter(st) <=> pred_p2_cp_filter)

The filter predicates are specified as follows.

pred_cp_filter(st: npp_int): boolean =
process(st)‘cp‘speed > max_flow

pred_p1_cp_filter(st: npp_int): boolean =
status_cp(st) = red

pred_ps_cp_filter(st: npp_int): boolean =
status_cp(st) = green

Similar properties can be proved of a range of display features relating to, for
example: the status of the process attributes; whether the pumps and control rods
are in automatic mode; the values of pump flows and the position of control rods;
whether it is possible to switch pumps on or off.

To illustrate the consistency property (Equation 4 in Section 4.2) the release
action is considered in relation to the sliders. The theorem instantiates the template
properties indicated in the formulation of the property. The guard and consistency
predicates are specified over all the slider modes. We therefore slightly modify the
formulation. The aim is to prove the property:

consistency_sliders(st: npp_int): boolean =
con_guard(st) IMPLIES con_release(st)

There are four modes to be considered in MS, namely wp1s, wp2s, cps and
crs. The guard checks that the mouse cursor is in the relevant region of the display
depending on mode, that release is permitted and that the particular function is not
currently automated.

con_guard(st: npp_int): boolean =
x_in_area(cursor(st)‘x, slidermode(st), st) AND
per_release(st) AND NOT auto(slidermode(st), st)

The predicate x in area checks that the cursor is in a relevant position in rela-
tion to the slider.
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x_in_area(x: x_type, sl: slimo_type, st: npp_int): boolean =
((sl=wp1s) AND

(x>=wp1_slider(st)‘lx) AND (x<=wp1_slider(st)‘rx)) OR
((sl=wp2s) AND

(x>=wp2_slider(st)‘lx) AND (x<=wp2_slider(st)‘rx)) OR
((sl=wp1s) AND

(x>=cp_slider(st)‘lx) AND (x<=cp_slider(st)‘rx)) OR
((sl=wp2s) AND

(x>=rods_slider(st)‘lx) AND (x<=rods_slider(st)‘rx))

The consistency relation is distributed across these modes as follows:

con_release(sl: slimo_type, st: npp_int): boolean =
release(st) =
st WITH
[ pump :=

COND
sl = wp1s -> pump(st)‘wp1_flow(

(cursor(st)‘x - wp1_slider(st)‘lx)*
(flow_range/sliderrange)),

sl = wp2s -> pump(st)‘wp2_flow(
(cursor(st)‘x - wp2_slider(st)‘lx)*
(flow_range/sliderrange)),

sl = cps -> pump(st)‘cp_flow(
(cursor(st)‘x - wp2_slider(st)‘lx)*
(flow_range/sliderrange)),

sl = crs -> pump(st)‘control_rods(
(cursor(st)‘x - crs_slider(st)‘lx)*
(control_range/sliderrange)),

ELSE -> pump(st)
ENDCOND,
slider_mode := nulslimo,
action := nullaction ]

The relation consistent is equality distributed over the modes, the filter pre in-
dicates what the new state of the process should be, that is for each mode a function
in the underling process should be invoked that updates the relevant state attribute.

filter_pre(st) =
st WITH
[ pump :=

COND
sl = wp1s -> pump(st)‘wp1_flow(

(cursor(st)‘x - wp1_slider(st)‘lx)*
(flow_range/sliderrange)),

sl = wp2s -> pump(st)‘wp2_flow(
(cursor(st)‘x - wp2_slider(st)‘lx)*
(flow_range/sliderrange)),

sl = cps -> pump(st)‘cp_flow(
(cursor(st)‘x - wp2_slider(st)‘lx)*
(flow_range/sliderrange)),

sl = crs -> pump(st)‘control_rods(
(cursor(st)‘x - crs_slider(st)‘lx)*
(control_range/sliderrange)),
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ELSE -> pump(st)
ENDCOND,
slider_mode := nulslimo,
action := nullaction ]

and filter post(st) = release(st). Consistency relates the change in state
filter post(st) to the state before the action in which the mode determined ac-
tion takes place in the process layer. It determines that release always invokes the
mode relevant process action (changing pump flow or control rod position). The
instantiated consistency theorem is an induction on the actions of the interaction
model.

consistency_sliders_thm: THEOREM
FORALL (pre, post: npp_int):

(init_state(pre) IMPLIES consistency_sliders(pre))
AND

(consistency_sliders(pre) AND transit(pre, post)) =>
consistency_sliders(post)

Attempting to prove this theorem identifies an issue with the simulator display.
The four sliders occupy the same x-space. The sliders are implemented so that the
slider will continue to be dragged across even when the y-coordinate is not in the
slider area relating to the mode. It would be imagined that this characteristic would
not be a feature of the real control-room display.

5.5 The activity layer

The purpose of the activity layer is to specify assumptions about how the attributes
specified in the interface layer, as well as other specified attributes that may be
external, are used to carry out the intended activities of the system. It is clearly
necessary to know what the activities are that will be performed by the controllers.
Typically this information would be gathered by observing existing processes, or
by interviewing controllers, or by developing scenarios with domain experts that
relate to anticipated constraints in terms of new design concepts. The approach is
described in more detail in [Campos et al., 2014].

Given the limited information provided by the use case, it is difficult to develop
and assess plausible assumptions. However we do have operating procedures asso-
ciated with starting up and closing down the reactor. This will be the information
that provides the basis for sketches of the activity layer given here.

The aim of start up is to bring output power to 700 MW (100% of possible
output power) and to hold the water level in the reactor tank stable at 2100 mm.
The operating procedure is as follows:

1. Open SV2
2. Set CP to 1600 u/min
3. Open WV1
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4. Set WP1 to 200 u/min
5. Stabilise water level in the reactor tank at 2100 mm by pulling out the control

rods
6. Open SV1
7. . . .

The process of developing the activity model involves, for each step in the operat-
ing procedure, considering the information resources that are conjectured to enable
the user to take the appropriate action in the interface. The action is resourced if in-
formation relevant to the use of the action is clear in the interface. The activity model
also considers how the user is notified what the next action is to be performed. In the
case of this fragment it will be assumed that the written operating procedure will be
used to decide the sequence. However in other circumstances it should be consid-
ered whether the user will be allowed by the control system to change the order of
the operating procedure and what the effect of such a change would be. The action
OpenSV2 is expressed in the model as

open_valve(st WITH [action := opensv2])

The open valve action is generic to the valves supported by the interface and is
made specific by the attribute action. It may be assumed that this action would be
triggered if

• the openSV2 button area is enabled, that is it is highlighted: highlightosv2
= true. This should only be true if sv2 open = false, a property checked
of the interface model.

• the cursor is within the osv2 area:

(cursor(st)‘x <= osv2area(st)‘lx) AND
(cursor(st)‘x >= osv2area(st)‘rx) AND
(cursor(st)‘y <= osv2area(st)‘dy) AND
(cursor(st)‘y >= osv2area(st)‘uy)

The resource layer specifies all the constraints based on assumptions about what
triggers the actions supported by the interface as well as activities that are to be
performed. When these assumptions have been specified they can be used as ad-
ditional constraints when proving theorems based on the templates. The resource
layer makes it possible to prove whether the properties are true in circumstances
that afford some measure of plausibility in relation to what users do.

Additional actions may be specified that characterise the activities performed by
users. For example, consider the user activity recover, in contrast to the autonomous
action that causes recovery. This activity would involve several actions before the
goal of the activity is completed. Information resources would help the operator to
begin the activity. This means that the activity also has information resource con-
straints. For example, it would specify that “increasing pressure”, using the relevant
action in the interface layer, would occur only if other actions had already been com-
pleted and the displayed tank, valve and pump parameters specified in the second
layer were displayed (in the interface layer) indicating particular values.
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Further activities include for example “monitor recovery”. This would be ex-
pressed as an action that describes the constraints on the operator when monitoring
an autonomous recovery. The specification of the action would include the informa-
tion resources that would be required in the monitoring process at different stages
of the recovery and would specify the conditions in which any user actions would
take place.

The value of expressing constraints in this way is that theorems that are instanti-
ations of property patterns of Section 4.2 can be proved subject to the resource con-
straints. Properties can be considered that only relate to plausible interactions. This
would be relevant if it was considered inappropriate to analyse properties across
sequences of actions that would not plausibly occur. The implications of such an
analysis are that an understanding of whether an action is plausible becomes more
relevant and this requires an understanding of the human factors of a situation. This
topic is considered in more detail in [Harrison et al., 2016]. It can also be proved
that, for the steps of the operating procedures, the constraints are satisfied.

6 Related Work

Models, of the type outlined, have been developed for other interactive systems
using both a model checking approach and a theorem proving approach [Masci et al.,
2012, Harrison et al., 2015a, 2014, Campos et al., 2016]. The advantage of model
checking is that it is possible to explore, more readily, reachability properties as
well as potential non-determinisms. The disadvantage is that the size of model is
seriously limited. It is possible to explore the essential details of the control of the
nuclear power plant using a model checking approach but as soon as a realistic
process model is used this becomes impossible. Making the model abstract enough,
to make analysis feasible, would restrict what could be asked of the model. It would
be more difficult to prove relevant properties.

Theorem proving allows analysis of larger models but properties may be more
difficult to formulate and prove. In particular, while model checking allows simple
formulations of reachability properties, these are difficult to specify using a theorem
proving approach. There is a tradeoff to be made between the effort needed to de-
velop a model amenable to verification and the effort needed to carry out the proofs.
Typically a theorem proving based approach will gain advantage in the former, be-
cause of more expressive languages, and model checking in the latter, because of
more automated analysis. In all cases, how to identify and express the properties of
interest is also an issue.

Design patterns and property templates have been extensively studied in engi-
neering practices. Most of the effort, however, has been devoted to creating patterns
and templates for the control part of a system, rather than for the human-machine
interface. [Vlissides et al., 1995] established a comprehensive set of standard design
patterns for software components of a system. An example pattern is the abstract
factory, which facilitates the creation of families of software objects (e.g., windows
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of a user interface). Another example is the adapter pattern, which converts the
interface of software components to enable integration of otherwise incompatible
software components. These patterns are a de-facto standard in the software engi-
neering community and they are widely adopted in engineering practices to solve
common problems related to the realisation of software components. [Konrad and
Cheng, 2002] discuss design patterns for elements of embedded systems. An ex-
ample pattern is the actuator-sensor pattern, providing a standard interface for sen-
sors and actuators connected to the control unit of an embedded system. Similarly,
[Sorouri et al., 2012] present a design pattern for representing the control logic of an
embedded system. [Lavagno et al., 1999] introduced Models of computation (MoC)
as design patterns for representing interactions between distributed system compo-
nents. Recently, [Steiner and Rushby, 2011] have demonstrated how these MoC can
be used in model-based development of systems, to represent in a uniform way dif-
ferent time synchronisation services executed within the system. These and similar
activities are concerned with design patterns for the control part of a system, as op-
posed to the human-machine interface – e.g., problems like how to correctly design
the behaviour of data entry software in human-machine interfaces are out of scope.

Various researchers have introduced design patterns for the analysis of complex
systems. For example, in [Li et al., 2014], verification patterns are introduced that
can be used for the analysis of safety interlock mechanisms in interoperable med-
ical devices. Although they use the patterns to analyse use-related properties such
as “When the laser scalpel emits laser, the patient’s trachea oxygen level must not
exceed a threshold ΘO2”, the aim of their patterns is to facilitate the introduction
of a model checker in the actual implementation of the safety interlock, rather than
defining property templates for the analysis of use-related aspects of the safety in-
terlock. Other similar work, e.g., [Tan et al., 2015, King et al., 2009, Larson et al.,
2012], also introduce design patterns for the verification of safety interlocks, but the
focus of the patterns is again on translating verified design models into a concrete
implementation – in [Tan et al., 2015], for example, the design patterns are devel-
oped for the automatic translation of hybrid automata models of a safety interlock
into a concrete implementation.

Proving requirements similar to the properties produced from the templates of
this paper has been the focus of previous work. For example, a mature set of tools
have been developed using SCR [Heitmeyer et al., 1998]. Their approach uses a
tabular notation to describe requirements which makes the technique relatively ac-
ceptable to developers. Combining simulation with model checking has also been
a focus in, for example, [Gelman et al., 2013]. Recent work concerned with sim-
ulations of PVS specifications provides valuable support to this complementarity
[Masci et al., 2013]. Had the specification been developed as part of a design pro-
cess then a tool such as Event B [Abrial, 2010] might have been used. In such an
approach an initial model is first developed that specifies the device characteris-
tics and incorporates the safety requirements. This model is gradually refined using
details about how specific functionalities are implemented.

In our previous work, we have introduced modelling patterns for decomposing
interactive (human-machine) system models into a set of layers to facilitate models
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reuse [Harrison et al., 2015a]. [Bowen and Reeves, 2015], who are concerned with
design patterns for user interfaces, complements our work on modelling patterns.
They have introduced four modelling patterns: the callback pattern, representing
the behaviour of confirmation dialogues used to confirm user operations; the binary
choice pattern, representing the behaviour of input dialogues used to acquire data
from the user; the iterator pattern, representing the behaviour of parametric user
interface widgets that share the same behaviour but have a different value parameter,
such as the numeric entry keys 0–9; and the update pattern, for representing the
behaviour of a numeric display.

7 Discussion and Conclusions

Two approaches to specification and proof are possible with the considered exam-
ples: model checking and theorem proving. Model checking is the more intuitive
of the two approaches. Languages such as Modal Action Logic with interactors
(MAL) [Campos and Harrison, 2008] express state transition behaviour in a way
that is more acceptable to non-experts. The problem with model checking is that
state explosion can compromise the tractability of the model so that properties to be
proved are not feasible. Model checking, hence, is more convenient for analysing
high level behaviour, for example when checking the modal behaviour of the user
interface. Theorem proving, while being more complex to apply, provides more ex-
pressive power. This makes it more suitable when verifying properties requiring a
high level of detail, such as those related to a number entry system, because the
domain of numbers is relatively large.

To employ the strengths of the two approaches simple rules can be used to trans-
late from the MAL model to the PVS model that is used for theorem proving. Ac-
tions are modelled as state transformations, and permissions that are used in MAL
to specify when an action is permitted are described as predicates. The details of
the specification carefully reflects its MAL equivalent. This enables us to move be-
tween the notations and verification tools, choosing the more appropriate tool for
the verification goals at hand.

One aspect that has not been discussed in this chapter is the analysis and interpre-
tation of verification results. In particular, the possibility of animation of the formal
models to create prototypes of the modelled interfaces, and the possibilities these
prototypes raise in terms of discussing the results of verification with stakeholders.
Such prototypes can be used either to replay traces produced by a model checker or
interactively to both discuss the findings of the verification or help identify relevant
features of the system that should be addressed by formal analysis. This approach is
described in [Masci et al., 2014].
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