
Models as arrows: the role of dialgebras ?

Alexandre Madeira1,2,3, Manuel A. Martins2, Lúıs S. Barbosa1

1 Department of Informatics and CCTC, Minho University
2 Department of Mathematics, University of Aveiro

3 Critical Software S.A., Portugal

Abstract. A large number of computational processes can suitably be
described as a combination of construction, i.e. algebraic, and obser-
vation, i.e. coalgebraic, structures. This paper suggests dialgebras as a
generic model in which such structures can be combined and proposes
a small calculus of dialgebras including a wrapping combinator and se-
quential composition. To take good care of invariants in software design,
the paper also discusses how dialgebras can be typed by predicates and
proves that invariants are preserved through composition. This lays the
foundations for a full calculus of invariant proof-obligation discharge for
dialgebraic models.

1 Introduction

Metaphors. Probably the most elementary model of a computational process
is that of a function f : I −→ O, which specifies a transformation rule between
two structures I and O. In a (metaphorical) sense, this may be dubbed as the
‘engineer’s view’ of reality: here is a recipe to build gnus from gnats. Often,
however, reality is not so simple. For example, one may know how to produce
‘gnus’ from ‘gnats’ but not in all cases. This is expressed by observing the output
of f in a more refined context: O is replaced by O + 1 and f is said to be a
partial function. In other situations one may recognise that there is some context
information about ‘gnats’ that, for some reason, should be hidden from input. It
may be the case that such information is too extensive to be supplied to f by its
user, or that it is shared by other functions as well. It might also be the case that
building gnus would eventually modify the environment, thus influencing latter
production of more ‘gnus’. For U a denotation of such context information, the
signature of f becomes f : I −→ (O × U)U . In both cases f can be typed as
f : I −→ T O, for T = Id + 1 and T = (Id × U)U , respectively, where T is a
functor, intuitively a type transformer providing a shape for the output of f .

? Research partially supported by FCT, the Fundação Portuguesa para a Ciência e
a Tecnologia through Centro de Investigação e Desenvolvimento em Matemática
e Aplicações of University of Aveiro and the project MONDRIAN (under the
contract PTDC/EIA-CCO/108302/2008). A. Madeira is also supported by
SFRH/BDE/33650/2009, a joint PhD grant by FCT and Critical Software S.A.,
Portugal.



A function computed within a context is often referred to as ‘state-based’,
in the sense the word ‘state’ has in automata theory — the memory which both
constrains and is constrained by the execution of actions. In fact, the ‘nature’ of
f : I −→ (O×U)U as a ‘state-based function’ is made more explicit by rewriting
its signature as f : U −→ (O × U)I

This, in turn, may suggest an alternative model for computations, which
(again in a metaphorical sense) one may dub as the ‘natural scientist’s view’.
Instead of a recipe to build ‘gnus’ from ‘gnats’, the simple awareness that there
exist gnus and gnats and that their evolution can be observed. That observation
may entail some form of interference is well known, even from Physics, and thus
the underlying notion of computation is not necessarily a passive one.

The able ‘natural scientist’ will equip herself with the right ‘lens’ — that is, a
tool to observe with, which necessarily entails a particular shape for observation.
Similarly, the engineer will resort to a ‘tool box’ emphasizing the possibility of at
least some (essentially finite) things being not only observed, but actually built.
In summary,

an observation structure: universe
c−→ ©_© universe

an assembly process:
eee

artifact
a−→ artifact

Assembly processes are specified in a similar (but dual) way to observation
structures. Note that in the picture ‘artifact’ has replaced ‘universe’, to stress
that one is now dealing with ‘culture’ (as opposed to ‘nature’) and, what is far
more relevant, that the arrow has been reversed. Formally, both ‘lenses’ and
‘toolboxes’ are functors. And, therefore, an observation structure is a ©_©-

coalgebra, and an assembly process is a
eee

-algebra.

Algebras and coalgebras for a functor [19] provide abstract models of essen-
tially construction (or data-oriented) and observation (or behaviour -oriented)
computational processes, respectively. Construction compatibility and indistin-
guishability under observation emerge as the basic notions of equivalence which,
moreover, is characterized in a way which is parametric on the particular ‘tool-
box’ or ‘lens’ used, respectively. Algebraic compatibility and bisimilarity acquire
a shape, which is the source of abstraction such models are proud of. Moreover, it
is well known that, if ‘toolboxs’ or ‘lens’ are ‘smooth enough’, there exist canon-
ical representations of all ‘artifacts’ or ‘behaviours into an initial (respectively,
final) algebra (respectively, coalgebra).

Purpose and overview. Both assembly and observation processes, as dis-
cussed above, can be modeled by functions, or more generally, by arrows in a
suitable category, between the universes-of-interest. In such a context, this paper
takes a step further in two moves: first it recovers the notion of a dialgebra [16,
22] as a suitable way to combine algebraic and coalgebraic aspects of a computa-
tional process in a single arrow; then it generalizes its typing universes from sets



to predicates to capture the idea that some desirable properties are to be main-
tained invariant along computation, that is, unharmed across all transactions
which are embodied in the system’s functionality.

The first move is entailed by the authors recent work on modeling reconfig-
urable systems [13]. Such systems may evolve in time through a number of dif-
ferent stages or modes of operation, to which correspond different configurations
of the services made available through its interface. Each stage is implemented
by an algebra. The component evolution, on the other hand, is modeled by a
coalgebra: a configuration changes in response to a particular event in the sys-
tem. For example, a component in a sensor network may be unable to restart
a particular piece of equipment if in an alarm stage of operation, but not in a
normal one. On the other hand, the way it computes the result of sensoring a
number of hardware control devices may change from one mode to another (re-
sorting e.g., to different weights to use on the weighted sum of measurements).
Dialgebras,

emm
U

d−→ ©_© U

reviewed in section 2, provide, in such cases, a suitable, general model. The
second move, on the other hand, types dialgebras by predicates, encoded as
coreflexive binary relations. Recall a set X can be represented as a binary re-
lation y ΦX x ≡ y = x ∧ x ∈ X, which is called coreflexive because it is a
fragment of the identity, i.e., ΦX ⊆ id. The intuition behind this move is that
a dialgebra typed by a predicate is a structure for which such a predicate is
to be maintained along its evolution, technically, an invariant. This emphasizes
the role of invariants in software design as constraints which restrict behavior
in some desirable way, expressing bussiness rules or technical limits, and whose
maintenance entails some kind of proof obligation discharge. Section 3 paves the
way to a theory of dialgebras which regards invariant predicates as types. An
outcome of such a theory is a calculus of invariants’ proof obligation discharge,
a fragment of which is discussed here, across what is identified as basic algebra
of dialgebraic models. The latter consists of two operations — sequential com-
position and wrapping — on top of which richer calculi can be developed. Some
conclusions and prospects for future work are discussed in section 4.

2 Dialgebras

Categories of dialgebras, were initially defined as generalized algebraic categories
in [21] and their theory developed in [20, 1]. Later they were studied by [22] in
the style of universal algebra and of universal coalgebra (e.g. [19]). In Computer
Science, dialgebras were firstly used in [10] to deal with data types in a purely
categorical way. In [17], they are used to specify systems whose states may have
an algebraic structure, i.e., as models of evolving algebras of [6]. More recently,
dialgebras, as a generalization of both algebras and coalgebras, were studied in
[16].



Let us review the basic definition. Let T,G : C → C be two endofunctors
over a category C. Formally, a 〈T,G〉-dialgebra consists of a pair A = 〈A, d〉,
where A ∈ Obj(C) and d is an arrow d : TA −→ GA. A morphism between
〈T,G〉-dialgebras A = 〈A, d〉 and B = 〈B, d′〉 is an arrow h : A → B such that
d′ ·Th = Gh·d. Dialgebras and their morphisms define a category DiAlg(〈T,G〉).

Dialgebras generalize many interesting structures as depicted below, taking
algebras (regarded as 〈T, id〉-dialgebras) and coalgebras (as 〈id,G〉-dialgebras)
as the simplest instantiations. Let us recall a few examples.

(dialgebras)
TX −→δ GX
DiAlg(�T, G�)

(algebras)
TX −→α X

DiAlg(�T, id�)

TX −→α X −→β GX
(bialgebras)

BiAlg(�T, G�)DiAlg(�T, id + 1�)

(partial algebras)
TX −→α X + 1

DiAlg(�T, P�)

(multi-algebras)
TX −→α PX

(pointed coalgebras)

X + 1 −→β GX
DiAlg(�id + 1, G�)

DiAlg(�id, G�)
(coalgebras)

X −→β GX

DiAlg(�T + X,X + P�)
TX + id −→α id + PX

(relational algebras)

Example 1 (Multi-algebras) Let Σ = 〈Λ, rank〉, where Λ is a set of symbols
and rank a function that assigns a natural number to each symbol in Λ, be an
algebraic signature, and TΣ : Set → Set, defined by TΣ(X) = qλ∈ΛXrank(λ),
its associated functor. Objects of DiAlg(〈TΣ ,P〉) are multi-algebras over Σ, ie.,
pairs 〈A,ΛA〉 where A is a set and ΛA is a set of maps λA : Arank(A) → P(A)
(cf. [8]). Such structures model nondeterminism of systems, interpreting the op-
erations of the signature as maps that return, for each argument, a set of possible
results.

Example 2 (Partial algebras) DiAlg(〈TΣ , idSet +1〉) is the category of par-
tial algebras over Σ. Its objects are pairs 〈A,ΛA〉 where A is a set and ΛA a
set of partial maps λA : Arank(λ) → A (cf. [9, Chap 2]). The homomorphisms
between two objects 〈A, δ〉 and 〈B, δ′〉 consists of maps h : A → B which pre-
serve definability, in the sense that for each λ ∈ Λ and for each rank(λ)-tuple
(a1, . . . , arank(λ)), if λA(〈a1, . . . , arank(λ)〉) ∈ A then λB(〈h(a1), . . . , h(arank(λ))〉)
∈ B and h(λA(〈a1, . . . , arank(λ)〉)) = λB(〈h(a1), . . . , h(arank(λ))〉).

Example 3 (Pointed coalgebras) A limitation of pure coalgebras to specify
initial states of transition systems is overcome in the so called pointed coalgebras,
which are objects of DiAlg(〈id + 1, G〉). This makes possible, for example, to
introduce initial states on models of automata, as in d : Q+ 1 −→ QIn × 2.

Example 4 (Bialgebras) Are pairs 〈A, (a, c)〉 with TA
a // A

c // GA ,
morphisms being simultaneously T -algebra and G-coalgebra morphisms. Clearly,
they form a subcategory of DiAlg(〈T,G〉): the corresponding dialgebra is given
by 〈A, c · a〉. Bialgebras were suggested as an adequate structure for software
specification in [14], under the name of algebra-coalgebra pairs (with respect
to (T,G)). Further references [11, 4] studied a specialization of these structures,



imposing some kind of commitment between the algebraic and coalgebraic com-
ponents. More precisely, a class of bialgebras was studied for each of which the
operations of its algebraic part respect the observations determined by its coalge-
braic part.

Reference [13] introduces dialgebras over product types as a model of re-
configurable systems. The advantage of such a general way to represent soft-
ware models is the uniform setting it provides to reason about them. This in-
cludes, for example, a notion of bisimulation, parametric on functors T and
G, and associated calculus. Formally, a bisimulation between two dialgebras
d, e ∈ Obj(DiAlg(〈T,G〉)) consists of a relation R ⊆ A × B for which there
exists a dialgebraic structure ρ on R making the following diagram to commute.

TA

d

��

TR
Tπ1 //Tπ2oo

ρ

��

TB

e

��
GA GR

Gπ1

oo
Gπ2

// TB

(1)

3 Dialgebras typed by invariants

Invariants. Invariants are constraints on the carrier of dialgebras which restrict
their behavior in some desirable way. Formally, an invariant for a dialgebra
d : TA→ GA is a predicate P ⊆ A satisfying for all u ∈ TA,

u ∈ T (P )⇒ d(u) ∈ G(P ) (2)

where T (P ), G(P ) stands for the lifting of predicate P via functors T , G, respec-
tively. Our approach, following previous work in [3], proceeds by transforming (2)
into a pointfree binary relation formula, i.e., one free of quantifiers and variables
(points) such as u above. In this context, we reason:

〈∀ u :: u ∈ T (P ) ⇒ d(u) ∈ G(P )〉
≡ { ∀-one point rule, ∀-trading }
〈∀ v, u :: v = u ∧ u ∈ T (P ) ⇒ d(v) = d(u) ∧ d(u) ∈ G(P )〉

≡ { encoding predicates as coreflexives (twice) }
〈∀ v, u :: v ΦT (P ) u ⇒ d(v) ΦG(P ) d(u)〉

≡ { rule (f b)R(g a) ≡ b(f◦ ·R · g)a }
〈∀ v, u :: v ΦT (P )u ⇒ v(d◦ · ΦG(P ) · d)u〉

≡ { definition of ⊆ }
ΦT (P ) ⊆ d◦ · ΦG(P ) · d

≡ { law (4) below }
c · ΦP ⊆ F ΦP · c (3)



where the last step is justified by the first of the following laws of the relational
calculus, known as the shunting rules [5], for f a function:

f ·R ⊆ S ≡ R ⊆ f◦ · S and R · f◦ ⊆ S ≡ R ⊆ S · f (4)

Note that dialgebra d complies with this rule because it is a function.
Altogether, we arrive at a quite compact definition of what an invariant is,

which proves easy to calculate with, as illustrated below. Moreover, the pattern
in (3) is an instance of Reynolds “arrow combinator” R←S [18] which, given R
and S, relates two functions f and g as follows:

f(R← S)g ≡ f · S ⊆ R · g (5)

Instantiating the same pattern with an arbitraty relation R and dialgebras d, e,
leads to d(GR ← TR)e which a simple calculation establishes as an alternative
definition of bisimulation: as projections π1, π2 are functions and inclusion for
functions boils down to equality (i.e., f ⊆ g ≡ f = g), diagram (1) can be
expressed as 〈∃ ρ :: d(Gπ1 ← Tπ1)ρ ∧ ρ(Gπ2 ← Tπ2)e〉. Therefore,

〈∃ ρ :: d(Gπ1 ← Tπ1)ρ ∧ ρ(Gπ2 ← Tπ2)e〉
≡ { relational converse and composition }
d((Gπ1 ← Tπ1) · (Gπ2 ← Tπ2)◦)e

≡ { law (r ← f) · (s ← g)◦ = (r · s◦) ← (f · g◦) }
d((Gπ1 ·Gπ◦2) ← (Tπ1 · Tπ◦2))e

≡ { tabulation: R = π1 · π◦
2 }

d(GR ← TR)e

The fact that we can write d(GR←TR)e instead of d ·TR ⊆ GR ·e to mean
that R is a bisimulation between dialgebras d and e, entails calculational power
which is what justifies this recasting bisimulations in terms of Reynolds’ arrow
combinator. This has been studied in detail in [2], a paper which derives elegant
and manageable pointfree properties used here.

Calculating invariants. Invariants are, thus, coreflexive bisimulations. Nota-

tion GΦP TΦP
doo denotes the fact that P is an invariant for d.

This notation suggests a category of “predicates as objects” as a suitable
universe for describing dialgebras subject to invariants. Arrows will represent
proof-obligations. Such a category, although restricted to the coalgebraic case,
was studied in detail in [3] to which the interested reader is referred (the gen-
eralization to dialgebras is straightforward). The relational characterization of
invariants through Reynolds’ arrow entails easy to follow, calculational proofs
when reasoning about dialgebras. For example, the following result, witnesses



invariant combination and is most useful to deal with the decomposition of the
relevant proof-obligations:

G (Φ · Ψ) T (Φ · Ψ)
doo ⇐ GΦ TΦ

doo ∧ GΨ TΨ
doo (6)

An algebra of arrows. In general, composition of dialgebras depends on prop-
erties of functors T and G. In the sequel two combinators are introduced: wrap-
ping, which generalizes interface renaming, and sequential composition. These
combinators obey a number of laws, such as associativity and a limited form of
distributivity, which will not be discussed in this paper. Instead, it will be shown
that in all cases invariants are preserved across composition — a fundamental
healthiness condition for our approach. Actually, such results make possible the
structured discharge of the model’s proof obligations.

Wrapping. The first combinator is wrapping : the interfaces of dialgebra d :
TA −→ GA are extended by pre and post-composition with natural transforma-
tions, τi : T ′ =⇒ T and τo : G =⇒ G′. Formally,

d[i, o] = T ′A
τi // TA

d // GA
τo // G′A

Lemma 1. If GΦ TΦ
doo , then G ′Φ T ′Φ

d[i,o]oo .

Proof.

τo · d · τi · T ′Φ
= { naturality of τi }
τo · d · TΦ · τi

⊆ { hypothesis }
τo ·GΦ · d · τi

= { naturality of τo }
G ′Φ · τo · d · τi

Pipeline. Sequential composition, i.e., the execution of two dialgebras in pipeline,
is only possible in specific situations: basically, with dialgebras in which the alge-
braic structure is carried to the output side, or, dually, the coalgebraic structure
is carried to input. Moreoever, in both cases, additional structure is required
from the functors involved. The reason is quite obvious: the formal way to com-
pose arrows whose types appear in a context encoded in G (respectively, in F )
amounts to lifting the composition diagram to a Kleisli (respectively, co-Kleisli)
category of G (resp., T ) thought of as a monad (resp., comonad). Thus, we first
distinguish sequential composition for pure algebras and coalgebras.

A monad G, as the reader may recall, encodes computational effects (such
as exceptions or nondeterminism) in abstract terms, and provides two natural



transformations: the unit η : Id =⇒ G, which embeds a value in an effect, and
a multiplication, µ : G · G =⇒ G, to flatten effects, i.e., to provide a view of
a G-effect of a G-effect still as a G-effect. The use of monads to structure the
denotational semantics of programming languages was proposed in the 80’s, by
E. Moggi [15].

Maybe less well-known in semantics, but equally relevant, a comonad [7]
entails a dual definition. It models a notion of value in context : TA, for T a
comonad, is the type of contextually situated values of A. Arrows m : A −→ B
in the corresponding co-Kleisli category are context-relying maps m : TA −→ B
in the base category. Dually to monads, comonads come equipped with a co-
unit ξ : T =⇒ Id, to extract a value from a context, and a co-multiplication
ν : T =⇒ T ·T . As expected, η and ξ on the one hand, and µ and ν on the other,
satisfy dual laws.

In this setting, sequential composition of coalgebras c, c′ : A −→ GA corre-
sponds to composition in the Kleisli category for G:

c • c′ = A
c′ // GA

Gc // GGA
µ // GA

The corresponding role is achieved by co-Kleisli composition for algebras a, a′ :
TA −→ A:

a ? a′ = TA
ν // TTA

Ta′ // TA
a // A

Such definitions apply to dialgebras with the restrictions mentioned above,
i.e., whose types are, for arbitrary A, d : TA −→ GTA (which we call algebraic-
lifted dialgebras) or d : TGA −→ GA (called coalgebraic-lifted). Invariants are
preserved in both cases, i.e.,

Lemma 2.

GΦ TGΦ
d?eoo ⇐ GΦ TGΦ

doo ∧ GΦ TGΦ
eoo (7)

GTΦ TΦ
d•eoo ⇐ GTΦ TΦ

doo ∧ GTΦ TΦ
eoo (8)



Proof. We calculate (7) (the proof of (8) being similar):

(d ? e) · TGΦ
= { definition of co-Kleisli composition }
e · Td · ν · TGΦ

= { ν is a natural transformation }
e · Td · TTGΦ · ν

= { functoriality }
e · TGΦ · Td · ν

⊆ { GΦ TGΦ
eoo and monotonicity }

Φ · e · Td · ν
= { definition of co-Kleisli composition }
Φ · (e ? d)

Clearly, sequential composition for algebras (respectively, coalgebras) comes
from (7) (respectively, (8)), taking G (respectively, T ) as the identity functor.

4 Conclusions

This paper suggested dialgebras as a suitable model for computational processes
combining algebraic and coalgebraic aspects. A small algebra of diagebras was
introduced and it is shown that invariants are preserved through composition.

A lot of work remains to be done. Current research focus on the full devel-
opment of the calculus, including the definition of derived operators, namely for
encoding feedback mechanisms.

References

1. J. Adámek. Limits and colimits in generalized algebraic categories. Czechoslovak
Mathematical Journal, 26:55–64, 1976.

2. K. Backhouse and R. Backhouse. Safety of abstract interpretations for free, via
logical relations and Galois connections. SCP, 15(1–2):153–196, 2004.

3. L. S. Barbosa, J. N. Oliveira, and A. M. Silva. Calculating invariants as coreflexive
bisimulations. In J. Meseguer and G. Rosu, editors, Proc. 12th Inter. Conf. on
Algebraic Methodology and Software Technology, AMAST, pages 83–99. Springer
Lect. Notes Comp. Sci. (5140), 2008.

4. M. Bidoit, R. Hennicker, and A. Kurz. Observational logic, constructor-based logic,
and their duality. Theor. Comput. Sci., 3(298):471–510, 2003.

5. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science.
Prentice Hall, 1997.

6. E. Börger and R. Stärk. Abstract state machines: A method for high-level system
design and analysis. Springer-Verlag, 2003.



7. S. Brookes and S. Geva. Computational comonads and intensional semantics.
In M. P. Fourman, P. T. Johnstone, and A. M. Pitts, editors, Applications of
Categories in Computer Science, pages 1–44. Cambridge Univ. Press, 1992.

8. A. Corradini and F. Gadducci. Functorial semantics for multi-algebras. In Recent
Trends in Algebraic Development Techniques, volume 1589 of LNCS, pages 78–90.
Springer Verlag, 1998.

9. G. Grätzer. Universal algebra. 2nd ed. Springer-Verlag, 1979.
10. T. Hagino. A typed lambda calculus with categorical type constructors. In Category

Theory and Computer Science, pages 140–157, 1987.
11. R. Hennicker and A. Kurz. (ω, ξ)-logic: On the algebraic extension of coalgebraic

specifications. Electr. Notes Theor. Comput. Sci., 19, 1999.
12. A. Kock. Strong functors and monoidal monads. Archiv für Mathematik, 23:113–

120, 1972.
13. A. Madeira, M. Martins, and L. S. Barbosa. Reconfigurable software components

as structured automata. Technical report, Minho University, 2010.
14. G. Malcolm. Behavioural equivalence, bisimulation, and minimal realisation. In

Selected papers from the 11th WS Specification of Abstract Data Types, pages 359–
378. Springer, 1996.

15. E. Moggi. Notions of computation and monads. Information and Computation,
93(1):55–92, 1991.

16. E. Poll and J. Zwanenburg. From algebras and coalgebras to dialgebras. In Coalge-
braic Methods in Computer Science ’01, volume 44 of ENTCS, pages 1–19. Elsevier,
2001.

17. H. Reichel. Unifying adt– and evolving algebra specifications. EATCS Bulletin,
59:112–126, 1996.

18. J. Reynolds. Types, abstraction and parametric polymorphism. Information Pro-
cessing 83, pages 513–523, 1983.

19. J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

20. V. Trnková. On descriptive classification of set-functors. I. Commentat. Math.
Univ. Carol., 12:143–174, 1971.

21. V. Trnková and P. Goralćık. On products in generalized algebraic categories.
Commentationes Mathematicae Universitatis Carolinae, 1:49–89, 1972.

22. G. Voutsadakis. Universal dialgebra: Unifying universal algebra and coalgebra.
Far East Journal of Mathematical Sciences, 44(1), 2010.


