
Formal modelling as a component of user
centred design

Michael D. Harrison1[0000−0002−5567−9650], Paolo Masci2[0000−0002−0667−7763],
and José Creissac Campos2[0000−0001−9163−580X]

1 School of Computing, Newcastle University, Urban Sciences Building, Newcastle
upon Tyne, UK michael.harrison@ncl.ac.uk

2 HASLab/INESC-TEC and Dept. Informatics/University of Minho, Campus de
Gualtar, Braga, Portugal

paolo.masci@inesctec.pt, jose.campos@di.uminho.pt

Abstract. User centred design approaches typically focus understand-
ing on context and producing sketch designs. These sketches are often
non functional (e.g., paper) prototypes. They provide a means of explor-
ing candidate design possibilities using techniques such as cooperative
evaluation. This paper describes a further step in the process using for-
mal analysis techniques. The sketch design of a device is enhanced into a
specification that is then analysed using formal techniques, thus provid-
ing a systematic approach to checking plausibility and consistency during
early design stages. Once analysed, a further prototype is constructed us-
ing an executable form of the specification, providing the next candidate
for evaluation with potential users. The technique is illustrated through
an example based on a pill dispenser.

1 Introduction

User centred design approaches are designed to satisfy Gould and Lewis’s guid-
ing principles [7]: (i) to focus on user tasks early and throughout the design
process; (ii) to measure usability empirically; (iii) to design and test iteratively.
A variety of techniques exist that satisfy these principles to a greater or lesser
extent. Contextual design [1] and scenario based design [5] are examples. Con-
textual design aims to understand the context through observation to identify
what would help improve the situation in which the proposed design is to be
used. This process involves focussing on user needs and tasks, asking questions
of the following type: “Who enters patient, medicine and prescription details in
the medical device, and where do these activities happen? How and where are
reminders produced and how does the patient access the dose?”. Contextual de-
sign and scenario based design techniques use scenarios that capture typical or
exceptional situations in which a possible design would be used.

The sketch designs developed as a result of this process are often initially non-
functional (for example it could be a simple PowerPoint presentation or a paper
storyboard). They are developed and evaluated by letting end users interact with
the sketch design in selected scenarios of use. Think aloud techniques such as

2 M. D. Harrison et al.

cooperative evaluation [13] are typically used to collect feedback that is useful to
improve the design and judge whether a further iteration would be appropriate.

The focus of this paper is the nature of the sketch design and the process of
development of the final design. This paper briefly explores integration of the
informal, though structured, approach typical of contextual design and scenario
based design with formal techniques. An example based on an automated pill
box for dispensing drugs to patients at specific times is used throughout the
paper to present the approach.

In the following sections, first we describe how the initial sketch design was
developed (Section 3.1). Then, an enhanced design is presented that fills vari-
ous gaps observed of the initial design (Section 3.2). This design is checked for
plausibility (Section 4) and against use-related requirements. The first set of use-
related requirements are designed to check the consistency of the actions offered
by the refined design (Section 5.1). Requirements also consider the reversibility
of scrolling behaviour (Section 5.2). The iteration of the design (Section 6) is
then described with a discussion of comparable approaches and further work
(Section 7).

Contribution. Contributions are:

1. an illustration and discussion of how existing formal tools could be used as
part of a user centred design process;

2. a case study using a pill dispenser design as focus.

2 The approach

The aim is to integrate the formal modelling process with user centred design.
We do this through five steps.

Step 1: An initial interactive sketch design is created that demonstrates the
different screens of the system, either as a storyboard or a non functional
prototype. This provides the first candidate for evaluation with potential
end users.

Step 2: Once evaluated, a revised design is created based on a formal model de-
veloped from the prototype. This initial formal specification includes details
of modes, actions, and fields of each screen. This model is assessed for plau-
sibility. The specification is plausible if it exhibits the designer’s intention.
This can be demonstrated through exploration of the executable form of the
specification and also achieved by demonstrating that the design exhibits
intended functional properties.

Step 3: The formal specification is iterated as a result of the assessment of step
2. The new version of the specification is analysed using formal verification
technologies to explore inconsistencies and gaps in the proposed design.

Step 4: An executable formal specification, developed as a result of the analysis
of step 3, provides the next candidate for evaluation with potential users.

Step 5: The process (steps 2-4) is repeated.

Formal modelling as a component of user centred design 3

The steps of the method use the following tools provided by the PVSio-web
toolkit: PVS [16] to develop and analyse the model; PVSio [15] to check its plau-
sibility; the PVSio-web Storyboard Editor [18] to develop the initial sketch; the
PVSio-web Prototype Builder [12] to produce an interactive prototype based on
the PVS model. PVSio-web is a web-based environment that enables the creation
of interactive prototypes based on executable PVS specifications. The toolkit
supports the creation of both storyboard-based prototypes based on mockup pic-
tures of different screens of the system under development, and high-fidelity pro-
totypes that can closely resemble the visual appearance and behaviour of a final
product. The interactive prototype, so constructed, can be evaluated with end-
users. The PVS language builds on higher-order logic, and provides an extensive
library of constructs for representing complex system behaviours and datatypes.
PVSio is a tool that extracts Common Lisp code from PVS executable specifi-
cations. This makes it possible to test the functionality of PVS specifications by
evaluating ground expressions representing user actions performed on the system
state.

3 Designing a pill dispenser

A pill dispenser is a medical device that provides doses of drugs to patients at
specified times. While such devices are often designed for individual use, the
considered example was designed to be used by groups of patients, perhaps in a
care home common room or a hospital ward. The proposed initial design suggests
a device that caters for the multiple and complex requirements of patients. While
this service was initially sketched by engineers, it would be expected that, as
part of a user centred design, the initial design would have been informed by
developing an understanding of the context in which the design is to be situated.
The device as envisaged in early sketches alerts the patient when medicine is due
and the patient responds and obtains their dose using a thumb print to ensure
they are receiving the medication intended for them. The device maintains a
database of patients who have been subscribed to the system as well as a database
of medicines. The pill dispenser supports “columns” of pills from which the
patient can obtain their required dose.

3.1 The starting point: the sketch design

A video was provided to the authors of an early prototype of the device. A
storyboard was produced from this video (see Figure 1). The display designs were
sketched and transitions between displays indicated. The initial prototype was
the sketch design. A state transition diagram described the transitions between
displays (see Figure 2). PVSio-web uses a graphical state transition language
(emucharts a simplified version of Statecharts [9]) to describe the flow of the
storyboards. The sketch screens are linked to nodes of the emuchart which can
be translated automatically into PVS as illustrated in Listing 1.1.

4 M. D. Harrison et al.

(a) Password screen (b) Patient list screen (c) Patient details screen

Fig. 1: Example display images produced for the initial prototype.

Fig. 2: The initial sketch: state transition diagram

The video illustrated some but not all of the features of the design. Figure 3
indicates a phase of the creation of the interactive storyboard in PVSio-web.
Green areas on the left hand side of the sketch design represent interactive
buttons that can be used to navigate to a different screen. The full list of screens
used to develop the sketch design is shown at the bottom-left corner of the figure.

The initial sketch design indicated three user pathways. The first pathway
allows entry, or modification, of patient details. This requires use of a password
and involves the nurse or carer responsible for setting up patient details. New
patient information can be entered, including the patient’s thumb print for vali-
dation purposes, or a list of existing patients in the database is displayed which
can be scrolled up or down to allow access to all patients for selection. Details
of the patients can be changed. Each patient has up to five prescriptions (in this
version of the prototype). A prescription can be added or removed and includes
details of time and frequency of each drug prescribed. The second pathway, also
protected by password, allows access by carers or nurses or doctors who are able
to enter details of medicines. This pathway allows entry or editing of medicines.
In a similar way the medicine pathway allows medicines to be listed or displayed
and modified.

Formal modelling as a component of user centred design 5

Fig. 3: Phase of the creation of the initial sketch design using PVSio-web.

pill_dispenser: THEORY BEGIN
%-- operating modes
Mode: TYPE = { initial_screen , password_screen , patients_list_screen , ...}
%-- state attributes
State: TYPE = [# mode: Mode #]
%-- init function
init: State = (# mode := initial_screen #)
%-- transition functions
per_password_screen(st: State): bool = (mode(st) = initial_screen)

OR (mode(st) = pill_dispensed_screen)
OR (mode(st) = database_password_screen)

password_screen(st: (per_password_screen)): State =
COND
mode(st) = initial_screen
-> LET st = leave(initial_screen)(st)

IN enter(password_screen)(st),
mode(st) = pill_dispensed_screen
-> LET st = leave(pill_dispensed_screen)(st)

IN enter(password_screen)(st),
mode(st) = database_password_screen
-> LET st = leave(database_password_screen)(st)

IN enter(password_screen)(st)
ENDCOND

%-- ... more transition functions omitted
END pill_dispenser

Listing 1.1: PVS specification generated from the emuchart

The third pathway was not provided in the video and further information would
be required to complete it. As is common in design approaches of this kind the
current version of the design is partial. Further iteration will flesh out the details
of the design. This pathway identifies and alerts the patient who is required to
take their medicine. The patient’s thumbprint is required to access the dose. The
paper focuses on the two pathways that were illustrated in the original video.

6 M. D. Harrison et al.

3.2 The enhanced model

Additional details about modes, actions and field types present in each screen
are now added to the initial model and the model is restructured. The full
specification of the illustrated case study may be found at our repository3. This
model of the design is based on actions that are invoked when the user presses
a control that is visible on the display. The revised model provides more detail
of the interaction: which actions are available; which fields must be completed
before an action can be completed. Actions of selecting and entering fields are
included as well as, in some cases, concrete examples of information in the pillbox
(e.g., patient names, content of prescription charts, and so on). The pill dispenser
screen is assumed to be a touch screen but for present purposes the details of how
the pressing takes place is not a concern. These actions cause transitions between
modes. Further transitions are caused by selecting fields and entering values.
These transitions do not change mode. They add to the set of fields that have
been entered and also add the values entered to temporary records of patients,
their prescriptions or medicines (depending on mode). Modes, actions and fields
are represented using mode type (lines 1-2 of Listing 1.2), actions type (line
3) and fields type (line 5).The availability or visibility of actions and fields
is made explicit using boolean functions, for example (in the case of actions)
available actions type (line 4). The state of the device is represented by a
type state, a fragment of the definition is illustrated in line 7-12.

1 mode_type: TYPE = { initial , pwd , db_pwd , db_menu , patient_list ,
2 db_med_list , new_patient_details , ... }
3 actions_type : TYPE = { key1 , key2 , key3 , confirm , create , ... }
4 available_actions_type : TYPE = [actions_type -> boolean]
5 fields_type : TYPE = { password , dob , dosage , id_card , mob , carer , ... }
6 fields_set: TYPE = [fields_type -> boolean]
7 state: TYPE = [# mode: mode_type ,
8 vis_field: fields_set ,
9 sel_field: fields_set ,

10 ent_field: fields_set ,
11 action: available_actions_type ,
12 ... #]

Listing 1.2: Types used in the model of the first sketch

A PVS function is now illustrated that specifies the behaviour of the pill
dispenser when the operator enters new patient details (Listing 1.3). The spec-
ification of the function includes identification of the actions that are visible
(lines 5-7), the fields that are visible (lines 16-18), the fields that are selected
(none in this case, see line 19) and the field that is entered (line 20). Within
the mode, specified by the mode attribute of state, fields can be entered (as
discussed below, and see definition of enter in Listing 1.5). In the initial state
of this mode, described here, only one field is represented as entered, namely
the patient name. For reasons of simplicity the name is taken to be generated
automatically in this initial model (see definition of np in line 2).

Each time a field is entered the temporary patient record (temp patient)
is updated. In the initial transition (new patient details screen) all fields

3 http://hcispecs.di.uminho.pt/m/8

http://hcispecs.di.uminho.pt/m/8

Formal modelling as a component of user centred design 7

are empty since this is a new patient except for the patient name. The tempo-
rary patient record (temp patient, lines 8-11) is also set with the patient name
(p name, line 8) set to np, and the rest of the patient record set to null. Further
temporary elements are set to null: temp script (which identifies prescriptions
associated with the patient) and temp med (which is used when setting up the
record for a medicine).

1 new_patient_details_screen(st: state): state =
2 LET np = next_pid(st `p_max)
3 IN clear_screen(st) WITH
4 [mode := new_patient_details ,
5 action := LAMBDA(x: actions_type):
6 (x = key1) OR (x = key2) OR (x = key3) OR
7 (x = confirm) OR (x = quit),
8 temp_patient := (# p_name := np,
9 p_fields := LAMBDA(x: fields_type): FALSE ,

10 scripts_index := s_null ,
11 scripts := LAMBDA (s: s_index): nil_script #),
12 temp_script := nil_script ,
13 temp_med := nil_med ,
14 m_current := m_null ,
15 p_current := np,
16 vis_field := LAMBDA(x: fields_type):
17 (x = name) OR (x = dob) OR (x = id_card) OR
18 (x = carer) OR (x = mob),
19 sel_field := LAMBDA(x: fields_type): FALSE ,
20 ent_field := LAMBDA(x: fields_type): x = name]

Listing 1.3: The specification of the new patient details screen

The patient database (Listing 1.4), is specified by type patient db type. This
type describes a list of patient records. Patient records include fields associated
with date of birth, carer and so on as well as the prescriptions that are associ-
ated with them (scripts). There is a limit to the number of scripts that can be
associated with a patient as defined by type s index.

1 list_script_type: TYPE = [s_index -> script_type]
2 patient_type: TYPE = [# p_name : p_index ,
3 p_fields : fields_set ,
4 scripts_index: s_index ,
5 scripts: list_script_type #]
6 patient_db_type: TYPE = list[patient_type]

Listing 1.4: Patient database types

Patient fields can be entered in mode new patient details. Entry of a field
requires two pre-conditions. The field must be visible. Hence in Listing 1.3 (lines
16-18), name, dob, id card, carer and mob are fields that are visible. A field
must also be selected (only one field is selected at a time and selection is lost
when the field is entered). Hence in Listing 1.3 line 19, no fields are selected.
Two actions select and enter specify selection and entry of fields. Selection
also specifies selection of actions.

The function enter is illustrated in Listing 1.5. Entering a field first (Listing
1.5) checks that the field is selected (line 2 of Listing 1.5). It then updates
temporary database fields. These are: temp script (lines 4-6), temp patient

(lines 7-9) and temp med (lines 10-12). These updates depend on whether the
mode relates to entry of values to these temporary records. In all cases the

8 M. D. Harrison et al.

entered field is added to the set of entered fields (line 13), and the selection of
the field necessary prior to entry is set to false (line 14).

1 enter(f: fields_type , st: state): state =
2 IF sel_field(st)(f)
3 THEN st WITH [
4 temp_script := IF per_enter_patient_script(f, st)
5 THEN enter_script_field(f, st`temp_script)
6 ELSE st`temp_script ENDIF ,
7 temp_patient := IF per_enter_patient_field(f,st)
8 THEN enter_patient_field(f, st `temp_patient)
9 ELSE st`temp_patient ENDIF ,

10 temp_med := IF per_enter_med_field(f, st)
11 THEN enter_med_field(f, st `temp_med)
12 ELSE st`temp_med ENDIF ,
13 ent_field := LAMBDA(x: fields_type): x = f OR st `ent_field(x),
14 sel_field := LAMBDA(x: fields_type): FALSE]
15 ELSE st ENDIF

Listing 1.5: Entering a field

4 Plausibility

Once the specification has been developed, and before further analysis of the
implications of the design, it is clearly necessary to be assured that the model is
a plausible reflection of the envisaged design. This checking process is iterative.
The design is developed by fleshing out interaction detail and adding functional-
ity. It is not conventional formal refinement because at each step the design is in
flux, open to change as a result of evaluation and discussion with potential users.
The plausibility of the specification of the design is explored in two ways. First,
PVSio is used to explore grounded versions of the specified functions. This allows
a form of direct interaction with the model to exercise the available actions and
observe their effect on the state of the system. It makes it possible to explore
some situations in which actions do not have the expected behaviour. Inevitably
this second approach, using PVSio, does not allow exhaustive analysis in the
sense that model checking (see for example [2]) does. The goal at this stage how-
ever is to establish a first impression about the model and flush out any obvious
problems, before more exhaustive analysis is carried out. Second, PVS theorems
are constructed to demonstrate that actions change state as expected. Here the
aim is to demonstrate that for all states (not just the states generated through
execution of the ground functions), the behaviour of actions is as expected.

The use of PVSio, to explore plausibility is now considered in more detail.

4.1 Using PVSio to check plausibility

PVSio [15] makes it possible to test the model. Although the model is of a half-
formed sketch design testing can be sufficient to check that the model meets the
designer’s intentions. An example of how PVSio can be used to check plausibility
now follows. The following shows the last steps of a sequence that builds a
database of patients. The sequence shows the last few actions of a much longer

Formal modelling as a component of user centred design 9

sequence including selecting (i.e., pressing) key2, selecting the password field,
entering the password, and then pressing confirm. The sequence that produces
the state editmdpnp2 constructs the elements of the database. In fact the analysis
of the specification involved checking that each step of the sequence had the
desired effect.

susdmdnp2minus: state = LET st = editmdnp2 ,
st = select(key2 , st),
st = select(password , st),
st = enter(password , st)

IN act(confirm , st)

PVSio shows the effect of this long sequence on the state of the pill dispenser
(see Listing 1.6). There is only space to show a small part of the state that is
produced. At the end of the action sequence the mode is patient list (line
1 in Listing 1.6). This mode shows a list of up to five (five is the limit for
the screen) patients. There are no visible fields associated with this mode, but
there are visible actions: key1, key2, key3 and create (line 3). The state attribute
patient id line shows the list of patients (identified by p name) that are visible
in the list (line 4).

The listing also shows one element of the patient database (patients db)
with p name equal to 1 (lines 5-24). This patient entry shows that fields dob,
id card, mob and carer have been entered as well as the prescriptions that
have been entered. The patient entry allows for five prescriptions. Only elements
l(0) and l(1) have been entered.

1 (# mode := patient_list ,
2 vis_field := { }, sel_field := { }, ent_field := { },
3 action := { key1 , key2 , key3 , create },
4 patient_id_line := { l(4):=5, l(3):=4, l(2):=3, l(1):=2, l(0) :=1 },
5 patients_db := (:
6 (# p_name := 1,
7 p_fields := { dob id_card mob carer }, scripts_index := 2,
8 scripts := { l(4) := (# med_name := 0, s_fields := { },
9 s_period := period_null ,

10 quant := 0, t1 := 0, t2 := 0 #)
11 l(3) := (# med_name := 0, s_fields := { },
12 s_period := period_null ,
13 quant := 0, t1 := 0, t2 := 0 #)
14 l(2) := (# med_name := 0, s_fields := { },
15 s_period := period_null ,
16 quant := 0, t1 := 0, t2 := 0 #)
17 l(1) := (# med_name := 2,
18 s_fields := { dosage prescription },
19 s_period := daily ,
20 quant := 5, t1 := 7, t2 := 0 #)
21 l(0) := (# med_name := 1,
22 s_fields := { dosage prescription },
23 s_period := bidaily ,
24 quant := 3, t1 := 3, t2 := 5 #) } #),
25 (# p_name := 2, %... details omitted #) } #),
26 %-- ... further entries and structures omitted #)

Listing 1.6: Displaying the effect of a sequence

The information provided by PVSio therefore makes it possible to check the effect
of sequences of actions. It is possible to use sequences of this kind to demonstrate
that in a particular context, as defined in a sequence of ground functions, an

10 M. D. Harrison et al.

action (or sequence of actions) will have a desired effect. An example of the sort
of sequence that was explored in checking plausibility was to demonstrate that,
after the execution of a sequence for creating more than five patients in the
database (five is the limit of patients that can be shown in the screen), scrolling
down the patient list in the relevant mode, followed by scrolling it up, produced
the same display as before the scrolling actions were taken. Listing 1.7 shows
the sequence that was explored. The context for the exploration is the state
susdmdnp2minus produced by the sequence mentioned above. The sequence of
actions considered is Listing 1.7. The result of performing the sequence is shown
in Listing 1.6. The patient id line is unchanged and the line indexed by 0
points to p name = 1.

PVSio therefore makes it possible to test the model to check that the be-
haviour coincides with the expected behaviour insofar as it is represented in the
sketch model. In the next section we consider template properties [10] that are
designed to check use related properties of the emerging design. In Section 5.2
we prove that the patient list scrolling actions are inverses of each other.

scrolldscrollu: state = LET st = susdmdnp2minus ,
st = scroll_down_patient_list(st)

IN scroll_up_patient_list(st)

Listing 1.7: Adding scroll down followed by scroll up

4.2 From plausibility checks to plausibility theorems

PVS theorems can be used to demonstrate that the model has consistent and
desirable behaviour thus providing confidence in its plausibility. An example
illustrates the process. Consider for example the mode that allows the entry
of patient details. Based on our understanding, actions key1, key3, confirm,
prescriptions and quit are visible inviting the user to take one of these actions.
The PVS theorem (see Listing 1.8) aims to prove that these actions have the
desired effect, producing the relevant mode displays and updating the patient
database appropriately. Thus it can be demonstrated that one step behaviours
are consistent with those suggested of the sketch design for all states of the pill
dispenser. As an example, consider quit. The sketch indicates that the action
takes the pill dispenser to a mode where a list of patients, taken from the patient
database, is shown (see line 26) and takes no further action.

On the other hand pressing confirm also updates the patient database (if any
changes have been made in the patient details screen) and produces the patient
list screen (see lines 7-18). Furthermore the sketch indicates that the confirm
action is only permitted if all the relevant fields have been selected and entered.
In this case the patient database is updated with the temporary patient record
(st2’temp patient) using the function p insert which inserts the patient into
the database (lines 16-18). The database is ordered and the insertion either
replaces an existing record or inserts the record in the right place in the list.
In the case of prescriptions the database is updated with the temporary patient
and a transition is made to the current list of prescriptions for that patient.

Formal modelling as a component of user centred design 11

A collection of PVS theorems like check212 demonstrates that expected
transitions take place and have been verified using the PVS theorem proving
assistant.

1 check212: THEOREM FORALL (st: state):
2 ((p_current(st) < p_max(st)) AND (p_max(st) < plimit))
3 IMPLIES
4 LET st1 = patient_details_screen(st)
5 IN ((select(key1 , st1) = init_screen(st)) AND
6 (select(key3 , st1) = db_menu_screen(st)) AND
7 %-- set up the state for the confirm action
8 (LET st2 = enter(name , select(name , st1)) IN
9 (LET st2 = enter(dob , select(dob , st2)) IN

10 (LET st2 = enter(id_card , select(id_card , st2)) IN
11 (LET st2 = enter(carer , select(carer , st2)) IN
12 (LET st2 = enter(mob , select(mob , st2)) IN
13 %-- the effect of the confirm action
14 (select(confirm , st2) =
15 patient_list_screen(st2 WITH [
16 patients_db := p_insert(st2 `p_current ,
17 st2 `temp_patient ,
18 st2 `patients_db)]))))))) AND
19 %-- the effect of the prescriptions action (sets up scripts list)
20 (select(prescriptions , st1) =
21 LET tp = p_find(st `p_current , st `patients_db),
22 stx = st WITH [patients_db := p_insert(st `p_current , tp,
23 st `patients_db),
24 temp_patient := tp]
25 IN script_list_screen(stx)) AND
26 (select(quit , st1) = patient_list_screen(st)))

Listing 1.8: Plausible actions from the patient details screen

5 Proving properties

Once a plausible model has been developed it is possible to do further explo-
ration. This includes user evaluation of a realistic prototype, but it also makes it
possible to analyse the behaviour of the modelled prototype against use-centred
requirements [10]. These requirements may include safety requirements that are
used in the software safety analysis required by the regulator. This step therefore
enables a more exhaustive analysis of the emerging design than would be possible
with the functional prototype typically used in use centred design. It also sup-
ports software engineering of the system using a spiral model, and the mapping
of a requirements specification including user centred requirements [17]. The ap-
proach is demonstrated by considering two use centred requirements: consistency
and reversibility.

5.1 Consistency

Action Consistency

∀ a ∈ Act, s ∈ S,m ∈MS :
guard(s,m) ∧
pre filter(s,m) ϕ post filter(a(s),m) (1)

12 M. D. Harrison et al.

The action consistency property is formulated as a property of either a single
action, or of a group of actions (we will refer to them as Act) which may exhibit
similar behaviours. A relation ϕ : C × C connects a filtered state, before an
action occurs (captured by pre filter : S ×MS → C), with a filtered state
after the action (captured by post filter : S ×MS → C).

There are many properties of the model of the sketch design that relate to its
consistency. It is relatively common that actions are inconsistent in some detail.
Consider, for example quit as represented in the storyboard. A first considera-
tion of prototype material indicates that quit consistently changes mode without
changes to either the patient or meds database. The action consistency template
can be instantiated to a theorem that makes this assumption. The theorem fails
to be true because there is a special case during the patient’s thumb print regis-
tration sequence when quit is used to exit the sequence and the patient database
is changed. The consistency template (1) instantiation is reformulated to include
a guard that excludes this feature. The formulation of the theorem is as follows:
it uses a simple guard (mode(st) /= creation success), and the filters extract
the attributes that specify the patient database and the medicine database:

quit_consistency_thm: THEOREM FORALL (st: state):
mode(st) /= creation_success

IMPLIES
LET st1 = select(quit , st)
IN (st`meds_db = st1 `meds_db AND st`patients_db = st1 `patients_db)

5.2 Reversibility

When testing plausibility using PVSio we considered the reversibility of scroll
actions. The testing that was done inevitably considered only specific states of
the patient database that generated the patient listing (see Section ??). A general
reversibility property, which proves this requirement for all states, is identified
in the reversibility template as follows. This template is formulated for a group
of actions Act ⊂ S → S using guard : S → B, and a filter : S → C relevant to
the entry mode. For each a ∈ Act, there corresponds a b ∈ Act such that:

Reversibility

∀ s ∈ S : guard(s)⇒
filter(b(a(s)) = filter(s)) (2)

This template can be used to prove that scrolling actions have required character-
istics. Consider two actions scroll up patient list and scroll up med list

and their inverses scroll down patient list and scroll down med list. The
guards require that respective list screens are visible. The theorem is expressed
using a function that instantiates the template and is proved using structural
induction. Structural induction assumes that the property is true of a state and
then proves that as a consequence it is true of any state that can be reached by
the actions supported of the device. The verification of the theorem as formulated
succeeds, i.e., the formulated property is true of the design.

Formal modelling as a component of user centred design 13

Fig. 4: Pillbox prototype based on concept design image.

%-- reversibility of scroll actions
confirm_ud_scroll_fn(st: state): boolean =
(mode(st) = patient_list

IMPLIES scroll_down_patient_list(scroll_up_patient_list(st)) = st)
AND (mode(st) = db_med_list

IMPLIES scroll_down_med_list(scroll_up_med_list(st)) = st)
%-- reversibility theorem , formulated using structural induction
confirm_ud_scroll_thm: THEOREM

FORALL (pre , post: state):
init?(pre) IMPLIES confirm_ud_scroll_fn(pre)

AND (state_transitions(pre , post) AND
confirm_ud_scroll_fn(pre) IMPLIES confirm_ud_scroll_fn(post))

6 Iterating the prototype

Once properties are proved of this version of the PVS model, a further prototype
can be developed for co-operative evaluation with end users. The visual appear-
ance of the prototype is based on a concept design image created, for example,
using a photo-editing tool. PVSio-web is then used to create hotspot areas over
the picture and link them to the PVS model. Hotspots over buttons represent
input widgets of the prototype, and they are linked to transition functions de-
fined in the PVS model. Hotspot areas over display elements are used to render
the value of state variables so that the visual appearance of the prototype closely
resembles that of the real system in the corresponding states.

14 M. D. Harrison et al.

Figure 4 shows a screenshot of the developed prototype. It uses 17 widgets to
model different elements in the various screens of the pillbox. Listing 1.9 shows
a snippet of JavaScript code used for creating the home button of the prototype.
TouchscreenButton is the widget constructor. The new operator is used to create
a new object of type TouchscreenButton. The created widget is stored in a
variable key1. The first argument of the constructor is a string defining the
widget identifier. The PVSio-web toolkit uses this string as a basis for deriving
the name of the transition function in the PVS model to be linked to the widget.
The full name of the transition function is constructed by concatenating the user
action that activates the widget with the widget identifier.

For example, when the user clicks on the button, the transition function that
will be evaluated is act(key1, st). The second argument is a structure defining
the coordinates and size of the widget. This is necessary to create an interactive
overlay area of the correct size for the image used as a basis for the visual
appearance of the prototype, and to position the interactive area in the correct
place, that is the left side of the screen. The third argument provides information
about the callback function to be invoked for refreshing the visual appearance
of the prototype when the evaluation of the transition function associated with
the button generates a new system state, as well as information on the visual
appearance of the touchscreen button (label, colour, font).

The visual aspect of all widgets is refreshed each time the PVS specification
is evaluated in PVSio. The evaluation of the specification occurs either when the
user interacts with an input widget (e.g., presses a button), or periodically (if
the device has internal timers that are ticking).

var key1 = new TouchscreenButton ("key1", {
top: 216, left: 230, height: 64, width: 64

}, {
softLabel: "home",
backgroundColor: "green",
fontsize: 16,
callback: render

});

Listing 1.9: Creation of a touchscreen button using PVSio-web.

This refined version of the prototype benefits from improved look and feel.
The results of the evaluation with end users is then used to iterate the design
process.

7 Related work and Conclusions

While there is relatively little literature concerned with development techniques
that combine informal representations of design with formal models, there are
many activities that combine different formal descriptions of visual, functional
and task elements. Bowen and Reeves [4] explore the relation between display
and functional models. Their work also focuses on specifications of sketch de-
signs and aims to enable analysis of these designs. We are not, however, aware
of development of executable versions of their models. Haesen and others [8]

Formal modelling as a component of user centred design 15

integrate models and informal design knowledge. Their focus is also the role of
formal task models and abstract user interfaces in user centred design. They use
personas, scenarios and related task models in their models. Graphical models
of storyboards are produced along with constraints on these models. Bolton and
others [3], Paterno and others [14] and Fields [6] combine task and functional
models. Palanque and others [11] combine visual, functional and task elements.

An important challenge in developing the approach described in this paper
was not to reduce the value of user centred design. A criticism often levelled
at formal techniques is that they can have the effect of limiting the scope of
the analysis, ignoring important broader issues. We believe that our analysis,
as an adjunct to the techniques and approaches of user centred centred design,
responds to these criticisms. A further concern is that the effort and knowledge
involved in producing the models and performing the analysis are not cost ef-
fective. It is true that these are techniques that are not typically found in the
toolkit of a development team, particularly the small teams that often design
and implement medical devices. However the safety of medical devices, in par-
ticular, is crucial and a thorough analysis of usability issues is a key contribution
ensuring safety.

An important future dimension of our work, currently under development,
is to simplify and automate some of these processes. Tools for presenting and
instantiating property templates are being developed. Heuristics are being de-
veloped to automate the proof of PVS theorems. We are also simplifying the
process of using PVSio-web to construct prototypes from models. The aim is to
make these techniques accessible to a wider group of developers.

Acknowledgement

We are grateful to Nuno Rodrigues, João Vilaça and Nuno Dias from IPCA
(Polytechnic Institute of Cavado and Ave) who developed the first prototype
of the pill dispenser. José C. Campos, Paolo Masci and Michael Harrison were
funded by project NORTE-01-0145-FEDER-000016, financed by the North Por-
tugal Regional Operational Programme (NORTE 2020), under the PORTUGAL
2020 Partnership Agreement, and through the European Regional Development
Fund (ERDF).

References

1. Beyer, H., Holtzblatt, K.: Contextual design: defining customer-centred systems.
Morgan Kaufmann (1998)

2. Bolton, M.L., Bass, E., Siminiceanu, R.: Using formal verification to evaluate
human-automation interaction, a review. IEEE Transactions on Systems, Man,
and Cybernetics, Part A: Systems and Humans (99), 1–16 (2013)

3. Bolton, M., Jiménez, N., van Paassen, M., Trujillo, M.: Automatically generating
specification properties from task models for the verification of human-automation
interaction. IEEE Transactions on Human Machine Systems 44(5), 561–575 (2014)

16 M. D. Harrison et al.

4. Bowen, J., Reeves, S.: Combining models for interactive system modelling. In: Wey-
ers, B., Bowen, J., Dix, A., Palanque, P. (eds.) The Handbook of Formal Methods
in Human-Computer Interaction, pp. 161–182. Springer International Publishing,
Cham (2017)

5. Carroll, J. (ed.): Scenario based design: envisioning work and technology in system
development. Wiley (1995)

6. Fields, R.E.: Analysis of erroneous actions in the design of critical systems. Ph.D.
thesis, Department of Computer Science, University of York, Heslington, York,
YO10 5DD (2001)

7. Gould, J.D., Lewis, C.: Designing for usability: key principles and what users think.
Communications of the ACM 28(3), 300–311 (1985)

8. Haesen, M., Van den Bergh, J., Meskens, J., Luyten, K., Degrandsart, S., De-
meyer, S., Coninx, K.: Using storyboards to integrate models and informal design
knowledge. In: Hussmann, H., Meixner, G., Zuehlke, D. (eds.) Model-Driven De-
velopment of Advanced User Interfaces, pp. 87–106. Springer Berlin Heidelberg,
Berlin, Heidelberg (2011)

9. Harel, D.: Statecharts: A visual formalism for complex systems. Science of Com-
puter Programming 8, 231–274 (1987)

10. Harrison, M., Masci, P., Campos, J.: Verification templates for the analysis of user
interface software design. IEEE Transactions on Software Engineering (2018), epub
ahead of print

11. Martinie, C., Palanque, P., Barboni, E., Winckler, M., Ragosta, M., Pasquini, A.,
Lanzi, P.: Formal tasks and systems models as a tool for specifying and assessing
automation designs. In: Proceedings of the 1st International Conference on Appli-
cation and Theory of Automation in Command and Control Systems. pp. 50–59.
ATACCS ’11, IRIT Press, Toulouse, France, France (2011)

12. Masci, P., Oladimeji, P., Zhang, Y., Jones, P., Curzon, P., Thimbleby, H.: PVSio-
web 2.0: Joining PVS to HCI. In: Kroening, D., Păsăreanu, C.S. (eds.) Computer
Aided Verification: 27th International Conference, CAV 2015, San Francisco, CA,
USA, July 18-24, 2015, Proceedings, Part I. pp. 470–478. Springer International
Publishing, Cham (2015)

13. Monk, A., Wright, P., Haber, J., Davenport, L.: Improving your human-computer
interface: a practical technique. Prentice-Hall (1993)

14. Mori, G., Paternò, F., Santoro, C.: CTTE: Support for developing and analyzing
task models for interactive system design. IEEE Transactions on Software Engi-
neering 28(8), 797–813 (2002)

15. Muñoz, C.: Rapid prototyping in PVS. Tech. Rep. NIA Report No. 2003-03,
NASA/CR-2003-212418, National Institute of Aerospace (2003)

16. Owre, S., Rushby, J., Shankar, N.: PVS: A prototype verification system. In: Kapur,
D. (ed.) Eleventh International Conference on Automated Deduction (CADE). Lec-
ture Notes in Artificial Intelligence, vol. 607, pp. 748–752. Springer-Verlag (1992)

17. Sommerville, I.: Software Engineering. Addison-Wesley (2010)
18. Watson, N., Reeves, S., Masci, P.: Integrating user design and formal models within

PVSio-Web. In: Workshop on Formal Intergrated Development Environment (F-
IDE-18). Electronic Proceedings in Theoretical Computer Science (EPTCS) (2018)

	Formal modelling as a component of user centred design

