

EPSRC Programme Grant EP/G059063/1

Public Paper no. 211

A generic user interface architecture for
analyzing use hazards in infusion pump software

Paolo Masci, Yi Zhang, Paul Jones,
Harold Thimbleby & Paul Curzon

Masci, P., Zhang, Y., Jones, P., Thimbleby, H., & Curzon, P.

(2014). A generic user interface architecture for analyzing use
hazards in infusion pump software. Proceedings of the 5th

Workshop on Medical Cyber-Physical Systems (MCPS 2014),
1–14. OASIcs: Open Access Series in Informatics, vol. 36.

PP release date: 28 March 2014

file: WP211.pdf

A Generic User Interface Architecture for
Analyzing Use Hazards in Infusion Pump Software
Paolo Masci1, Yi Zhang2, Paul Jones2, Harold Thimbleby3, and
Paul Curzon1

1 Queen Mary University of London
London, United Kingdom
{p.m.masci,p.curzon}@qmul.ac.uk

2 Center for Devices and Radiological Health
U.S. Food and Drug Administration, Silver Spring, MD, USA
{yi.zhang2,paul.jones}@fda.hhs.gov

3 College of Science, Swansea University
Swansea, Wales, United Kingdom
h.thimbleby@swansea.ac.uk

Abstract
This paper presents a generic infusion pump user interface (GIP-UI) architecture that intends
to capture the common characteristics and functionalities of interactive software incorporated in
broad classes of infusion pumps. It is designed to facilitate the identification of use hazards and
their causes in infusion pump designs. This architecture constitutes our first e�ort at establishing
a model-based risk analysis methodology that helps manufacturers identify and mitigate use
hazards in their products at early stages of the development life-cycle.

The applicability of the GIP-UI architecture has been confirmed in a hazard analysis focusing
on the number entry software of existing infusion pumps, in which the GIP-UI architecture is
used to identify a substantial set of user interface design errors that may contribute to use hazards
found in infusion pump incidents.

1998 ACM Subject Classification K.6.1 Systems Analysis and Design, H.5.2 User Interfaces,
D.2.11 Software Architectures

Keywords and phrases Infusion Pump, Hazard Analysis, Use Hazards, User Interface, Interact-
ive Software, Design Errors

Digital Object Identifier 10.4230/OASIcs.MCPS.2014.1

1 Introduction

Infusion pumps are a class of medical devices widely used in various clinical settings to deliver
fluids (including medication and nutrients) into a patient’s body in a controlled (prescribed)
manner. The safety of infusion pumps, however, has been one of the top concerns in health
care for a number of years [7]. For example, during the period from 2005 to 2009, 87 recalls
associated with infusion pumps were reported in US due to defective design or manufacturing
problems [8]. Through the analysis of incidents involving infusion pumps, medical device
regulators such as the US Food and Drug Administration (FDA) concluded that two of the
major factors contributing to infusion pump failures were software defects and user interface
issues [33].

Many user interface issues can be associated with software problems. For instance,
a key bounce may be caused by a defect in the interrupt-handling code, and problems

© Paolo Masci, Yi Zhang, Paul Jones, Harold Thimbleby, and Paul Curzon;
licensed under Creative Commons License CC-BY

Medical Cyber Physical Systems – Medical Device Interoperability, Safety, and Security Assurance (MCPS’14).
Editors: Volker Turau, Marta Kwiatkowska, Rahul Mangharam, and Christoph Weyer; pp. 1–14

OpenAccess Series in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/OASIcs.MCPS.2014.1
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/oasics/
http://www.dagstuhl.de/

2 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

related to configuring the pump may be caused by inappropriate user-device interaction
logic. However, there are also user interface issues that have roots in the software engineering
process. For example, user interface problems may arise if the device’s interaction behavior
is inconsistent with its user manual or labeling. Either type of user interface issues can a�ect
the device operation and hence a�ect patient safety. To help reduce or eliminate these issues,
a systematic risk management process should be carried out.

ISO14971:2007 is a standard that provides a systematic risk management process for
medical devices. In brief, it consists of five distinct activities. First, a hazard analysis is
performed to identify all known and foreseeable hazards and their causes, where a hazard is
defined as a potential source of physical injury or damage to people or environment. Second,
risk estimation is performed to assess the probability of occurrence and severity of harm of
each hazard, the combination of which is defined as risk. Third, risk evaluation is conducted
to decide if every identified risk is acceptable based on pre-defined acceptability criteria.
Fourth, if a risk is decided as unacceptable, control measures are designed and implemented
to eliminate it or to mitigate it to an acceptable level. Finally, verification and validation
activities are conducted to ensure that the designed control measures are e�ective. These
five activities iterate and interleave until the device’s overall residual risk after mitigation is
acceptable.

In the ISO14971 risk management process, the identification of hazards constitutes the
first step and provides the basis for subsequent activities. In our previous work [10, 36], we
illustrated the benefits of using a Generic Infusion Pump (GIP) architecture to support a
systematic hazard analysis early in the design process. The GIP architecture, which captures
common characteristics and functionalities of broad classes of infusion pumps, serves as a
reference ’standard’ for reasoning about hazards and potential causal factors in infusion
pump designs.

In this paper, we present an e�ort that extends our previous work focusing on the user
interface design and its associated use hazards. In particular, we extend the GIP architecture
with more details that reflect common user-device interaction designs in existing infusion
pumps. This serves to establish a foundation for reasoning about use hazards in infusion
pumps and their contributing factors rooted in defective interaction (software) design.

Contributions. The contributions of this paper are as follows: (i) a Generic Infusion Pump
User Interface (GIP-UI) architecture is presented that can be used to reason about design
defects in infusion pump user interface software that may potentially cause use hazards; (ii)
an analysis of infusion pump incident reports and other information sources is presented that
summarizes the common use hazards in infusion pumps on the market related to number
entry tasks; and (iii) a preliminary hazard analysis that uses the GIP-UI to identify and
reason about design errors commonly present in infusion pump number entry software and
their relation to use hazards.

It is worth noting that the use hazards considered in this work, as well as software design
defects that cause these hazards, are common in other interactive medical devices (e.g.,
ventilators) that have similar number entry systems. Therefore, we believe that the GIP-UI
architecture may also be useful to the hazard analysis on these devices.

Organization. Section 2 presents background information about the GIP reference model.
Section 3 elaborates the details of the GIP-UI architecture. Section 4 demonstrates how
the GIP-UI architecture can be used to facilitate the analysis of use hazards related to user
interface (in particular, the number entry software of a user interface). Section 5 compares
our work with other related work. Finally, Section 6 concludes the paper.

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 3

2 Background: the Generic Infusion Pump model

The GIP model is a safety reference model for infusion pumps that captures the common
functionalities of modern infusion pumps. Figure 2 illustrates an abstract architecture of the
GIP model, and the functionalities of each of its components are follows:

The GIP controller represents an abstraction of the pump software that manages the
overall infusion process and supervises interaction among all GIP components. It is responsible
for instructing the pumping mechanism to deliver fluid as prescribed, as well as detecting
and reporting alarm and warning conditions.

The GIP user interface (GIP-UI) represents an abstraction of the device elements
(hardware and software) that enable interaction with the user. That is, the user can
enter data (e.g., infusion parameters and pump settings) and control pump operation (e.g.,
start/stop infusion). The user can also receive from the user interface feedback on the pump
and infusion status.

The device data recorder represents an abstraction of the logging mechanism used to
record the pump’s operational history (such as critical data and important events) to facilitate
problem diagnosis.

The fluid pathway represents an abstraction of the following elements: fluid reservoir,
which stores the fluid to be delivered; infusion set, which is usually an IV needle; and delivery
interface, which is a tube that connects the fluid reservoir to the infusion set.

A more detailed description of the GIP model can be found in [10, 36].

3 GIP User Interface (GIP-UI)

The GIP model was originally designed to provide a basis for analyzing the safety and
correctness of the software control logic in infusion pumps. It had a simple means for
input/output, and therefore lacks any design or engineering details on user interface design.
The GIP-UI architecture, depicted in Figure 1, replaces this user interface part with new
architectural details, in order to establish a basis for reasoning about use hazards and interface
design errors in infusion pumps.

One important principle in the GIP-UI architecture is to enforce a clear separation
between high-level functionalities of user interactions and low-level functionalities that
enable communication among its components (e.g., user interface elements that translate
electrical signals into logical events). Moreover, issues associated with user manuals and use
environment are also considered to enable a more comprehensive (hazard) analysis of user
interface design.

The role of each component in the GIP-UI architecture is defined as follows.

GIP-UI widgets. This component represents an abstraction of the mechanical and hardware
elements of user interface that enable pump-user interaction. Widgets can be either input
or output widgets. Examples of input widgets include buttons, switches, and knobs, while
examples of output widgets are displays, alarms, LED lights.

GIP-UI Software. This component represents an abstraction of the software regulating all
functionalities of the user interface. It translates the user input received from the input
widgets to commands understandable by the pump control software, manages interactive
tasks such as number entry, and manages the output widgets to provide feedback (such as
alarms and infusion status) to the user.

MCPS’14

4 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

Figure 1 Logic architecture of the GIP user interface (GIP-UI). Labeled boxes represent an

abstraction of functional components of the system. Arrows between components represent flows of

information, user actions, or mechanical force between components. Dashed lines represent optional

components and information flows.

The GIP-UI Software includes the following logic modules:
Core Modules. These software modules define the interactive behavior of the device, i.e.,
how the pump responds to input events and how the device’s operational state is updated
as a consequence of input events. Input events are either from the user (labeled as ’user
actions’ in Figure 1) or from the pump control software (as abstracted as GIP Controller
in Figure 2). The events from the GIP Controller are labeled as ’mission events’ and
’status data’ in Figure 1).
The internal structure of the Core Modules is an instantiation of the well-known Model-
View-Controller (MVC) [16] architectural pattern. The MVC pattern is chosen because it
promotes a clear separation among di�erent aspects of a user interface’s core functionalities:
defines the logic of interactions, decides what output information to be sent to the user,
and decides how the output information is presented to the user. The Core Modules
consist of:

The Interaction Logic , which represents an abstraction of the routines for handling
user input events and forwarding them to the pump control software. These routines
define: (i) input key sequences needed to interact with the device, and corresponding
algorithms for processing input key sequences, and (ii) the communication protocol
with the pump control software.
The Output Status Manager , an abstraction of the routines that specify feedback
information, i.e., what feedback is presented to the user.
The Renderer , an abstraction of the routines for rendering feedback information on
output widgets, i.e., how feedback is presented to the user.
The Non-standard Input Interpreter , which represents an abstraction of the routines
for managing input widgets that are more complex than keypads or mechanical
buttons. Examples of the non-standard input widgets include touchscreens or gesture
recognition systems. For these input widgets, additional computation is needed to
correctly interpret the user inputs. For example, in touchscreens, user gestures identify

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 5

Figure 2 Logic architecture of the GIP. Labeled boxes represent an abstraction of functional

components of the system, and arrows represent flows of information (e.g., software commands,

hardware signals), user actions, or mechanical force between components. Note: Patient may overlap

with User for some types of infusion pumps.

just coordinates on the screen, and further processing is needed to associate the screen
coordinates to the user action (on the input widgets rendered on the screen)1.

Drivers. These software modules translate digital signals received from Input Widgets
into events that can be processed by the GIP-UI Core Modules, or translate output events
instructed by the Core Modules into output signals that Output Widgets can understand
and produce output accordingly. The input events from the Drivers can be divided into
two types: standard or non-standard. Standard events are generated during interactions
with classical mechanical input devices such as mechanical buttons. An example of a
standard event is a button click. Non-standard events, on the other hand, are generated
during interactions with input elements such as soft buttons or voice recognition systems.

GIP-UI Manuals. This component represents an abstraction of the reference material
accompanying the pump, e.g., user manual and training material. Such material is part of
the user knowledge and is therefore useful for identifying potential use hazards.

User. This models the characteristics of the intended user population. Examples of user
characteristics include: user training level, cognitive and physical abilities, attitudes and
behaviors. Note that the user can be the patient or her family members for certain devices,
and hence may not be trained nor be an experienced operator.

Use Environment. This component abstracts the physical environment in which the pump
is used. Environmental factors such as ambient light conditions can a�ect the device’s
interaction with the user and thus should be included into considerations during user
interface design. In Figure 1, arrows between the use environment and other components
indicate what part of the system can be a�ected by the use environment. For example,
inappropriate temperature levels may a�ect the physical abilities of patients and users, or go
beyond the operating temperature of the device itself.

1
See [6] for a detailed illustration of the function of this module.

MCPS’14

6 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

4 Validation of the GIP-UI architecture

The GIP-UI architecture explicitly defines how the device interacts with the user. Thus,
it can be used as a basis to examine where and how the device incorrectly interacts with
the user, which may a�ect the device’s expected operation and ultimately create potential
hazards. This makes it easier to identify potential use hazards, or to cross-check the identified
use hazards to ensure that no important hazards be missed.

More importantly, we believe:

Having a generic GIP-UI architecture facilitates the identification of common design
defects in user interface designs and provides insight into the cause-e�ect relationship
between these defects and infusion pump use hazards.

To prove the above hypothesis, we conducted a preliminary hazard analysis (PHA) using
the GIP-UI architecture to 1) identify a set of common use hazards in infusion pumps related
to number entry tasks and 2) to reason about the common design errors in user interface
software that may contribute to these use hazards.

4.1 Hazard analysis based on the GIP-UI
Our PHA focuses on the number entry part of the infusion pump interface. The number
entry software in an infusion pump is responsible for managing interaction with the user
when infusion parameters or pump settings need to be configured. This is chosen as the
focus of our PHA because it is critical to infusion pump safety, in the sense that design
errors in it can cause use errors (e.g., mis-programming of the pump) with potentially severe
consequences to the patient (typically, overinfusion or underinfusion).

Our PHA of the number entry part follows a top-down approach: it starts from postulated
undesired system outcomes, and then works out the causes of the postulated outcomes at
the system design level. In the analysis, undesired system outcomes are given by use hazards
documented in infusion pump incident reports, including FDA Adverse Event reports.

4.1.1 Scope of the analysis
Number entry software is designed to support a number entry task, which identifies the
sequence of actions carried out by the user when entering infusion parameters or pump
settings. In the current generation of infusion pumps, the typical number entry task is carried
out through the following three main actions:
1. An infusion parameter or pump setting is selected by the user
2. The selected item is edited by the user
3. The value is submitted by the user

The actions described above generally involve pressing buttons and keys on the pump
user interface. Whenever the pump registers a button press or a key press, the number entry
software performs a computation. The computation may modify the device state (e.g., a new
infusion rate may be configured in the pump), and generate feedback on the user interface to
present the new device state to the user.

Buttons and keys currently used for number entry can be described using two broad
classes of widgets: serial number entry widgets, which allow the user to enter the digits of
the values serially from the most significant to the least significant digit, and incremental
number entry widgets, which allow the user to modify an initial value by incrementing
or decrementing it. Serial interfaces require a full numeric keypad, whereas incremental

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 7

interfaces typically have two or four arrow keys (depending on the exact style of interaction).
A detailed description of these number entry widgets is in [3]. Notable for hazard analysis is
how entry errors can be corrected. In a serial interface, either numbers have to be re-entered
or there must be a delete key. In contrast, in incremental interfaces, the whole point of the
user interface is to adjust numbers, so correcting errors does not require a separate delete
key, as correction is just a special case of adjustment.

4.2 Sources of information
The analysis is informed by the following sources of information:

Domain knowledge developed within the CHI+MED project (www.chi-med.ac.uk). This
knowledge results from the analysis of commercial infusion pumps [11, 12, 19, 22, 23, 24,
27], infusion pump logs [17], incidents involving infusion pumps [13, 20, 21, 31], current
and best clinical practice in hospitals and home care [29], and workshops with pump
manufacturers, users and clinicians [4, 5];
Adverse event reports collected through the FDA’s Manufacturer and User Facility Device
Experience (MAUDE) database [34];
Recommendations on infusion pump design [25];
Previous hazard analysis on other components of the GIP [10, 36];
International standards ANSI/AAMI HE75:2009 on human factors, and ISO 14971:2007
on risk management.

4.3 Hazard analysis results
Using the GIP-UI our PHA identified 60 potential design errors in number entry software
that may cause use hazards. From the GIP-UI perspective, these design errors arise from
individual components in the architecture, from a combination of these components, or from
the communication (i.e., information flow) between these components. The full table is in
the technical report [28].

Table 1 is a sample of this hazard analysis table. The table shows the considered
hazards at the top: over-infusion (or under-infusion) where the patient receives more (or less)
drug/nutrients than prescribed. Each row in the table identifies a use error that can lead
to the over-/under-infusion hazards, as well as an underlying design error in infusion pump
software that can cause this use error. A concrete example (as found in incident reports or
our previous study) is also presented for each identified issue, to help understand the nature
of the corresponding issue.

For illustrative purposes, we present design errors found to be commonly present in
number entry software of infusion pumps currently on the market. These design errors were
found in real marketed devices and may lead to severe clinical consequences, as they can
potentially lead to situations where the pump is erroneously programmed with incorrect
infusion parameters or pump settings without the user’s awareness.

4.3.1 Potential design errors in Output Status Manager
Design errors in the Output Status Manager generally lead to inappropriate, inaccurate, or
incorrect feedback to the user. As a result, the user may not be able to receive adequate
information on the system’s status, what user action has actually been registered, and what
result has been accomplished. Common instances of this type of design errors are as follows:

MCPS’14

http://www.chi-med.ac.uk

8 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

Table 1 Sample of the developed hazard analysis table. The full table is in the technical

report [28].

Hazards: overinfusion or underinfusion

Use error Underlying design error Example

The user fails to edit the

value

The pump displays incorrect

values without the user’s

awareness

The device shows the last

programmed value instead of

the current value

The user fails to select the

intended input field

The pump displays

instructions to the user

prematurely due to incorrect

assumption on user action

The device requires a rate

value but the display shows a

notification message “Enter

VTBI”

The user fails to read values

or units correctly

The pump uses inappropriate

fonts or formats to render

values or units

The device renders fractional

values without a leading zero

(e.g., .9 instead of 0.9), or

integer values with leading

zeros (e.g., 09 instead of 9)

The user fails to enter the

correct digits

The pump erroneously

discards key presses without

the user’s awareness

The device registers the key

sequence

⇤ �
0⇥ � ⇤ �

.⇥ � ⇤ �
0⇥ � ⇤ �

1⇥ �
without any warning or

notification if the minimum

legal rate is 0.1

...

Incorrect values are displayed without the user’s awareness. Pumps a�ected by this design
error have an ambiguous display, i.e., the user is not able to tell the current system state
from the observable information on the pump display. Consider the following error found
in a marketed infusion pump. This pump displays the last programmed value or the last
valid input value, instead of the current number entry value that the user enters. For
example, it displays a value of 90 when the user starts the number entry task, since the
last value programmed in the pump is 90. However, given that the user has not pressed
any key yet, the current display value should be 0. This incorrect display value misleads
the user in carrying out the rest of number entry. For instance, the user may press key⇤ �

1⇥ � in order to entering the number 901, while the actual value registered and displayed
by the pump is 1. If not noticed, this can cause the user to incorrectly program the
pump, and result in unexpected treatment to the patient. Our forensic analysis on this
pump accredited the root cause of this error to initialization routines of the number entry
system and routines for handling illegal input key sequences.
Instructions are displayed to the user prematurely due to incorrect assumption on user
action. Infusion pumps a�ected by this type of error usually display instructions that
conflict with the ongoing actions taken by the user. A common cause of such errors
is that the infusion pump incorporates routines that automatically validate the value
entered by the user, even before the user actually finishes entering and confirms the
value. Consider an instance of such errors found in a marketed infusion pump. The pump
shows a notification message ’Enter Rate’ when the user is expected to enter the rate
value, and ’Enter VTBI’ to instruct the user to enter the value of drug volume to be
infused. However, if the user plans to enter a rate value of 109 ml/h but pauses for a

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 9

second after entering
⇤ �

1⇥ � ⇤ �
0⇥ �, the pump erroneously makes an assumption that the user

has finished entering the rate, registers the entered value as 10, and displays the message
’Enter VTBI’ to prompt the user to enter the drug volume to be infused. In other words,
design errors of this kind may cause mode confusion to the user: the users thinks the
pump is in mode x (in this case, x is entering the rate) while it is actually in mode y (in
this case, y is entering the volume to be infused). In fact, this type of error (’right data,
wrong field’) appears to be the most common use errors documented in infusion pump
incident reports [8].

4.3.2 Potential design errors in Renderer
Design errors in the Renderer module typically introduce visualization issues in the device.
For example, the device renders information erroneously or inconsistently, or fails to make
appropriate display elements perceptible.

Inappropriate fonts or inappropriate formats are used to render numbers or units. Example
problems found in marketed devices include: fractional values are displayed without a
leading zero (e.g., displaying .9 instead of 0.9); integer values are rendered with leading
zeros (e.g., 09 instead of 9); and small decimal point (e.g., the decimal point is rendered as
· instead of •). Another example is with seven-segments displays [32]. Rendering values
in seven-segment displays can easily cause the user to misread the values, as integer and
fractional digits are hard to distinguish, and can result in out-by-ten errors.

Soft keys are incorrectly labeled without the user’s awareness. Soft keys are buttons that
can be programmed to perform di�erent functions during the pump’s operation. Modern
infusion pump usually implement soft keys as hard buttons placed on the sides of the
screen, while soft button labels are displayed on the screen next to these hard buttons.
We found it common for infusion pumps to display textual messages not intended to
be soft button labels next to hard buttons, creating the illusion that they were. It is
also common that infusion pumps erroneously render labels next to unused soft keys.
Consider a pump with a soft key on the right of the screen, and another soft key on the
left. Assume that these soft keys are aligned. If the pump renders ’Rate’ aligned to the
soft key on the left, and “2 ml/h” aligned to the soft key on the right, which soft key
should be used to select the rate? The reasonable a�ordance2 is that both soft keys be
used for this purpose, as the two pieces of text are logically a single piece of information.
The pump that we studied, however, disables one of these two keys, without providing
any feedback when the user presses the disabled key. The likely clinical consequence of
such errors is delay of treatment.

4.3.3 Potential design errors in Interaction Logic
Design errors in the Interaction Logic module generally result in incorrect human-computer
interaction with buttons, keys, and displays. Typical causes of such errors include inappropri-
ate or over-complicated procedures (i.e., sequence of actions) to interact with these widgets
or the failure of implementing mechanisms for preventing or detecting user errors during
interaction. Common instances of design errors in Interaction Logic include:

2
A�ordance is a property of objects that determines how the object can possibly be used [26].

MCPS’14

10 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

Key presses by the user is erroneously discarded without the user’s awareness. Pumps
a�ected may unexpectedly discard key presses and commit an out-by-ten error, which can
potentially result in severe clinical consequences. For example, an infusion pump studied
by us 3 enforces the constraint that all infusion rate values must be greater than or equal
to 0.1. Thus, its number entry routines discards the third key press in the key sequence⇤ �

0⇥ � ⇤ �
.⇥ � ⇤ �

0⇥ � ⇤ �
1⇥ �, as the value violates the constraint, and automatically sets the input rate

as the minimum valuate 0.1. Moreover, the pump enforces that no fractional numbers
are allowed for value above or equal to 100. Thus, the decimal point key press in the
input sequence

⇤ �
1⇥ � ⇤ �

0⇥ � ⇤ �
0⇥ � ⇤ �

.⇥ � ⇤ �
1⇥ � is discarded, and the erroneous value 1001 is registered.

No warning or notification is provided to the user in either of these two cases. The root
cause of this design error typically resides in the number entry routines for handling
illegal input values (e.g., out-of-range or ill-formed values).
Values entered by the user are erroneously discarded without the user’s awareness. Pumps
a�ected by this design error unexpectedly discard the value entered by the user if the
input field is de-selected (e.g., the user selects another input field without confirming this
entered value). The following is an example detected in a marketed infusion pump: the
user first changes the infusion rate from its current value 91 mL per hour to 0.9 mL per
hour, and then selects the VTBI field to edit without confirming the new infusion rate.
As a result, the pump automatically discarded the new rate value and maintained the
previous value, without any notification or warning. Design errors like this can cause the
user to mistakenly configure the treatment to the patient, and result in serious clinical
consequences.

4.3.4 Potential design errors in Non-standard Input Interpreter
Design errors in the Non-standard Input Interpreter generally result in human-machine
interaction issues with touch-screen displays. A device with such errors typically requires
the user to take an inappropriate or over-complicated sequence of actions to interact with
the non-standard input widgets. It may also fail to implement necessary mechanisms to
prevent user errors during the interaction. Common design errors in the Non-standard Input
Interpreter include:

Legal gestures on touchscreens are erroneously discarded without the user’s awareness.
Devices with this erroneous design may ignore legal gestures on input widgets. For
example, slide gestures on scroll bars are erroneously ignored; press and hold gestures
on virtual buttons and tap gestures on input fields are erroneously ignored. This design
error can be associated with number entry routines that activate or select touchscreen
input widgets. The likely consequence of this kind of errors is the delay of number entry.
Similar gestures on touchscreens are erroneously associated with logically di�erent func-
tions. Pumps a�ected by this design error erroneously execute functions not intended by
the user. This design error may be associated with number entry routines that activate or
select touchscreen input widgets, such as virtual buttons and input areas. The following
is an example error detected in a marketed pump. The user selected the infusion rate
field and plans to enter a value. However, the pump’s touchscreen registers a tap gesture
outside the area of the selected rate input field or outside the virtual buttons for number
entry, probably because the user accidentally taps outside the widgets or the touchscreen

3
More information about this study can be found in [24].

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 11

is mis-calibrated. Thus, the input field is automatically de-selected, without any warning
or notification for the user. Notably, this design error may aggravate other design errors
such as those in the Interaction Logic, as values may be mistakenly confirmed or discarded
because of accidental touch on the touchscreen.

4.4 Discussion
As shown in the PHA results, the GIP-UI architecture provides a basis for us to enumerate
common errors in user interface design associated with number entry. It also facilitates the
establishment of the cause-e�ect relationship between these errors and the use hazards. As
demonstrated in our PHA, this cause-e�ect relationship can help device developers make
their hypotheses and assumptions explicit when reasoning about user interface behaviors, and
thus enable clear thinking about possible causal factors. Ultimately, it can assist developers
in designing e�ective mitigation measures to address use hazards and design errors causing
them.

The GIP-UI architecture and hazard analysis results presented in this paper can be
used by manufacturers as an independent reference to challenge the safety of their own user
interface design. Alternatively, manufacturers can use our work as the starting point to
perform more comprehensive hazard analysis on their products (in this case, manufacturers
should populate the GIP-UI architecture with design details specific to their products).

It is worth pointing out that, even though our PHA identified a substantial set of use
hazards and their root causes 4, it is by no means exhaustive. In fact, a PHA is only
the first round of hazard analysis applied to a design, and its results constitute an initial
yet informative inventory for subsequent detailed hazard analysis or the initial design of
risk mitigation measures. In order to identify all potential hazards (and related causes) in
complex systems, the best practice is to employ a combination of systematic hazard analysis
techniques, such as Failure Mode and E�ect Analysis (FMEA) [9] or Systems-Theoretic
Accident Modeling and Processes (STPA) [18], in a complementary manner [14].

5 Related work

Although there are many examples of conceptual/abstract architectures that can be used for
hazard analysis, few of them are designed to support the identification of use hazards and
their potential causal causes in medical devices.

In [2, 1], an architecture is developed for a STPA-based hazard analysis for a radiotherapy
system. The architecture describes the functions of five sub-systems of the Paul Scherrer
Institute’s experimental ProScan proton therapy system. Usability issues were considered in
the study. However, this architecture was not designed to explore potential causal factors of
use hazards, and some information on usability issues were obtained through workshops with
domain experts. Similarly, in [30], a system architecture is developed for a STPA hazard
analysis of pacemakers. Even though pacemakers do not have a user interface, the analysis
considered a wider, system-level perspective that included users and patients. Users are
modeled as ’human controllers’ guided by mental models. Use hazards, however, were not in
the scope of the analysis. The architecture presented in this paper can be used together with
analysis techniques such as STPA. It provides information that can be used as a basis to

4
The full hazard tables are in [28].

MCPS’14

12 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

populate the controller and controlled process components of the system architecture with
details necessary to analyze the potential causes of use hazards.

In [15], design errors related to barcoded medication administration systems are explored.
These systems are commonly used together with infusion pumps and other medical devices to
identify patients, clinicians, and drugs. The analysis in [15] revealed how defective barcoding
systems encouraged workarounds that could potentially lead to severe clinical consequences.
These results complement the results of our hazard analysis, in that they explore issues in
the design of an alternative number entry system that can be installed on infusion pumps.

Other works studying use hazards in medical devices usually overlook design issues. For
instance, in [35], training and clinical procedures are identified as potential causes of use
hazards. Consider a use hazard where an incorrect patient profile is selected. The established
causal relationship identifies nurses being unclear about the available profiles, and therefore
better training is suggested as a mitigating measure. Even though training and clinical
procedures may be contributing factors of use hazards, this approach to hazard analysis
provides little or no insights about how an infusion pump can be (re-)designed to assure
safety under existing training and clinical procedures.

6 Conclusions

A generic user interface architecture, GIP-UI, has been presented to facilitate the identification
and reasoning of use hazards in infusion pumps. Its applicability to this end has been
confirmed through a hazard analysis that involved known use hazards in marketed infusion
pumps. The architecture was successfully used to reason about the cause-e�ect relations
between these hazards and their causes (i.e., software design errors) commonly present in
user interface designs.

The GIP-UI architecture can potentially be used as the basis for hazard analysis on
use hazards, and for the establishment of safety requirements that ensure reasonable safety
regarding device-user interaction. It is also worth noting that, even though the GIP-UI is
designed for infusion pumps, the general idea behind it can be applied to other medical
devices that rely on the same mechanism as defined in GIP-UI to interact with the users,
and thus facilitate the assessment and assurance of their safety in device-user interaction.

Acknowledgment. This work is support by CHI+MED (Computer-Human Interaction for
Medical Devices, EPSRC research grant [EP/G059063/1]). We thank Michael Harrison
(Newcastle University) and Chris Vincent (University College London) for their valuable
comments that helped us to improve our manuscript.

References

1 B. Antoine. Systems Theoretic Hazard Analysis (STPA) applied to the risk review of com-
plex systems: an example from the medical device industry. PhD thesis, Massachusetts
Institute of Technology, 2013.

2 A. Blandine, M. Rejzek, and C. Hilbes. Evaluation of stpa in the safety analysis of the
gantry 2 proton radiation therapy system, 2012.

3 A. Cauchi, P. Curzon, P. Eslambolchilar, A. Gimblett, H. Huang, P. Lee, Y. Li, P. Masci,
P. Oladimeji, R. Ruköėnas, and H. Thimbleby. Towards dependable number entry for
medical devices. In EICS4Med, 1st International Workshop on Engineering Interactive
Computing Systems for Medicine and Health Care. ACM Digital Library, 2011.

P. Masci, Y. Zhang, P. Jones, H. Thimbleby, and P. Curzon 13

4 CHI+MED. Guidelines for number entry interface design (infusion devices). http://www.
chi-med.ac.uk/researchers/bibdetail.php?docID=684, 2013.

5 CHI+MED. Personas and scenarios (infusion devices). http://www.chi-med.ac.uk/
researchers/bibdetail.php?docID=685, 2013.

6 S. Conversy, E. Barboni, D. Navarre, and P. Palanque. Improving modularity of interactive
software with the MDPC architecture. In EICS2007. ACM Digital Library, 2007.

7 ECRI Institute 2014 top 10 health technology hazards, 2014.
8 Association for the Advancement of Medical Instrumentation. Infusing patients safely:

priority issues from the AAMI/FDA infusion device summit. http://www.aami.org/
publications/summits/AAMI_FDA_Summit_Report.pdf, 2010.

9 P. L. Goddard. Software fmea techniques. In Reliability and Maintainability Symposium,
2000. Proceedings. Annual, pages 118–123. IEEE, 2000.

10 The Generic Patient Controlled Analgesia Pump Hazard Analysis. http://rtg.cis.upenn.
edu/gip-docs/Hazard_Analysis_GPCA.doc.

11 M. D. Harrison, J. Campos, and P. Masci. Reusing models and properties in the analysis
of similar interactive devices. Innovations in Systems and Software Engineering, Springer-
Verlag London, 2013.

12 M. D. Harrison, P. Masci, J. C. Campos, and P. Curzon. Automated theorem proving for
the systematic analysis of interactive systems. In 5th International Workshop on Formal
Methods for Interactive Systems (FMIS2013), 2013.

13 ISMP Canada. Fluorouracil incident root cause analysis report. http://www.ismp-canada.
org/download/reports/FluorouracilIncidentMay2007.pdf.

14 P. Jones, J. Jorgens III, A. R. Taylor Jr., and M. Weber. Risk management in the design of
medical device software systems. Journal of Biomedical Instrumentation and Technology,
36(4):237–266, 2002.

15 R. Koppel, T. Wetterneck, J. L. Telles, and B. Karsh. Workarounds to barcode medication
administration systems: their occurrences, causes, and threats to patient safety. Journal
of the American Medical Informatics Association, 15(4):408–423, 2008.

16 G. E. Krasner and S. T. Pope. A description of the Model-View-Controller user interface
paradigm in the Smalltalk-80 system. Journal of object oriented programming, 1(3):26–49,
1988.

17 P. Lee, F. Thompson, and H. Thimbleby. Analysis of infusion pump error logs and their
significance for health care. British Journal of Nursing, 21(8):S12–S22, 2012.

18 N.G. Leveson. Software challenges in achieving space safety. Journal of the British Inter-
planetary Society, 2009.

19 P. Masci, A. Ayoub, P. Curzon, M. D. Harrison, I. Lee, and H. Thimbleby. Verification of
interactive software for medical devices: Pca infusion pumps and fda regulation as an ex-
ample. In EICS2013, 5th ACM SIGCHI Symposium on Engineering Interactive Computing
Systems. ACM Digital Library, 2013.

20 P. Masci and P. Curzon. Checking user-centred design principles in distributed cognition
models: a case study in the healthcare domain. In Proceedings of the 7th conference on
Workgroup Human-Computer Interaction and Usability Engineering of the Austrian Com-
puter Society: information Quality in e-Health, USAB’11, pages 95–108, Berlin, Heidelberg,
2011. Springer-Verlag.

21 P. Masci, H. Huang, P. Curzon, and M. D. Harrison. Using pvs to investigate incidents
through the lens of distributed cognition. In Alwyn E. Goodloe and Suzette Person, editors,
Proceedings of the 4th NASA Formal Methods Symposium (NFM 2012), volume 7226, pages
273–278, Berlin, Heidelberg, April 2012. Springer-Verlag.

MCPS’14

http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=684
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=684
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=685
http://www.chi-med.ac.uk/researchers/bibdetail.php?docID=685
http://www.aami.org/publications/summits/AAMI_FDA_Summit_Report.pdf
http://www.aami.org/publications/summits/AAMI_FDA_Summit_Report.pdf
http://rtg.cis.upenn.edu/gip-docs/Hazard_Analysis_GPCA.doc
http://rtg.cis.upenn.edu/gip-docs/Hazard_Analysis_GPCA.doc
http://www.ismp-canada.org/download/reports/FluorouracilIncidentMay2007.pdf
http://www.ismp-canada.org/download/reports/FluorouracilIncidentMay2007.pdf

14 User Interface Architecture for Analyzing Use Hazards in Infusion Pump Software

22 P. Masci, R. Ruköėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon, and
H. Thimbleby. On formalising interactive number entry on infusion pumps. ECEASST, 45,
2011.

23 P. Masci, R. Ruköėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon, and
H. Thimbleby. The benefits of formalising design guidelines: A case study on the pre-
dictability of drug infusion pumps. Innovations in Systems and Software Engineering,
Springer-Verlag London, 2013.

24 P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby. Formal verification of medical
device user interfaces using PVS. In ETAPS/FASE2014, 17th International Conference on
Fundamental Approaches to Software Engineering. Springer Berlin Heidelberg, 2014.

25 National Patient Safety Agency (NHS/NPSA). Design for patient safety: A guide to
the design of electronic infusion devices. http://www.nrls.npsa.nhs.uk/resources/
?EntryId45=68534, March 2010.

26 D. A. Norman. The design of everyday things. Basic books, 2002.
27 P. Oladimeji, H. Thimbleby, and A. Cox. Number entry interfaces and their e�ects on error

detection. In Human-Computer Interaction – INTERACT 2011, volume 6949 of Lecture
Notes in Computer Science, pages 178–185. Springer Berlin Heidelberg, 2011.

28 P. Masci et al. A preliminary hazard analysis for the GIP number entry software. http:
//www.eecs.qmul.ac.uk/~masci/works/GIP-UI-PHA.pdf, 2014.

29 R. Ruköėnas, P. Curzon, A. Blandford, and J. Back. Combining human error verification
and timing analysis: a case study on an infusion pump. Formal Aspects of Computing,
pages 1–44, 2013.

30 Q. S. M. Song. A system theoretic approach to design safety into medical device. PhD thesis,
Massachusetts Institute of Technology, 2012.

31 H. Thimbleby. Is it a dangerous prescription? BCS Interfaces, 84, 2010.
32 H. Thimbleby. Reasons to question seven segment displays. In Proceedings ACM Conference

on Computer-Human Interaction — CHI 2013, pages 1431–1440. ACM, 2013.
33 US Food and Drug Administration, Center for Devices and Radiological Health

(FDA/CRDH). White Paper: Infusion Pump Improvement Initiative, 2010.
34 US Food and Drug Administration (FDA). Manufacturer and User Facility

Device Experience Database (MAUDE). http://www.fda.gov/MedicalDevices/
DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/
ucm127891.htm.

35 T. B. Wetterneck, K. A. Skibinski, T. L. Roberts, S. M. Kleppin, M. E. Schroeder, M. Enloe,
S. S. Rough, A. S. Hundt, and P. Carayon. Using failure mode and e�ects analysis to
plan implementation of smart IV pump technology. American Journal of Health-System
Pharmacy, 63(16):1528–1538, 2006.

36 Y. Zhang, P. Jones, and R. Jetley. A hazard analysis for a generic insulin infusion pump.
Journal of diabetes science and technology, 4(2):263, 2010.

http://www.nrls.npsa.nhs.uk/resources/?EntryId45=68534
http://www.nrls.npsa.nhs.uk/resources/?EntryId45=68534
http://www.eecs.qmul.ac.uk/~masci/works/GIP-UI-PHA.pdf
http://www.eecs.qmul.ac.uk/~masci/works/GIP-UI-PHA.pdf
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm
http://www.fda.gov/MedicalDevices/DeviceRegulationandGuidance/PostmarketRequirements/ReportingAdverseEvents/ucm127891.htm

	Introduction
	Background: the Generic Infusion Pump model
	GIP User Interface (GIP-UI)
	Validation of the GIP-UI architecture
	Hazard analysis based on the GIP-UI
	Scope of the analysis

	Sources of information
	Hazard analysis results
	Potential design errors in Output Status Manager
	Potential design errors in Renderer
	Potential design errors in Interaction Logic
	Potential design errors in Non-standard Input Interpreter

	Discussion

	Related work
	Conclusions

