
A Flexible Framework for FMI-based
Co-Simulation of Human-Centred

Cyber-Physical Systems

Maurizio Palmieri2,1, Cinzia Bernardeschi1, and Paolo Masci3

1 Dipartimento di Ingegneria dell’Informazione, University of Pisa, Italy
2 Dipartimento di Ingegneria dell’Informazione, University of Florence, Italy

3 HASLab/INESC TEC and Universidade do Minho, Portugal

Abstract. This paper presents our on-going work on developing a flexi-
ble framework for formal co-simulation of human-centred cyber-physical
systems. The framework builds on and extends an existing prototyp-
ing toolkit, adding novel functionalities for automatic generation of user
interface prototypes equipped with a standard FMI-2 co-simulation in-
terface. The framework is developed in JavaScript, and uses a flexible
templating mechanism for converting stand-alone device prototypes into
Functional Mockup Units (FMUs) capable of exchanging commands and
data with any FMI-compliant co-simulation engine. Two concrete exam-
ples are presented to demonstrate the capabilities of the framework.

1 Introduction

Human-centered Cyber-Physical Systems (CPS) are complex systems that inte-
grate human operators, digital controllers, and the physical world. An example
is a self-driving car where an advanced driver assistance system automatically
adjusts the speed and navigation of the car based on inputs from sensors, and
the driver can take over control of the car at any point in time, e.g., by pressing
the brake or accelerator pedal.

Model-based simulation technologies applied at the early stages of system
design allow developers to gain additional confidence that the system behaves
as expected. To produce accurate results in model-based analysis of CPS, de-
velopers often need to use co-simulation techniques, i.e., integrated simulation
of different sub-systems, each modelled and simulated with the most appropri-
ate tool (e.g., logic-based models for digital controllers, and continuous models
based on differential equations for the physical part of the system).

To date, the research community has devoted most of its effort to the de-
velopment of tools for co-simulation of cyber and physical components of CPS.
Relatively little attention has been dedicated to developing tool support to as-
sess the design of the human-machine interface of CPS, even though human-CPS
interaction is often a critical aspect of the system, e.g., see the recent accidents

involving self-driving cars [16, 15], where the design of the car dashboard ex-
ceeded the driver’s abilities and performance when the driver needed to take
over control of the car because of an emergency situation.

Contribution. We present a framework designed to support modelling and
co-simulation of the user interface of a CPS. The framework builds on and ex-
tends PVSio-web [12], a prototyping toolkit for model-based analysis of human-
machine interfaces. We extend PVSio-web to introduce support of automatic
generation of user interface prototypes equipped with a standard FMI-2 co-
simulation interface. Our framework is developed in JavaScript, and uses a flex-
ible templating mechanism to convert stand-alone device prototypes into Func-
tional Mockup Units (FMUs) capable of exchanging commands and data with
any FMI-compliant co-simulation engine. Two example co-simulations of CPS
are presented to illustrate the features and utility of the framework.

Structure. Section 2 illustrates background tools and concepts used in the
work. Section 3 presents the code for automatically generate an FMU imple-
menting a device prototype previously built with PVSio-web. Section 4 shows
two different example applications of our work. Section 5 presents related work
on co-simulation of CPS. Finally section 6 concludes the paper.

2 Background

In this section we provide details on the two main technologies used in this
work, namely PVSio-web and Functional Mockup Interface (FMI). PVSio-web
because is a flexible tool for simulation of graphic user interfaces of CPS based
on an Higher Order Language (PVS) and FMI is an emerging standard for co-
simulation of CPS.

PVSio-web. PVSio-web [12] is a toolkit for prototyping and analysis of inter-
active (human-centred) systems. An example prototype developed with PVSio-
web is shown in the upper part of Figures 2 and 4. Each PVSio-web prototype
consists of two parts: a back-end defining the behaviour of the system; and a
graphical front-end defining the visual appearance of the system. The behaviour
of the system is specified as an executable formal specification in PVS [17]. The
visual appearance of the system is an interactive picture of the real system.
Web technologies (HTML5 & JavaScript) are used to create hotspot areas over
the picture, and link input and output widgets to the PVS specification. Input
widgets translate user actions over buttons into PVS expressions to be evalu-
ated in PVSio [14], the animation component of PVS, to compute the system
response. Output widgets mirror the value of state attributes of the PVS model
using graphic elements reproducing the look&feel of the real system in the cor-
responding state. A library of widgets is provided by PVSio-web that includes
common interactive elements of a system (buttons, digital displays, gauges, etc.).

Functional Mockup Interface. The Functional Mockup Interface (FMI) [3] is
a tool-independent standard for co-simulation of dynamic models. Co-simulation
is performed by a number of Functional Mockup Units (FMUs), each responsible

Fig. 1: FMI architecture including FMU generated from PVSio-web

for simulating a single model in the native formalism and execution environment
of the tool used to create the model. An FMU may carry a whole simulation
environment, or just information needed by an FMI-compliant host environment
to simulate the model contained in the FMU. An FMI-compliant host environ-
ment provides a master program that communicates with other FMUs acting
as slaves. The APIs of each FMU include: initialisation functions; a function
fmi2DoStep that triggers one simulation step; and functions to exchange data,
including getter and setter functions fmi2Get<TYPE> and fmi2Set<TYPE>,
where <TYPE> is a concrete type name, e.g., Integer or Real.

3 Our Framework

Our framework allows developers to extend stand-alone PVSio-web prototypes
with an FMI-2 compliant co-simulation interface. That is, given a prototype
developed with PVSio-web, our framework generates an FMU that includes:

– The PVS model of the prototype specifying the behaviour of the prototype;
– The PVSio environment necessary for executing the PVS model;
– The XML description file used in FMI-based co-simulations to specify static

information of the model (such as the list of variables);
– C code implementing the APIs of the FMU necessary for exchanging data

and commands with other FMUs;
– C code implementing a web server necessary to communicate with the graph-

ical front-end of the PVSio-web prototype;
– An external module for executing the graphical front-end of the prototype

in a web browser.

The overall architecture of a co-simulation where one or more FMUs are PVSio-
web prototypes is shown in Figure 1 (additional details will be provided further
below, in subsection 3.1).

3.1 Communication between FMU and the prototype interface

FMUs encapsulating PVSio-web prototypes use a WebSocket to exchange data
and commands with the graphical front-end of the prototype (see Figure 1).
That is, the graphical front-end communicates only with the FMU, and does not
interact directly with the co-simulation engine. This design choice promotes a
modular architecture of the FMU, and enables hot swapping of different look&feel
of the device without restarting the co-simulation — this is useful, e.g., when
using the prototypes for design exploration. In the following we briefly describe
the interaction between the FMU and the user interface of the prototype.

When the user performs an action on the graphical user interface of a PVSio-
web prototype, the JavaScript module sends a message to the FMU with informa-
tion about the action that has been performed (e.g., button x has been clicked).
Every time the co-simulation master invokes a simulation step, the FMU checks
if a new message has been received from the user interface (line 14 of List-
ing 1.4). If a message has been received, the FMU executes the user command
first, and then a simulation step. After the execution of the action received from
the user interface, the FMU replies to the user interface, via the same websocket
connection, sending the updated state of the system.

The graphical user interface of the PVSio-web prototype is detached from
the FMU. In case no user action is performed on the graphical user interface,
consistency between the state of the co-simulation and feedback of the user
interface is supported by an action refresh automatically sent by the front-end
at each co-simulation step.

3.2 The APIs of our framework

The APIs provided by our framework include functionalities for generating the
XML description file and the C code implementing the standard FMI functions
necessary to extend a PVSio-web prototype with an FMI interface. The APIs
are implemented in JavaScript, and the principal API function is create FMU.
An example use of the create FMU function is as follows:

1 fmi_module.create_FMU("line_following_robot", {
2 fmi: [{ name : "gear", type :"string", variability: "discrete",
3 scope:"local", value:"0" },
4 ...],
5 init: "init_LFR",
6 tick: "tick"
7 });

The first argument (line following robot) is the name of the FMU. The sec-
ond argument is an object with three attributes:

– fmi: an array specifying the characteristics (name, type, variability, etc.) of
the co-simulation variables;

– init: the name of the function in the PVS model for initializing the PVSio-
web prototype;

– tick: the name of the function in the PVS model for advancing time.

1 <?xml version ="1.0" encoding ="ISO -8859 -1"?>
2 <fmiModelDescription fmiVersion="2.0" modelName="{{ modelName }}" ...>
3 <CoSimulation modelIdentifier="{{ modelName }}"
4 canHandleVariableCommunicationStepSize="false" ...>
5 </CoSimulation >
6 <LogCategories ><Category name="logAll" /> ... </LogCategories >
7 <ModelVariables >{{# each variables }}{{# if fmi}}
8 <ScalarVariable name="{{name}}"
9 valueReference="{{fmi.valueReference }}"

10 causality="{{fmi.causality }}"
11 variability="{{fmi.variability }}" >
12 <{{fmi.descriptor }} {{#if input}} start="{{value}}"{{/if}}
13 {{#if parameter }}start="{{value}}"{{/if}} />
14 </ScalarVariable >{{/if }}{{/ each}}
15 </ModelVariables >
16 <ModelStructure > ... </ModelStructure >
17 </fmiModelDescription >

Listing 1.1: Handlebars template for generating the XML description file.

The Handlebars4 engine is used for generating the source code of create FMU

and other functions. The engine supports semantic templates with parameters
and helper functions. Template parameters are instantiated at run time, using
information contained in JSON objects. Helper function enable conditional com-
pilation and iteration over arrays. The advantage of using semantic templates
is that the structure of the source code can be inspected in the template, e.g.,
to check the correctness of syntax and semantics of the code to be generated.
This makes it easier for developers to update the template when necessary, e.g.,
to adapt code generation to future versions of the FMI standard or to different
platforms. We used the same approach in [13] for generating MISRA-C code from
diagrams based on the state-charts notation. Details of the Handlebars templates
developed for XML and C code generation are in the following subsections.

3.3 Generation of the XML description file

Relevant fragments of the Handlebars template for generating the XML descrip-
tion file of an FMU are shown in Listing 1.1. Template parameters are char-
acterised by unique identifiers and are adorned with curly braces. An example
parameter in Listing 1.1 is {{modelName}}, which represents the name of the
model described by the XML file. This and other template parameters are in-
stantiated by invoking the Handlebars compilation engine with a JSON object
whose attributes specify the actual values of those parameters. Helper functions
{{if}} and {{each}} are used in the Handlebars template to perform condi-
tional compilation (e.g., see lines 12-13 in Listing 1.1) and iteration over arrays
(e.g., see lines 7-14 in Listing 1.1).

An example XML file generated using the template is shown in Listing 1.2.
The first part of the file provides general information about the FMU (e.g., model
name, author, etc.) and information about co-simulation options supported by
the FMU (e.g., step-size). The main body of the file contains information about

4 https://handlebarsjs.com

1 <?xml version ="1.0" encoding ="ISO -8859 -1"?>
2 <fmiModelDescription fmiVersion="2.0" modelName="line_follower_robot"...>
3 <CoSimulation
4 modelIdentifier="line_follower_robot"
5 canHandleVariableCommunicationStepSize="false"
6 ...>
7 </CoSimulation >
8 <LogCategories ><Category name="logAll" /> ... </LogCategories >
9 <ModelVariables >

10 <ScalarVariable name="gear" valueReference="1"
11 causality="local" variability="discrete">
12 <String /></ScalarVariable >
13 ...
14 <ScalarVariable name="lightSensors_right" valueReference="10"
15 causality="input" variability="continuous">
16 <Real start="0" /></ScalarVariable >
17 <ScalarVariable name="motorSpeed_left" valueReference="11"
18 causality="output" variability="discrete">
19 <Real /></ScalarVariable >
20 ...
21 </ModelVariables >
22 <ModelStructure > ... </ModelStructure >
23 </fmiModelDescription >

Listing 1.2: Example XML description file generated with our template.

variables used in the co-simulation, specified according to the format required
by the FMI standard:
– valueReference is the buffer index where the value of the variable is stored;
– causality defines if the variable is input (i.e., received from another FMU),

output (i.e., sent to another FMU), local (i.e., the variable is only used within
the FMU), or if it is a parameter of the FMU;

– variability defines how the variable changes over time (i.e., discrete time
or continuous time), or if the variable has a constant value.

3.4 Generation of the C code implementing the APIs of the FMU

The Handlebars template for generating the FMU of a PVSio-web prototype
includes the definition of the standard FMI functions for exchanging data be-
tween FMUs (fmi2DoStep, fmi2Instantiate, etc.), and additional interface
functions necessary to enable communication between front-end and back-end
of the PVSio-web prototype. The graphical front-end is implemented in HTML5
& JavaScript, and executed in a web browser. The back-end is embedded in
the FMU and executed within a web server encapsulating the PVSio animation
environment. As an example, a snippet of the Handlebars template for gener-
ating function fmi2DoStep is shown in Listing 1.3. The function is used by a
co-simulation master to trigger the execution of a simulation step in the FMU.
It includes four arguments:
– fmi2Component is the FMU;
– currentCommunicationPoint is the current simulation time;
– communicationStepSize is the simulation step;
– noSetFMUStatePriorToCurrentPoint is a boolean that specifies if the mas-

ter can revert the state of the FMU back to a prior simulationn time.

1 fmi2Status fmi2DoStep(fmi2Component c,
2 fmi2Real currentCommunicationPoint ,
3 fmi2Real communicationStepSize ,
4 fmi2Boolean noSetFMUStatePriorToCurrentPoint) {
5 doStep ();
6 return fmi2OK;
7 }

Listing 1.3: Snippet of Handlebars template for fmi2DoStep.

1 void doStep () {
2 // read input variables
3 {{# each variables }}{{#if fmi }}{{#if input}}
4 {{#if real}}
5 index_state = findVariable("{{name}}", state);
6 if (index_state != -1) { // -1 means variable not found
7 readInputVariableDouble(index_state ,{{fmi.valueReference }});
8 } {{/if}}
9 // ... code for updating other variable types omitted for brevity

10 {{/if}}{{/if}}
11 {{/ each}}
12

13 // handle user action
14 handleUserAction ();
15

16 // execute a simulation step
17 sendToPVSio("{{tick}}");
18 receiveFromPVSio ();
19

20 // update output variables
21 {{# each variables }}{{#if fmi }}{{#if output }}
22 {{#if real}}
23 index_state = findVariable("{{name}}", state);
24 if (index_state != -1){ // -1 means variable not found
25 writeOutputVariableDouble(index_state , {{fmi.valueReference }});
26 } {{/if}}
27 // ... code for updating other variable types omitted for brevity
28 {{/if}}{{/if}}
29 {{/ each}}
30 }

Listing 1.4: Snippet of the Handlebars template for function doStep.

The return of the function is of type fmi2Status, which is the standard return
type of FMI 2.0 functions invoked by the master – possible return values are
fmi2OK (the function has been executed correctly) and fmi2Error (the function
produced an error). The body of the function invokes function doStep, which is
invoked by the master to trigger the execution of a simulation step, and then
returns a constant fmi2OK indicating that the step has been executed.

The template for function doStep is shown in Listing 1.4. It specifies the
four main operations performed by the function: reads input variables of the
FMU (lines 3-11); handles user input provided by the graphical front-end by
executing the corresponding action in the PVS model and updating the state
of the simulation (line 14); executes a step in the PVS model (lines 17-18);
receives the new state of the PVS model and updates the output variables of
the FMU (lines 20-29). The utility functions used in doStep are also specified
as Handlebars templates.

Fig. 2: Co-simulation of line follower robot case study.

4 Demonstrative examples

4.1 Co-Simulation of discrete and continuous components

Our first case study is based on the Line Follower Robot example provided by
the INTO-CPS [10] project. In the original example, an autonomous robot has
the goal of following a line painted on the ground. The controller of the robot
receives the readings from two light sensors placed on the front of the robot
(one slightly moved to the left and one slightly moved to the right), and sends
commands to the left and right motors which are in charge of the rotation of the
left and right wheels, respectively. The INTO-CPS project provides the FMU
of the kinematics of the robot (created with the 20-sim [4] tool), the FMU of
the sensors (created with 20-sim or OpenModelica [7]), and the FMU of the
controller (created with the Overture [9] tool).

In our previous work [20], we replaced the original controller of the robot
with a more advanced controller developed with PVSio-web. The new controller
allows a driver to override the automatic line following control of the robot, and
operate the robot manually, using controls on a dashboard. The sensors and the
mechanics of the robot are unaltered with respect to the original INTO-CPS
example.

The PVSio-web prototype (shown in Figure 2) provides a navigation display
with the trajectory of the robot, two speedometer gauges to monitor the veloc-

(a) U-turn due to high speed. (b) Missed turn.

Fig. 3: Unexpected behaviours of the line follower robot.

ities of the wheels, a speedometer gauge to monitor the velocity of the robot,
and various control buttons to allow a driver to accelerate (up arrow) or brake
(down arrow), change direction of the robot (left and right arrows), and change
gear (buttons A, Y and B). There is also a control (button X) to switch control
mode from manual back to automatic.

In our previous work the PVSio-web prototype was created by manually
developing the XML and C code necessary for the FMI interface. In this work we
re-created the same prototype automatically, using the APIs of our framework.
The new prototype was successfully used in co-simulation scenarios executed
using the INTO-CPS Co-simulation Orchestration Engine.

The FMU connected with the PVSio-web navigation display has been used to
analyse the robot behaviour when switching control mode from manual to auto-
matic and to expose possible faults of the robot. For example, many experiments
pointed out the need to perform a U-turn to get back on track when switching
from manual to automatic control and the robot was moving at high speed (see
Figure 3a), and some experiments ended up with the robot going far away from
the line due to the fact that it reaches perpendicularly the line, decides not to
turn and moves on (see Figure 3b).

4.2 Co-Simulation of multiple devices

Our second case study is based on an Integrated Clinical Environment (ICE). In
this case, the co-simulation integrates the concurrent execution of three models,
each representing a different device (see Figure 4).

ICE is a prototype medical system for intensive care patients. The system
includes three devices: a pump infusing morphine; a monitor checking vital signs
of the patient; and a supervisor device implementing a safety interlock app that
automatically stops the infusion when the patient monitor detects the onset of
respiratory depression.

The patient monitor records two vital signs: oxygen saturation level (SpO2),
and Respiration Rate (RRa). The current value of a vital sign is reported using
a numeric display. Additionally, a scan-bar trace display shows the temporal
evolution of the sign. Each monitored parameter has safe range limits. An alarm
is triggered if these limits are exceeded.

Fig. 4: Co-Simulation of ICE case study.

The front panel of the pump is used to enter the volume to be infused (V TBI)
and the rate of the infusion of morphine, as well as to start/stop the infusion.
During the infusion, the display of the pump shows the rate, the remaining
volume of morphine that needs to be infused, and the time to complete the
infusion.

The supervisor device has a user interface that can be used for remote moni-
toring of the pump state and patient monitor state. It is a portable device with a
display divided into two sections. The upper section replicates the pump display,
and the lower section replicates the patient monitor display.

Starting from the PVSio-web models of these devices, which were already
available in the PVSio-web distribution, we used our framework to generate three
FMUs, one for each device prototype. These three FMUs were integrated using
the INTO-CPS Co-simulation Orchestration Engine, according to the structure
shown in Figure 4.

A similar co-simulation example for the ICE system was previously devel-
oped in [11] using a (non-standard) co-simulation engine integrated in PVSio-
web, which builds on the SAPERE [23] middleware. The migration to the FMI
framework did not require any substantial update to the PVSio-web prototypes,
as our framework allowed us to re-route and adapt the communication chan-
nels used in the SAPERE-based co-simulation to the new FMI interface. The
main advantage of the FMI-based co-simulation with respect to that based on
SAPERE is that the co-simulation is not limited anymore to PVSio-web proto-
types, as other interactive prototypes and system elements developed with tools
other than PVSio-web can be integrated in the co-simulation. This is useful, e.g.,
to introduce patient models in the co-simulation, as tools other than PVS are
better suited to specify these models.

5 Related Work

Significant work has been done over the last few years to develop tool support
for co-simulation of CPSs. Some works use only one specification formalism for
both continuous and discrete systems, like HybridSim [22]. Others support het-
erogeneous co-simulation [8] with customised solutions, like ForSyDe [21] that
supports set of processes that may belong to a distinct Model of Computation, or
OpenICE [1], that allows the simulation of medical devices for an Integrated Clin-
ical Environment architectures, using a publish-subscribe middleware for com-
munications. In our previous work [2], we developed a CPS co-simulation frame-
work that integrates the Prototype Verification System (PVS) and Simulink.

Recent works use the Functional Mockup Interface (FMI) standard for sub-
systems synchronisation [19, 20]. In [18] FMI co-simulation is used for modelling
and analysing intelligent power systems. Another example is [6], which models
the discrete aspects of the system in VDM-RT, the physical part in Modelica
and the communication aspects between components in Promela. None of these
framework, however, targets modelling and analysis of user interfaces of CPS.

Work on formalising models and proofs for FMI-based co-simulations has
been carried out in [24] using Isabelle/UTP and an industrial case study from
the railways sector. In [5], a proof-of-concept co-simulation is performed between
Ptolemy II and Rodin, using Event-B for formal verification in the aeronautic
field. None of these works, however, targets modelling and analysis of user in-
terfaces of CPS.

6 Conclusion and future work

In this paper we present the process for transforming PVSio-web prototypes
into FMUs equipped with a standard FMI-2 co-simulation interface. This activ-
ity is part of our ongoing work on the development of a framework for formal
modelling, simulation and verification of human-centred CPS. In particular, the
generation of the FMU, extends our framework making it possible to co-simulate
our prototypes with any FMI-compliant co-simulation engine.

Our prototypes can be co-simulated with other prototypes modelled with
other tools. For example, in the ICE case, the pump could have been modelled
using a different formalism or a model of the patient could be included in the
co-simulation. Another advantages of the FMU generation process is that the
original PVSio-web prototypes are unchanged, and properties already verified
for a prototype are still satisfied by the generated FMU.

Future work will focus on providing a more refined management of the simu-
lated time and a more efficient mechanism for updating the graphical front-end
of the prototype. For example, the current implementation has constraints on
when time is advanced in the PVSio-web prototype. Specifically, time in the
PVS model is advanced only in action tick by a discrete step equal to the co-
simulation step-size. User actions do not advance time, and they are executed
in lockstep with the simulation. The consequence is that only one user action

can be handled at each simulation step. Experience shows that co-simulation
steps lower than 250 milliseconds allow for realistic simulations. We plan to re-
move this constraint by introducing an event-based mechanism for handling user
actions continuously over time.
Acknowledgments. Paolo Masci is funded by the ERDF (European Regional Devel-

opment Fund) through Operational Programme for Competitiveness and Internation-

alisation COMPETE 2020 Programme, within project POCI-01-0145-FEDER-006961,

and by National Funds through the Portuguese funding agency FCT (Fundação para

a Ciência e a Tecnologia) as part of project UID/EEA/50014/2013.

References

1. David Arney, Julian M. Goldman, Abhilasha Bhargav-Spantzel, Abhi Basu, Mike
Taborn, George Pappas, and Michael Robkin. Simulation of medical device network
performance and requirements for an integrated clinical environment. Biomedical
Instrumentation & Technology, 46(4):308–315, 2012.

2. Cinzia Bernardeschi, Andrea Domenici, and Paolo Masci. A PVS-Simulink Inte-
grated Environment for Model-Based Analysis of Cyber-Physical Systems. IEEE
Transactions on Software Engineering, PP(99):1–1, 2017.

3. Torsten Blochwitz, Martin Otter, Johan Åkesson, Martin Arnold, Christoph Clauß,
Hilding Elmqvist, Markus Friedrich, Andreas Junghanns, Jakob Mauß, Dietmar
Neumerkel, Hans Olsson, and Antoine Viel. Functional Mockup Interface 2.0: The
Standard for Tool independent Exchange of Simulation Models. In Proc. of the
9th Intl. Modelica Conference, pages 173–184. The Modelica Association, 2012.

4. Jan F Broenink. 20-sim software for hierarchical bond-graph/block-diagram mod-
els. Simulation Practice and Theory, 7(5-6):481–492, 1999.

5. Jean-Charles Chaudemar, Vitaly Savicks, Michael Butler, and John Colley. Co-
simulation of event-b and ptolemy ii models via fmi. In ERTS 2014 ”Embedded
real time software and systems”, Toulouse, FR, 2014.

6. Lúıs Diogo Couto, Stylianos Basagiannis, El Hassan Ridouane, Alie El-Din Mady,
Miran Hasanagic, and Peter Gorm Larsen. Injecting formal verification in fmi-
based co-simulations of cyber-physical systems. In Antonio Cerone and Marco
Roveri, editors, Software Engineering and Formal Methods, pages 284–299, Cham,
2018. Springer International Publishing.

7. Peter Fritzson, Peter Aronsson, H̊akan Lundvall, Kaj Nyström, Adrian Pop, Levon
Saldamli, and David Broman. The openmodelica modeling, simulation, and de-
velopment environment. In 46th Conference on Simulation and Modelling of the
Scandinavian Simulation Society (SIMS2005), 2005.

8. Cláudio Gomes, Casper Thule, David Broman, Peter Gorm Larsen, and Hans
Vangheluwe. Co-simulation: State of the art. CoRR, abs/1702.00686, 2017.

9. Peter Gorm Larsen, Nick Battle, Miguel Ferreira, John Fitzgerald, Kenneth Laus-
dahl, and Marcel Verhoef. The overture initiative integrating tools for vdm. ACM
SIGSOFT Software Engineering Notes, 35(1):1–6, 2010.

10. Peter Gorm Larsen, John Fitzgerald, Jim Woodcock, Peter Fritzson, Jörg Brauer,
Christian Kleijn, Thierry Lecomte, Markus Pfeil, Ole Green, Stylianos Basagiannis,
et al. Integrated tool chain for model-based design of cyber-physical systems: The
into-cps project. In Modelling, Analysis, and Control of Complex CPS (CPS Data),
2016 2nd International Workshop on, pages 1–6. IEEE, 2016.

11. P. Masci, P. Mallozzi, FL. DeAngelis, GDM Serugendo, and P. Curzon. Using
PVSio-web and SAPERE for rapid prototyping of user interfaces in Integrated
Clinical Environments. In Proceedings of the Workshop on Verification and Assur-
ance (Verisure2015), co-located with CAV2015, 2015.

12. Paolo Masci, Patrick Oladimeji, Yi Zhang, Paul Jones, Paul Curzon, and Harold
Thimbleby. PVSio-web 2.0: Joining PVS to HCI, pages 470–478. Springer Inter-
national Publishing, 2015.

13. Gioacchino Mauro, Harold Thimbleby, Andrea Domenici, and Cinzia Bernarde-
schi. Extending a user interface prototyping tool with automatic misra c code
generation. arXiv preprint arXiv:1701.08468, 2017.

14. C. Muñoz. Rapid prototyping in PVS. Technical Report NIA 2003-03, NASA/CR-
2003-212418, National Institute of Aerospace, Hampton, VA, USA, 2003.

15. CNN News. Tesla in autopilot mode crashes into fire truck, 2018.
http://money.cnn.com/2018/01/23/technology/tesla-fire-truck-crash/index.html.

16. CNN News. Uber self-driving car kills pedestrian in first fatal autonomous crash,
2018. http://money.cnn.com/2018/03/19/technology/uber-autonomous-car-fatal-
crash/index.html.

17. S. Owre, S. Rajan, J. Rushby, N. Shankar, and M. Srivas. PVS: combining specifica-
tion, proof checking, and model checking. In R. Alur and T.A. Henzinger, editors,
Computer-Aided Verification, CAV ’96, number 1102 in LNCS, pages 411–414.
Springer-Verlag, 1996.

18. P. Palensky, A. A. Van Der Meer, C. D. Lopez, A. Joseph, and K. Pan. Cosimula-
tion of intelligent power systems: Fundamentals, software architecture, numerics,
and coupling. IEEE Industrial Electronics Magazine, 11(1):34–50, March 2017.

19. P. Palensky, A. van der Meer, C. Lopez, A. Joseph, and K. Pan. Applied cosim-
ulation of intelligent power systems: Implementing hybrid simulators for complex
power systems. IEEE Industrial Electronics Magazine, 11(2):6–21, June 2017.

20. Maurizio Palmieri, Cinzia Bernardeschi, and Paolo Masci. Co-simulation of semi-
autonomous systems: The line follower robot case study. In Antonio Cerone and
Marco Roveri, editors, Software Engineering and Formal Methods, pages 423–437,
Cham, 2018. Springer International Publishing.

21. I. Sander and A. Jantsch. System modeling and transformational design refinement
in forsyde [formal system design]. IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, 23(1):17–32, Jan 2004.

22. B. Wang and J. S. Baras. Hybridsim: A modeling and co-simulation toolchain
for cyber-physical systems. In 2013 IEEE/ACM 17th International Symposium on
Distributed Simulation and Real Time Applications, pages 33–40, Oct 2013.

23. Franco Zambonelli, Andrea Omicini, Bernhard Anzengruber, Gabriella Castelli,
Francesco L De Angelis, Giovanna Di Marzo Serugendo, Simon Dobson, Jose Luis
Fernandez-Marquez, Alois Ferscha, Marco Mamei, et al. Developing pervasive
multi-agent systems with nature-inspired coordination. Pervasive and Mobile Com-
puting, 17:236–252, 2015.

24. Frank Zeyda, Julien Ouy, Simon Foster, and Ana Cavalcanti. Formalising cosimu-
lation models. In Antonio Cerone and Marco Roveri, editors, Software Engineering
and Formal Methods, pages 453–468, Cham, 2018. Springer International Publish-
ing.

