
Reasoning about complex requirements in a
uniform setting?

Manuel A. Martins1, Alexandre Madeira2,1,3, Lúıs S. Barbosa2

1 Department of Mathematics, University of Aveiro
2 Department of Informatics & CCTC, Minho University

3 Critical Software S.A., Portugal

Abstract. The paper formulates HEQ, an institution for hybrid equa-
tional logic to provide a uniform setting to express and reasoning about
different sorts of properties of complex software. It is also shown how,
through the definition of a suitable comorphism to FOL, this can be
integrated in Hets, providing suitable tool support for teaching and re-
search. The whole exercise was motivated by the need to unify, in a single
under-graduate course in a Computer Science curriculum, the specifica-
tion of data and behavioural constraints of reconfigurable systems.

1 The problem

Fundamental infrastructures of modern societies, including those related to fi-
nancial, health, education, energy and water supply, are critically based on in-
formation systems, which are assumed to be trustworthy. Moreover, our way
of living depends on software whose reliability is crucial for our own work, se-
curity, privacy, and quality of life. This explains why the quest for programs
whose correctness could be established by mathematical reasoning, which has
been around for a long time as a research agenda, has recently emerged as a
key concern for industry, who is becoming aware of the essential role played by
proofs and the associated relevance given to formal logic. At present, at least in
what concerns safety-critical systems, proofs pay the rent : they are no more an
academic activity or an exotic detail, but simply part of the business.

But software is large and complex, deals with a multitude of different con-
cerns, has to meet requirements formulated (and verified) at different abstraction
levels. A basic distinction is drawn between behavioural and data aspects. The
former relates to mechanisms (e.g., processes) which control manipulation of
data. While processes are dynamic and active, data is static and passive. Typ-
ically, the emergent behaviour of a software system is determined by the con-
current execution of several processes which exchange data in order to influence
each other’s behaviour.
? The authors manifest their gratitude to Razvan Diaconescu for his suggestions and

support in the preparation of this paper. This work was partially supported by
FCT, under contract PTDC/EIA-CCO/108302/2008, Centro de Investigação e Desen-
volvimento em Matemática e Aplicações of University of Aveiro, and doctoral grant
SFRH/BDE/33650/2009 supported by FCT and Critical Software S.A., Portugal.

Mathematically, this symmetry between data and behavioural structures can
be traced down to the duality between initial algebras and final coalgebras,
which provide their abstract descriptions [14]. From an educational point of
view, although disguised in a number of different designations, both approaches
are part of a typical Computer Science undergraduate curricula: abstract be-
havioural structures are usually studied in a Process Algebra course (often on
top of a previous course on languages and automata); abstract data structures
are covered in algebraic specification courses. The latter are typically concerned
with the concept of abstract data type, entailing a family of methods [6,15] which
constitutes a large and mature body of knowledge and active research in the
triple dimension of foundations, methodologies and applications.

These two approaches are usually kept separated in the curriculum. Even if
a number of attempts to integrate data and behaviour specifications do exist, as
in Lotos [9] or mCRL2 [7], they are often introduced as inhabitants of different
galaxies, dealing with orthogonal problems through essentially different methods.

But such a lack of integration inside the curriculum is not the only problem.
Actually, most approaches to software modeling, based either on an algebraic or
coalgebraic perspective, are ’static’ in the sense that the specification fixes the
component semantics once and for all. In most cases, however, and most typically
in service-oriented applications, what a software component may offer at each
stage may depend on its own evolution and history. That is to say, software
components are often evolving structures which may change from on mode of
operation to another, entailing corresponding updates in what counts, at each
mode or stage, as a valid description of their behaviour.

Can a rigorous discipline of software development, able not only to combine
data and behavioural issues, but also to deal appropriately with systems evolu-
tion and reconfiguration, be devised for teaching at undergraduate level? Such
is the problem addressed in this paper. It comes from a concrete context: the
reorganization of undergraduate degrees in Computer Science motivated by the
implementation of the Bologna Agreement in Portugal. This entailed the split of
traditional 5-years courses in Bachelor (3 years) and Master (2 years) degrees.
The latter are usually vertical in specific domains of Computer Science. Bache-
lor degrees, on the other hand, entailed the need for integrating courses in core
curricular areas (such as software specification and design) which requires the
introduction of methodologies with a common background and reasonable tool
support for increased experimental work.

A suitable answer to this challenge has to proceed at two levels: that of
general enough semantical structures, on the one hand, and of expressive logics
to capture properties of such structures, on the other. The approach proposed
in this paper characterizes an institution [8,4] for hybrid equational logic, which
enriches a classical modal setting with the ability to reference (properties of)
specific points in the system space state. This entails a powerful specification
logic endowed with a suitable class of models, implicitly capturing algebraic
and coalgebraic properties, and a satisfaction relation. Such an institutional

rendering, which is new to the best of our knowledge, pays off in terms of tool
support for specifications, as discussed below.

2 The approach: states-as-algebras and hybrid languages

The setting. From a didactical point of view the problem students are supposed
to deal with by the end of a course in Software Specification is that of model-
ing and reasoning reconfigurable components. These are components which may
evolve in time through a number of different stages or modes of operation, to
which correspond different configurations of the services made available through
its interface. Each configuration is specified axiomatically as an algebraic the-
ory ; its model being a concrete algebra satisfying such a theory. The component
evolution, on the other hand, is modeled by a transition system: a configuration
changes in response to a particular event in the system. Both aspects are taken
into account in the definition of a hybrid model in the following section.

The envisaged logic to express requirements on such structures, on the other
hand, has to deal with global and local properties. The former are essentially
modal, to capture the component evolution through different configurations. The
latter should be able to refer to specific states in the system and characterizing
the semantics of operations at each stage.

Modal logic is not enough as it does not allow explicit references to specific
states. Hybrid logic [1], however, overcomes this limitation by introducing sym-
bols, called nominals to reference states, i.e., in our case, to identify component’s
configurations. This is achieved through a family of connectives @i, indexed by
nominals i: intuitively @i p states the validity of p at the state identified by
nominal i. The syntax of the equational hybrid logic, discussed in the following
section, is given by

ϕ,ψ := p | i | t = t′ | ¬ϕ|[λ]ϕ |@iϕ |ϕ ∧ ψ |ϕ ∨ ψ |ϕ→ ψ

where λ ranges over modal operators. The logic can be seen as a fragment of
hybrid first-order logic obtained by taking equations as extra atoms instead of
all first-order formulas (cf. [2]).

A specification example. A small, elementary example may help to illustrate the
kind of specifications we want to be able to deal with. Consider a calculator with
two states, say the +-state and the ×-state, on which an operation denoted by
the ? symbol stands, respectively, for sum or multiplication of natural numbers.
Additionally, the calculator exhibits another operation, shift, that leads from
one configuration to the other.

This calculator may be viewed as a transition system that alternates between
+ and ×-states by the application of shift. Each of its states is associated to a
Σ-algebra, where Σ is the one-sorted signature consisting of one sort {nat} and
the following set of operation symbols {0 :→ nat; suc : nat → suc; p : nat →
suc; ? : nat× nat→ nat}.

Considering Λ = {�} and Nom = {×,+}, to denote the + and ×-states, we
are able to express local properties like @+?(n, 0) ≈ n, @+?(n, suc(0)) ≈ suc(n),
@× ? (n, 0) ≈ 0 and @× ? (n, suc(0)) ≈ n. Modal or transition properties, on the
other hand, resort to Λ. For example, �+↔ × and �? (n, 0) ≈ n→ ?(n, 0) ≈ 0.

Going ’institutional’. Dealing with this sort of specifications entails the need
for a uniform specification framework in which both equational properties of
data types, modal properties of transitions and local properties of states can be
expressed and verified. The canonical way to do it is through the notion of an
institution [8,4], as an abstract representation of a logical system, encompassing
syntax, semantics and satisfaction. Let us recall here the formal definition: An
institution

(
SignI ,SenI ,ModI , (|=IΣ)Σ∈|SignI |

)
consists of

– a category SignI whose objects are called signatures.
– a functor SenI : SignI → Set giving for each signature a set whose elements

are called sentences over that signature.
– a functor ModI : (SenI)op → CAT, giving for each signature Σ a cate-

gory whose objects are Σ-models, and whose arrows the corresponding Σ-
morphisms, and

– a satisfaction relation |=IΣ⊆ |ModI(Σ)| × SenI for each Σ ∈ |SenI |.

such that for each morphism ϕ : Σ → Σ′ ∈ SignI , the satisfaction condition

M ′ |=IΣ′ SenI(ϕ)(ρ) iff ModI(ϕ)(M ′) |=IΣ ρ (1)

holds for each M ′ ∈ |ModI(Σ′)| and ρ ∈ SenI(Σ). A well-known example, upon
which HEQ will be built in the sequel, is EQ =

(
SignEQ,SenEQ,ModEQ, (|=EQΣ

)Σ∈|SignEQ|
)
, the institution of equational logic.

Institutions provide a suitable setting to do abstract specification theory [16],
structuring any kind of specifications through combinators which are institution-
independent, i.e. not tied to a specific logic system. In Casl [12], for example,
such combinators allow the construction of basic specifications, by defining a
signature and a set of sentences, the union of specifications, and the derivation
and translation of specifications along signature morphisms. The use of this set
of (abstract) combinators, allows to approach, in a uniform way and trough the
same theory, systems expressed in completely different logics. Naturally, what
can be inferred or verified for a particular specification depends on the institution
in which it is formulated.

A step further towards a uniform, institution-independent setting, provides
heterogeneous, multi-institution specifications. One takes unstructured specifi-
cation on specific institutions as basic units, that are structured and combined
via adequate logical translations. These maps plays, therefore, a central role,
being treated as first-class citizens in, e.g., [11]. Such maps lift specifications ex-
pressed within different institutions to a common level. Thus any tools, namely
proof assistants, available for the target institution, can be borrowed to the
source one. Heterogenous specifications are currently supported by Hets [13]
and CafeObj [5]. The former integrates parsers, static analysers and provers for

individual logics, and manages heterogeneous proofs resorting to the so-called
graphs of logics, i.e., graphs whose nodes are institutions and, whose edges, are
adequate translations between them, known as institution comorphisms. For-
mally, a comorphism between institutions(
SignI ,SenI ,ModI , (|=IΣ)Σ∈|SignI |

)
and

(
SignI

′
,SenI

′
,ModI

′
, (|=I′Σ)Σ∈|SignI′ |

)
consists of a triple (Φ, α, β) where

– Φ : SignI → SignI
′

is a functor

– α : SenI ⇒ SenI
′
◦ Φ is a natural transformation,

– β : ModI
′
◦ Φop ⇒ ModI is a natural transformation such that

for any Σ ∈ |SignI |, ρ ∈ SenI and M ′ ∈ ModI
′
(Φ(Σ)),

M ′ |=I
′

Φ(Σ) αΣ(ρ) iff βΣ(M ′) |=IΣ ρ. (2)

A paradigmatic example is the comorphism between FOL, the institution of
first-order logic, and EQ obtained by the encoding first-order relations as boolean
functions [4]. We are now in conditions to formally define the specification lan-
guage intuitively suggested on Section 1, and show that it defines an institution,
the hybrid equational logic institution, HEQ.

3 An institution for hybrid equational specifications

The institution HEQ is defined as

HEQ = (SignHEQ,SenHEQ,ModHEQ, (|=HEQ∆)∆∈|SignHEQ|
)

(3)

Its category of signatures, SignHEQ, takes as objects triples 〈F,Nom, Λ〉, where
F is a signature of EQ and Λ,Nom are disjoint sets of modalities and nominals.
Morphisms are triples ϕ = (ϕSig, ϕNom, ϕMS) with ϕSig a morphism in EQ be-
tween F and F ′ and ϕNom : Nom→ Nom′ and ϕMS : Λ→ Λ′ are functions. The
sentences functor SenHEQ, maps a signature ∆ = 〈F,Nom, Λ〉 on the smaller
set which contains the F -equations and nominals in Nom and is closed for the
the boolean connectives {¬,∨,∧,→} and the satisfaction operator @i, i ∈ Nom.
Formally,

– SenEQ(F) ⊆ SenHEQ(∆);
– Nom ⊆ SenHEQ(∆);
– for any ρ, ρ′ ∈ SenHEQ(∆), ¬ρ, ρ ∨ ρ′, ρ ∧ ρ′, ρ→ ρ′ ∈ SenHEQ(∆)
– @iρ ∈ SenHEQ(∆) for any ρ ∈ SenHEQ(Σ) and i ∈ Nom;
– [λ]ρ ∈ SenHEQ(∆), for any λ ∈ Λ, ρ ∈ SenHEQ(∆).

A signature morphism 〈F,Nom, Λ〉
ϕ // 〈F ′,Nom′, Λ′〉 induces a sentence trans-

lation SenEQ(〈F,Nom, Λ〉)
SenEQ(ϕ)// SenEQ(〈F ′,Nom′, Λ′〉) recursively defined by

– SenHEQ(ϕ)(ρ) = SenI(ϕSig)(ρ) for any ρ ∈ SenEQ(F);

– SenHEQ(ϕ)(i) = ϕNom(i);
– SenHEQ(ϕ)(¬ρ) = ¬SenHEQ(ϕ)(ρ);
– SenHEQ(ϕ)(ρ� ρ′) = SenHEQ(ϕ)(ρ)� SenHEQ(ϕ)(ρ′), � ∈ {∨,∧,→};
– SenHEQ(ϕ)(@iρ) = @ϕNom(i)SenHEQ(ρ);

– SenHEQ(ϕ)([λ]ρ) = [ϕMS(λ)]SenHEQ(ρ);

For each 〈F ′,Nom′, Λ′〉 ∈ |SignHEQ|, the category of models ModHEQ(F ′,Nom′, Λ′)
has the following structures as objects:

A = 〈S, state : Nom→ S, (Rλ ⊆ S2)λ∈Λ, (As)s∈S〉, (4)

where S is a set of states; state : Nom → S is a function that assigns nominals
to states; for each λ ∈ Λ, Rλ ⊆ S2 is a binary relation, called a modality, and
(As)s∈S is a S-family of F -algebras over the same carrier. A morphism between
models 〈S, state : Nom → S, (Rλ ⊆ S2)λ∈Λ, (As)s∈S〉 and 〈S′, state′ : Nom →
S′, (R′λ ⊆ S′2)λ∈Λ, (A

′
s)s∈S′〉 consists of a pair 〈hSt,hMod〉, where and hMod is

an S-family
(
hMods : As → A′hSt(s)

)
s∈S of algebras morphisms and hSt : S → S′

is a function such for any s, s′ ∈ S and for any λ ∈ Λ, (s, s′) ∈ Rλ implies that
(hSt(s),hSt(s

′)) ∈ R′λ, and for any n ∈ Nom, state′(n) = hSt(state(n)).
The reduct of a∆′-modelA′ = 〈S′, state′ : Nom′ → S′, (R′λ ⊆ S2)λ∈Λ′ , (A′s)s∈S〉,

along ϕ : ∆→ ∆′, denoted by ModHEQ(ϕ)(A′), consists of the∆-model 〈S, state :
Nom → S, (Rλ ⊆ S2)λ∈Λ, (As)s∈S〉 where S = S′, state(n) = state′(ϕNom(n))
for any n ∈ Nom, Rλ = R′ϕMS(λ) for any λ ∈ Λ and As = ModI(ϕSig)(A′s) for
any s ∈ S.

Finally, we have a |SignEQ|-family of relations |=∆⊆ ModEQ(∆)×SenEQ(∆),
recursively defined, for eachA = 〈S, state : Nom→ S, (Rλ ⊆ S2)λ∈Λ, (As)s∈S〉,∈
ModEQ(∆), and for any s ∈ S, ρ, ρ′ ∈ SenEQ(∆), e ∈ SenEQ(F) and i, j ∈ Nom
as follows:

– A |=s e iff, As |=EQ e; A |=s i iff, Nom(s) = i;
– A |=s @jρ iff A |=state(j) ρ;
– A |=s [λ]ρ iff, A |=w ρ for any (s, w) ∈ Rλ;

with the obvious definition for ∨, ∧ and →. The following theorem, which is
proved by induction on the structure of sentences (the interested reader is re-
ferred to [10] for proofs), completes the presentation of HEQ.

Theorem 1. Let ∆ = (F,Nom, Λ) and ∆′ = (F ′,Nom′, Λ′) two hybrid sig-
natures and ϕ : ∆ → ∆′ an hybrid signature morphism. Then, for any ρ ∈
SenHEQ(∆) and for any A′ = 〈S, state : Nom → S, (Rλ ⊆ S2)λ∈Λ, (As)s∈S〉 ∈
|ModHEQ(∆′)|, ModHEQ(ϕ)(A′) |=s ρ iff A′ |=s SenHEQ(ϕ)(ρ), for all s ∈ S.

As announced, it is possible to establish translations between hybrid logic and
the classic first order logic. A standard procedure [3] translates hybrid formulas
to the first-order logic by transforming functions and relations local to each
state to global functions and relations parametrized by states. On the present
section, we enlighten this phenomena, defining a comorphism between HEQ
and FOL. This result is fundamental for our approach as it brings to scene

all reasoning power of first order logic. Moreover, it provides the key for the
integration of HEQ on the Hets framework. We sketch in the sequel its basic
structure. The relevant comorphism is defined as (Φ, α, β) : HEQ → FOL where,
functor Φ : SignHEQ −→ SignFOL, mapping (F,Λ,Nom) to ({W,U}, F̄ , R̄), is
defined by F̄ = {xi :→ W |i ∈ Nom} ∪ {f̄ : W × Un → U |f ∈ Fn} and
R̄ = RΛ. The natural transformation β : Φop ◦ModFOL ⇒ ModHEQ maps each
(M,MF̄ ,MR̄) ∈ Mod

(
({W,U}, F̄ , R̄)

)
on

(S, state, RΛ, (Ms)s∈S) (M,MF̄ ,MR̄)�
(βF,Λ,Nom)

oo ,

where S = MW , state(i) = xMi , i ∈ Nom, RΛ = RMΛ and Ms = 〈MU , F
Ms〉,

where for any f ∈ Fn and each ui ∈ U , i ≤ n, fMs(u1, . . . , un) = f̄M (s, u1, . . . , un).
The natural transformation α : SenHEQ ⇒ SenFOL ◦ Φ is defined for each

(F,Nom, Λ)-sentence by α(ρ) = (∀x)αx(ρ),

αx(∀X t ≈ t′) = ∀X Tx(t) ≈ Tx(t′)
αx(i) = xi ≈ x, i ∈ Nom

αx(@iρ) = αxi(ρ), i ∈ Nom
αx([λ]ρ) = (∀y)[(x, y) ∈ Rλ → αy(ρ)], λ ∈ Λ
αx(¬ρ) = ¬αx(ρ)

αx(ρ� ρ′) = αx(ρ)� αx(ρ′), � ∈ {∨,∧,→}

where Tx : TF → Φ(∆)]{x} is defined, for each f(t1, . . . , tn) ∈ TF by Tx(f(t1, . . . , tn)) =
f̄(x, Tx(t1), . . . , Tx(tn)). We may, finally, state the basic result:

Theorem 2. Let ∆ ∈ |SignHEQ|, ρ ∈ SenHEQ and M ′ ∈ ModFOL(Φ(∆)).
Then, for α and β defined as above we have that,

β∆(M ′) |=HEQ∆ ρ iff M ′ |=FOLΦ(∆) α∆(ρ). (5)

Back to our running example, we encode an HEQ-specification in FOL
by mapping ∆ = 〈Σ, {�}, {+,×}〉 to signature Φ(∆) with the set of sorts
{nat, states} and the set of operations {0̄ : states → nat; suc : states × nat →
nat; p : states × nat → nat c+ :→ states; c× :→ states}. The translation of the
axiomatization by α is as follows:

α
(
p(suc(n)) ≈ n

)
= ∀s(αs[p(s, s̄uc(s, n) ≈ n))] = ∀s(p̄(s, s̄uc(s, n) ≈ n))

α(�+↔ ×) = ∀s[αs(�+↔ ×)] = ∀s[αs(�+)↔ αs(×)]
= ∀s[(∀y[(s, y) ∈ R� → c+ ≈ y])↔ c× ≈ y]

α(@+ ? (n, 0)) ≈ n = ∀s?̄(c+, n, 0)
α(?(n, k) ≈ ?(k, n)) ≈ n = ∀s[?̄(s, n, k) ≈ ?̄(s, k, n))].

4 Concluding

The paper suggested an approach to define and reason about complex specifi-
cations resorting to a hybrid logic with equations which was formalized as an

institution. Moreover it presented a comorphism to FOL which caters for its
encoding in Hets, as well as in theorem provers based in first order languages.

The impact of such a smooth, uniform setting, with suitable tool support,
in teaching software specification at under-graduate level, seems promising, al-
though it is still to early to assess. It can be said, however, that it completely
meets our initial aims: integrating in a single course on Software Specification
the ability to state and reason, in a single formal framework, about functional
and behavioural, global and local properties of complex software, with suitable
tool support.

References

1. P. Blackburn. Representation, reasoning, and relational structures: a hybrid logic
manifesto. Logic Journal of IGPL, 8:2000, 2000.

2. P. Blackburn and M. Marx. Tableaux for quantified hybrid logic. In Methods
for modalities 2, workshop proceedings, November 29-30, 2001. ILLC, pages 38–52.
Springer Verlag, 2002.

3. T. Braüner. Natural deduction for first-order hybrid logic. Journal of Logic,
Language and Information, 14:173, 2005.

4. R. Diaconescu. Institution-independent Model Theory. Birkhäuser Basel, 2008.
5. R. Diaconescu and K. Futatsugi. Logical foundations of cafeobj. Theoretical Com-

puter Science, 285:289–318, 2002.
6. H. Ehrig and B. Mahr. Fundamentals of Algebraic Specification 1: Equations and

Initial Semantics. Springer Verlag, 1985.
7. J. F. G. et al. The the mcrl2 toolset. In Proc. Int. Workshop on Advanced Software

Development Tools and Techniques, 2008.
8. J. A. Goguen and R. M. Burstall. Institutions: abstract model theory for specifi-

cation and programming. J. ACM, 39:95–146, January 1992.
9. L. Logrippo, T. Melanchuk, and R. J. Du Wors. The algebraic specification lan-

guage lotos: an industrial experience. In Proceedings Int. Conf. on Formal methods
in software development, pages 59–66. ACM, 1990.

10. M. A. Martins, A. Madeira, and L. S. Barbosa. HEQ, an institution for hybrid
equational logic. Research note, CCTC, Minho University, 2010.

11. T. Mossakowski. Foundations of heterogeneous specification. In WADT 2002, 16th
Inter. Workshop on Recent Trends in Algebraic Development Techniques, Revised
Selected Papers, LNCS, pages 359–375. Springer, 2003.

12. T. Mossakowski, A. Haxthausen, D. Sannella, and A. Tarlecki. CASL: The com-
mon algebraic specification language: Semantics and proof theory. Computing and
Informatics, 22:285–321, 2003.

13. T. Mossakowski, C. Maeder, and K. Lüttich. The heterogeneous tool set, hets. In
13th Int. Conf. Tools and algorithms for the construction and analysis of systems,
TACAS’07, pages 519–522, Berlin, Heidelberg, 2007. Springer-Verlag.

14. J. J. M. M. Rutten. Universal coalgebra: a theory of systems. Theor. Comput.
Sci., 249(1):3–80, 2000.

15. D. Sannella and A. Tarlecki. Essential concepts of algebraic specification and
program development. Formal Aspects of Computing, (9):229–269, 1997.

16. A. Tarlecki. Abstract specification theory: An overwiew. In Models, Algebras,
and Logics of Engineering Software,M. Broy, M. Pizka eds., NATO Science Series,
Computer and Systems Sciences, VOL 191, pages 43–79. IOS Press, 2003.

	Reasoning about complex requirements in a uniform setting
	Manuel A. Martins , Alexandre Madeira, Luís S. Barbosa

