
Using PVSio-web to demonstrate software issues
in medical user interfaces

Paolo Masci1,?, Patrick Oladimeji2, Paul Curzon1, and Harold Thimbleby2

1Queen Mary University of London, United Kingdom
{p.m.masci,p.curzon}@qmul.ac.uk

2Swansea University, United Kingdom
{p.oladimeji,h.thimbleby}@swansea.ac.uk

Abstract. We have used formal methods technology to investigate soft-
ware and user interface design issues that may induce use error in medi-
cal devices. Our approach is based on mathematical models that capture
safety concerns related to the use of a device. We analysed nine com-
mercial medical devices from six manufacturers with our approach, and
precisely identified 30 design issues. All identified issues can induce use
errors that could lead to adverse clinical consequences, such as numbers
being incorrectly entered. An issue with formal approaches is in making
results accessible to developers, human factors experts and clinicians.
In this paper, we use our tool PVSio-web to demonstrate the identified
issues: PVSio-web allows us to generate realistic and interactive user in-
terface prototypes from the same mathematical models used for analysis.
Users can explore the behaviour of the prototypes by pressing buttons on
realistic user interfaces that reproduce the functionality and visual rep-
resentation of the real devices. Users can examine the device behaviour
resulting from any interaction. Key sequences identified from analysis can
be used to explore in detail the identified design issues in an accessible
way.

Demo video: “Design issues in medical user interfaces”§

1 Introduction

According to the US Food and Drug Administration (FDA) many problems
reported in incidents involving medical devices are due to use errors and software
defects [2]. For example, in the USA, a recent study conducted by FDA software
engineers revealed that software-related recalls had almost doubled in just over
five years: 14% in 2005 to nearly 25% in 2011 [16]. While it is usual to attribute
software failures to coding errors, the FDA study highlighted that the largest
class of problems were actually caused by logic errors in software design.

In the present work, a series of realistic prototypes, based on nine real devices
from six different manufacturers, have been developed to demonstrate identified

? Corresponding author.
§ https://www.youtube.com/watch?v=T0QmUe0bwL8

https://www.youtube.com/watch?v=T0QmUe0bwL8
https://www.youtube.com/watch?v=T0QmUe0bwL8


2 Using PVSio-web to demonstrate software issues in medical user interfaces.

Fig. 1: Our approach for the analysis of user interface software.

relations between logic errors in software design and device behaviours that in-
duce use errors (such as accidentally entering a number 10 times higher than
intended) that have potential adverse clinical consequences. These logic errors
are due either to incomplete or erroneous system requirements and specification,
or design features chosen without considering well-known usability heuristics.
All demonstrated issues were validated, and can be reproduced on the real de-
vices using the input key sequences presented in our demonstrative video. Some
example issues and input key sequences are illustrated in Section 4. The pro-
totypes are run in our tool PVSio-web [12], a graphical environment based on
the formal verification system PVS [13]. PVS is a well known industrial-level
theorem prover that enables mechanised verification of potentially infinite-state
systems. It is based on a typed higher-order logic, and its specification language
has many features similar to those of imperative programming languages such
as C++.

Formal tools typically produce results in a textual form that is usually in-
accessible to engineers, and certainly to human factors specialists or clinicians.
In contrast, PVSio-web can be used to examine and realistically animate the re-
sults of analysis performed with formal verification tools such as PVS. By using
PVSio-web this barrier is eliminated because issues can be explored and demon-
strated by interacting with a realistic user interface and watching the device
behaviour that results from the interaction. The tool can be used for generating
test cases for developed devices, or used at earlier phases of design (e.g., to an-
imate a formally specified functional specification) when the final device is not
yet available.

2 Our formal methods approach

The analysis approach involves the following steps (see Figure 1):



Using PVSio-web to demonstrate software issues in medical user interfaces 3

– First, a logic model of the device user interface software is developed. It
defines how the device supports user actions (e.g., the effect of pressing a
button on the user interface), and what feedback (e.g., messages displayed
on the screen) is provided to the user in response to user actions or internal
device events. These models are obtained from the source code of the device
software, or by reverse engineering the device behaviour through systematic
interaction with the device.

– Second, the developed model is verified against relevant safety and usability
requirements using formal methods technologies — the PVS theorem prover,
in this case. Example requirements are: visibility of relevant information
about the device state; feedback about what is the current device state and
what has been achieved; ability to undo the effect of actions. An illustration
of analysed requirements and techniques used to analyse the requirements
is in our previous work [3, 6–8]. Within this step, realistic prototypes of
the device are automatically generated from the same PVS models using
the PVSio-web prototyping environment. The prototypes facilitate model
debugging and analysis of conjectures about the device behaviour specified
in the model.

– Third, test cases are generated using a semi-automatic approach using graph
exploration techniques on the developed model. The aim of these test cases
is to validate the model behaviour against the real device, and to check that
design issues identified during the analysis apply to the real device and not
only to the model. Within this step, prototypes developed with PVSio-web
are used to demonstrate the behaviour of the device for the generated input
key sequences, and engage with domain and clinical experts to discuss the
consequences of identified problematic behaviours.

2.1 Reverse Engineered Models

To perform reverse engineering in a systematic way, we use an iterative approach
that involves a direct evaluation of the device behaviour. An initial model is
specified that describes the device behaviour according to the documentation
provided with the device, and based on execution traces obtained by interacting
with the real device. The model is then analysed within PVS to perform basic
sanity checks on the model. These include: coverage of conditions; disjointness of
conditions; and consistent use of types. To facilitate this analysis, we include pre-
and post-conditions for each software feature specified in the PVS model — this
is done using predicate subtypes [14], a PVS language mechanism that narrows
down the domain of types used in the model. Test cases are generated for each
pre- and post-conditions to validate that the behaviour described in the model
is consistent with that of the real device. These test cases are given in terms
of key presses that can be used with the real device to trigger specific features
of the software. Whenever a test case fails on the real device, a discrepancy is
identified between the model and the real device. These discrepancies allow us to
identify additional conditions that were not taken into account in the model, or
actual coding errors in the real device. In the former case, the model is refined,



4 Using PVSio-web to demonstrate software issues in medical user interfaces.

Fig. 2: PVSio-web architecture.

and the process iterated until all tests succeed. In the latter case, the issue is
discussed with software engineers, and verified solutions can be identified using
the PVS theorem prover.

2.2 Source Code Models

A set of guidelines is used to translate software source code into PVS specifica-
tions in a systematic way. The guidelines cover a substantial set of object-oriented
language constructs typically used in core software modules. In the following we
summarise the guidelines we used for translating C++ source code into PVS
specifications.

– Numeric types such as double, float and integer are mimicked in PVS us-
ing subtyping [14, 15] — this is needed because the native PVS types are
mathematical Reals and Integers.

– Classes and structures are mimicked in PVS using records and datatypes.
– Class variables are emulated in PVS using fields of a user-defined record

type, state, that contains a field for each class variable;
– Class functions operating on objects are emulated in PVS as higher-order

functions. That is, a PVS function is defined that takes the same types and
number of arguments of the corresponding class function; this PVS function
returns a new function type that takes a single argument of type state,
which emulates the implicit argument of class functions. This modelling ap-
proach allows us to maintain the original signature of class functions.

– Conditional statements have identical counterparts in the PVS specification
language; iterative statements are translated using recursive functions; se-
quential statements and local variables used for computation are mocked
using the PVS LET-IN construct that binds expressions to local names.

3 PVSio-web

PVSio-web [12] is our graphical tool for rapid prototyping of user interfaces.
The tool can be used at any stage of the development life-cycle for the following
purposes: (i) rapid generation of realistic prototypes for exploring design alter-
natives; (ii) debugging or testing of device models; (iii) demonstration of features
of device models; (iv) demonstration of analysis results.

Our tool builds on and extends PVSio [11], the textual simulation environ-
ment of PVS. Using PVSio-web, users control PVSio simulations by interacting



Using PVSio-web to demonstrate software issues in medical user interfaces 5

Fig. 3: Snapshot of the graphical editor bundled with PVSio-web. Shaded areas
over the picture represent interactive areas for input and output widgets. The
form shown upfront allows designers to configure the selected interactive area.

with buttons and keys of a realistic picture of the device being simulated, and
watch the effect of the interactions on the device screen, as in the real device. As
illustrated in Figure 2, the architecture of PVSio-web has two main components:
a front-end client, used to interact with the tool; and a back-end server hosting
PVS and PVSio. The functionalities of the PVSio-web front-end are now further
illustrated.

3.1 Graphical editor

A snapshot of the graphical editor is in Figure 3. Using the graphical editor,
designers can select a picture of the device being modelled in PVS, and define
interactive areas over the picture for identifying input widgets (e.g., buttons,
keys) and output widgets (e.g., displays, LEDs). For input widgets, designers
can specify which user gestures need to be captured (e.g., clicks), and which
PVSio commands need to be invoked for each gesture (e.g., in the picture in
Figure 3, function click up of the PVS model is executed when the user clicks
on the interactive area defined over button

� �
∧� �). For output widgets, designers

can associate the widget with state variables of the PVS model (e.g., in Figure 3
a state variable display representing information about the infusion rate is



6 Using PVSio-web to demonstrate software issues in medical user interfaces.

Fig. 4: Example interaction with the PVSio-web simulator: the user clicks on
virtual device buttons, and watches feedback on the virtual device display.

associated to a display area). The PVS model can also be viewed and edited
within the graphical editor, using the PVS editor bundled with PVSio-web.

3.2 Simulator

The PVSio-web graphical simulation environment captures user gestures on in-
teractive areas, and renders the current value of state variables during the simu-
lation. Gestures are automatically translated into PVSio commands for invoking
the evaluation and execution of functions in the PVS model. These commands
are generated on the basis of the current value of state variables in the PVS
model, and the association between user gestures and PVSio commands defined
using the PVSio-web graphical editor.

A snapshot of the graphical simulation environment during the execution of
a simulation is in Figure 4. It shows an example interaction with the prototype:
the user clicks on the virtual device button

� �
∧� �, and the effect of this action is

watched on the virtual device display.

4 Demonstration of software design issues

The developed prototypes demonstrate over 30 software design issues inducing
use errors that have potential adverse clinical consequences. The demonstrated
device behaviours can be reproduced on commercial medical devices in use in
hospitals across the US and UK. Several issues are common in devices from
different manufacturers, and across different device types. Here, representative
examples of identified issues are presented. The full list of identified issues and



Using PVSio-web to demonstrate software issues in medical user interfaces 7

an explanation of the consequences of the issues is in our demonstrative video. A
detailed discussion of tools and techniques used to identify these software issues
is in [1, 3, 4, 7–9].

– Decimal point key presses ignored without any warning. The device
registers a key sequence such as

� �
1� �� �

0� �� �
0� �� �
•� �� �

1� �as 1, 001 (instead of 100.1)
without warning. This may cause missing decimal point errors which results
in the transcribed number being ten times larger than that intended.

– Ill-formed values accepted and displayed. The device shows fractional
numbers without a leading zero (e.g., .9 instead of 0.9), or integer numbers
with a leading zero (e.g., 09 instead of 9). These cases violate the recom-
mendations issued by the Institute for Safe Medication Practices (ISMP)
and may cause numbers to be misread and misinterpreted [5].

– Entered values ignored without any warning. If the user fails to con-
firm the entered value or pauses data entry for a period of time, the device
discards the entered value without any warning. This may cause misconfig-
uration of device parameters.

– Unintended values rollover. When the maximum value is overshot with a
key press, the value rolls over to the minimum value and vice versa. This may
cause misconfiguration of device parameters. Recently, a safety notice [10]
involved this design issue. According to the safety notice, there were reported
incidents of users accidentally misprogrammed an insulin pump to deliver the
maximum bolus amount because of this design issue. One of these incidents
resulted in severe hypoglycemia.

5 Conclusions

This paper presents the use of formal methods technologies for modelling, simu-
lating and testing safety critical interactive interfaces such as those of commercial
infusion devices in use in hospitals. Over 30 software design issues are demon-
strated that may create traps for the users that can lead to use error during
interactions with the device. Occurrences of these errors can have consequences
on patient safety — therefore, these issues should be identified and dealt with.

The presented results were obtained from retrospective analysis of existing
device designs. Our analysis tools and techniques, however, can be used at ear-
lier stages of the development process when the software for the real device is
not yet implemented. While traditionally there has been poor communication
between formal methods experts and human factors experts, our tool and analy-
sis methods take a step towards bridging this gap, as they provide an accessible
approach for reasoning about the safety and usability of a product using rapid
prototyping techniques and realistic simulations.

Acknowledgements. Paul Jones and Yi Zhang (FDA), Julian Goldman and Dave

Arney (Massachusetts General Hospital MD PnP Lab, mdpnp.org), Marc Bloom and

staff members of the Washington Adventist Hospital, and Paul Lee (Morriston Hospital,

Swansea) helped us to validate our findings. This work is supported by EPSRC as part

of CHI+MED (Computer-Human Interaction for Medical Devices [EP/G059063/1]).

http://mdpnp.org
http://www.chi-med.ac.uk


8 Using PVSio-web to demonstrate software issues in medical user interfaces.

References

1. A. Cauchi, A. Gimblett, H.W. Thimbleby, P. Curzon, and P. Masci. Safer 5-key
number entry user interfaces using differential formal analysis. In 26th Annual
BCS Interaction Specialist Group Conference on People and Computers (BCS-
HCI), pages 29–38. British Computer Society, 2012.

2. Center for Devices and Radiological Health, US Food and Drug Administration.
White Paper: Infusion Pump Improvement Initiative, 2010.

3. M.D. Harrison, J.C. Campos, and P. Masci. Reusing models and properties in
the analysis of similar interactive devices. Innovations in Systems and Software
Engineering, pages 1–17, 2013.

4. M.D. Harrison, P. Masci, J.C. Campos, and P. Curzon. Demonstrating that medical
devices satisfy user related safety requirements. In 4th International Symposium
on Foundations of Healthcare Information Engineering and Systems, 2014.

5. Institute for Safe Medication Practices (ISMP). List of error-prone abbreviations,
symbols and dose designations, 2006.

6. P. Masci, A. Ayoub, P. Curzon, M.D. Harrison, I. Lee, and H.W. Thimbleby.
Verification of interactive software for medical devices: Pca infusion pumps and
fda regulation as an example. In EICS2013, 5th ACM SIGCHI Symposium on
Engineering Interactive Computing Systems. ACM Digital Library, 2013.

7. P. Masci, R. Rukšėnas, P. Oladimeji, A. Cauchi, A. Gimblett, Y. Li, P. Curzon,
and H.W. Thimbleby. On formalising interactive number entry on infusion pumps.
ECEASST, 45, 2011.

8. P. Masci, R. Rukšėnas, Oladimeji P., A. Cauchi, A. Gimblett, Y. Li, P. Curzon,
and H.W. Thimbleby. The benefits of formalising design guidelines: A case study
on the predictability of drug infusion pumps. Innovations in Systems and Software
Engineering, pages 1–21, 2013.

9. P. Masci, Y. Zhang, P. Jones, P. Curzon, and H. Thimbleby. Formal verification
of medical device user interfaces using pvs. In ETAPS/FASE2014, 17th Inter-
national Conference on Fundamental Approaches to Software Engineering, Berlin,
Heidelberg, 2014. Springer-Verlag.

10. Medtronic. Device safety information: accidental misprogramming of insulin deliv-
ery. http://www.medtronicdiabetes.com, March 2014. Report # 930M12226-011.

11. C. Munoz. Rapid prototyping in PVS. National Institute of Aerospace, Hampton,
VA, USA, Tech. Rep. NIA, 3, 2003.

12. P. Oladimeji, P. Masci, P. Curzon, and H.W. Thimbleby. PVSio-web: a tool
for rapid prototyping device user interfaces in PVS. In FMIS2013, 5th Intl.
Workshop on Formal Methods for Interactive Systems, 2013. Tool available at
http://pvsioweb.org/.

13. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M.K. Srivas. PVS: combining
specification, proof checking, and model checking. In Computer-Aided Verification,
number 1102 in Lecture Notes in Computer Science. Springer-Verlag, 1996.

14. J. Rushby, S. Owre, and N. Shankar. Subtypes for specifications: Predicate sub-
typing in pvs. IEEE Transactions on Software Engineering, 24(9):709–720, 1998.

15. N. Shankar and S. Owre. Principles and pragmatics of subtyping in PVS. In Recent
Trends in Algebraic Development Techniques, pages 37–52. Springer, 2000.

16. Simone, L.K. Software-Related Recalls: An Analysis of Records. Biomedical In-
strumentation & Technology, 47(6):514522, 2013. doi:10.2345/0899-8205-47.6.514.

http://www.medtronicdiabetes.com/res/img/pdfs/Insulin-Delivery-Through-Main-Menu-Button-Keypad_US-Customer-Letter.pdf
http://pvsioweb.org/

	Using PVSio-web to demonstrate software design issues in medical user interfaces
	Introduction
	Our formal methods approach
	Reverse Engineered Models
	Source Code Models

	PVSio-web
	Graphical editor
	Simulator

	Demonstration of software design issues
	Conclusions


