
Applying Abstract Algebraic Logic to Classical

Automata Theory: an exercise

Lúıs Descalço1, Alexandre Madeira2,1,3 and Manuel A. Martins1

1 Department of Mathematics, University of Aveiro
2 CCTC, University of Minho

3 Critical Software S.A

Abstract. In [4], Blok and Pigozzi have shown that a deterministic finite au-
tomaton can be naturally viewed as a logical matrix. Following this idea, we use
a generalisation of the matrix concept to deal with other kind of automata in the
same algebraic perspective. We survey some classical concepts of automata theory
using tools from algebraic logic. The novelty of this approach is the understand-
ing of the classical automata theory within the standard abstract algebraic logic
theory.

1 Introduction

There are several works in the literature about automata theory (AT) supported by
results and arguments of di↵erent areas, such as, topology, algebra, quantum mechanics,
etc. Following the recent works applying some tools of abstract algebraic logic (AAL) to
computer sciences, namely in the formal specification and verification theory of software
systems (cf. [10–12]), we survey some classical concepts of AT within an AAL perspective.
AAL is an area of algebraic logic that focuses on the study of the relationship between
logical equivalence and logical truth. More precisely, AAL is centered on the process of
associating a class of algebras to a logical system (see [6]). A logical system, a deductive

system as it has been called in the AAL field, is a pair formed by a signature ⌃ and a
substitution-invariant consequence relation on the set of terms over ⌃. Using deductive
systems (more precisely, k-deductive systems) we can deal with sentential logics, first-
order logic, equational logic and the logic of partially ordered algebras, as parts of a single
unified theory (see [4]). The main paradigm in AAL is the representation of the classical
propositional calculus in the equational theory of Boolean algebras by means of the so
called Lindenbaum-Tarski process. In its traditional form, the Lindenbaum-Tarski process
relies on the fact that the classical propositional calculus has a biconditional “$” that
defines logical equivalence. The set of all formulas is partitioned into logical equivalence
classes and then the familiar algebraic process of forming the quotient algebra, called the
Lindenbaum-Tarski algebra, is applied.

Blok and Pigozzi had suggested in [4] that a deterministic finite automaton can be
seen as a matrix, i.e., as an algebra with a subset of designated elements. In this pa-
per we extend this perspective to other kind of automata, namely to Moore machines,
Mealy machines, finite nondeterministic automata and to a class of pushdown automata.
In order to achieve this, we generalise the notion of matrix to the k-dimensional and
multi-sorted case, called here a k-dimensional state machine. An interesting aspect of
these formalisations is the fact that the concepts of equivalence between states of an au-
tomaton and minimised automata may be defined uniformly for all these automata. For
example, the traditional equivalence of states in all of these automata coincides with the

Leibniz congruence defined over its corresponding k-state machines. We also sketch how
N-deterministic matrix theory can be used to deal with finite nondeterministic automata.
The theory of N-deterministic matrices has been intensively developed by A. Avron et
al. (eg. [2]).

Our approach provides a di↵erent perspective from the classical semigroup-theoretic
approach which looks at finite monoids (or semigroups) obtained as the quotient of
the free monoid A⇤ by a congruence of finite index, where each element represents a
congruence class of finite words and monoid multiplication corresponds to concatenation
of class representatives ([9]). The logic flavor of our approach carries out also a distinct
perspective from the classical relationship between generalized finite automata and ⌃-
algebras based on the notion of tree automata as a generalization of finite automata ([14]
and [15]).

1.1 Preliminaries

In this Section, we recall some notions from universal sorted algebra and abstract algebraic

logic. As a survey on these concepts we suggest [6, 16].

Universal (sorted) algebra preliminaries Let S be a non empty set whose elements
are called sorts. An S-sorted set is an S-indexed family of sets A = (A

s

)
s2S

. A is
nonempty if A

s

6= ; for each s 2 S. We say that an S-sorted set A is locally finite (locally

countable infinite) if, for any s 2 S, A
s

is finite (countable infinite).
A binary S-relation R in an S-sorted set A consists of an S-sorted set of relations

R
s

✓ A
s

⇥ A
s

. R is an equivalence relation if each R
s

is an equivalence relation on A.
Given an element a 2 A

s

and an equivalence relation R, we define the equivalence class

of a modulo R as the set a/R
s

= {b 2 A
s

|aR
s

b}. The quotient A by an equivalence
relation R is the S-sorted set A/R = (A

s

/R
s

)
s2S

such that (A/R)
s

= {a/R
s

|a 2 A
s

}. A
signature ⌃ is a pair (S,F), where S is a set (of sort names) and F is a (S⇤ ⇥ S)-sorted
set (of operation names), where S⇤ is the set of all finite sequences of S elements. As
usual we write f : s1, · · · , sn

! s 2 ⌃ to mean that s1, · · · , sn

, s 2 S and f 2 F
s1...s

n

,s

.
We say that a signature ⌃ = (S,F) is a sentential signature when S is a singleton. A
⌃-algebra consists of an S-sorted set A = (A

s

)
s2S

, with A nonempty, together with a
function fA : A

s1 ⇥ · · · ⇥ A
s

n

! A
s

for each f : s1, · · · , sn

! s 2 ⌃. The class of all
⌃-algebras will be denoted by Alg(⌃).

Given a signature ⌃ = (S,F) and a ⌃-algebra A, a ⌃-congruence on A is an S-family
of symmetric, transitive and reflexive non empty binary relations on A ⇡= (⇡

s

)
s2S

such
that, for any operation symbol f : s1, · · · , sn

! s 2 ⌃ and for all a
i

, b
i

2 A
s

i

,1 i n
if a1 ⇡s1 b1, . . . , an

⇡
s

n

b
n

, then fA(a1, . . . , an

) ⇡
s

fA(b1, . . . , bn

). The quotient of A by

⇡ defined as usual and is denoted by A/ ⇡.
A homomorphism between two ⌃-algebras A and B is a mapping h : A ! B,

between the correspondent carrier sets, satisfying for each f : s1, . . . , sn

! s 2 ⌃,
h(fA

s

(a1, . . . , an

)) = fB(h
s1(a1), . . . , hs

n

(a
n

)) for all a
i

2 A
s

i

, 1 i n. An injective
homomorphism f is called a monomorphism. If f is surjective, it is called an epimorphism.
We say that h is an isomorphism if it is both injective and surjective.

An S-sorted set of variables is an S-sorted set X of pairwise disjoint sets. The elements
in X

s

are called s-variables. To say that a variable x is of sort s we write x :s. A set
of variables for a signature ⌃ = (S,F) is an S-sorted set of variables. Throughout the
paper we distinguish, as usual, the variables from the symbols in F . The set of ⌃-terms

in the variables X is defined as usual. We write t(x1, . . . , xn

) to mean that the variables

which occur in t are among x1, . . . , xn

. In the case where X = ; (X
s

= ; for all s 2 S),
we write T

⌃

for T
⌃

(;). The terms in T
⌃

, i.e., without variables, are called ground terms.
It is well know that if T

⌃

(X) is nonempty for each sort s 2 S, then we can define, in a
standard way, operations over it to obtain a ⌃-algebra which we call the term algebra;
algebra of ground terms when X = ;.

An assignment h : X ! A is an S-family of mappings (h
s

: X
s

! A
s

)
s2S

. It is
well known that, when T

⌃

(X) is an algebra, any assignment uniquely extends to a ⌃-
homomorphism h̄ : T

⌃

(X) ! A; in the sequel we will write simply h instead of h̄. Given
a term t(x1, . . . , xn

) and a assignment h : X ! A such that h(x
i

) = a
i

, 1 i n, we
denote h(t) by tA(a1, . . . , an

) (in the sequel, the superscript A may be omitted). We say
that an algebra A is reachable if for any a 2 A there is a ground term t such that tA = a.
It is not di�cult to see that A is reachable i↵ it has no proper subalgebras. The algebra
of ground terms T

⌃

, when it exists, is initial in the category of ⌃-algebras.

AAL preliminaries. In order to define formulas in a given signature, for each set of
sorts S, we fix a locally countable infinite S-sorted set of variables X. Given a signature
⌃ with set of sorts S, a ⌃-formula (a formula for short) is just a ⌃-term in the set of
variables X. The set of all formulas is denoted by Fm

⌃

.
In this section we deal with sentential signatures. Let us fix a sentential signature ⌃.

Definition 1. A matrix over a signature ⌃ (a ⌃-matrix for short) is a pair A = hA, F i,
where A is a ⌃-algebra and F ✓ A. A is called the underlying algebra of A and F is

called the filter of A.

Given an ⌃-matrix A = hA, F i and set of formulas � [{'} ✓ Fm
⌃

, we say that
' is a (semantical) consequence of � in A, in symbols � |=A ' if for any assignment
h : X ! A, h(�) ✓ F implies h(') 2 F . When � = ; we say that ' is valid in A. The
set of all valid formulas in A is denoted by Th(A). The subset of Th(A) of all ground
terms will play an important role in the next sections and it will be denoted by L(A).

Definition 2 (Leibniz Congruence). Let A = hA, F i be a ⌃-matrix. The Leibniz
congruence of A, in symbols ⌦A(F), is the relation defined as follows:

⌦A(F) = {(a, b) 2 A⇥A |8'(z, x0, . . . , xk�1) 2 Fm
⌃

,8c0, . . . , ck�1 2 A,
'A(a, c0, · · · , ck�1) 2 F , 'A(b, c0, · · · , ck�1) 2 F}.

The name Leibniz has its origin on the second order criterion of Leibniz which says
that “two objects in the universe of discourse are equal if they share all the properties
that can be expressed in the language of discourse”. It is well known that ⌦A(F) is the
largest congruence on A compatible with F , i.e., the largest congruence ⇥ in A such that
for any a, b 2 A, if a⇥b then, a 2 F i↵ b 2 F (cf. [4])). We define the reduction of a
matrix A = hA, F i as the matrix A⇤ = hA/⌦A(F), F/⌦A(F)i, where A/⌦A(F) is the
quotient algebra and F/⌦A(F) = {a/⌦A(F) : a 2 F}.

1.2 DFA as matrices

In this section we introduce the central motivation for the present work: reasoning about
deterministic finite automata as matrices. As far as we know, the first work with this
approach is due to Blok and Pigozzi ([4]). Let us recall the notion of deterministic finite
automaton. Although, almost all of our results still hold for infinite alphabets and infinite
sets of states, in order to simplify arguments, we consider automata with a finite set of
states and finite input alphabet.

Definition 3. A deterministic finite automaton (DFA by short) is a 5-tuple H = (Q, In, �,
q0,Qf

), where Q is a finite set of states; In is a finite set called (input) alphabet;
� : Q⇥ In ! Q is a (total) mapping called transition function; q0 2 Q called start state
and Q

f

✓ Q is the set of final states.

As usual we extend � to �̂ : Q ⇥ In⇤ ! Q by �̂(q, ✏) = q for any q 2 Q; �̂(q, aw) =
�̂(�(q, a), w) for any q 2 Q, a 2 In and w 2 In⇤.

Let FDFA = {�
i

|i 2 In} [{s0}, where �
i

, i 2 In, are unary operation symbols
and s0 is a constant. Given a DFA automaton H = (Q, In, �, q0,Qf

), we define the
FDFA-matrix AH = hA, F i over the signature FDFA as follows: the underlying algebra
is A = (Q, hfAi

f2FDFA) where sA

0 = q0 and for each i 2 In, q 2 Q, �A

i

(q) = �(i, q) and
F = Q

f

. The matrix AH will be called the associated matrix of H. On the other hand,
given a finite FDFA-matrix A there is a DFA automaton H such that A = AH.

Observe that we can “translate”, in a unique way, each word a0 · · · an�1 2 In⇤ into
a term �

a

n

�1(· · · (�a0(x))) 2 TFDFA({x}) and vice versa. This correspondence is done by
the bijection Trans : In⇤ ! TFDFA({x}) recursively defined by
– Trans(✏) = x;
– Trans(wa) = �

a

(Trans(w)) for any a 2 In, w 2 In⇤.

In the sequel, we denote Trans(w) by tw(x). A word (sequence of alphabet symbols) w
is recognised by an DFA if the execution of the transition function over w, started at the
initial state, halts in a final state. The language accepted by the DFA H, is denoted by
L(H) and consists of the set of its accepted words. Formally, L(H) = {w 2 In⇤|�̂(q0, w) 2
Q

f

}.
A set L ✓ In⇤ is a regular language if there is a DFA H such that L(H) = L. Next

theorem characterises the language accepted by a DFA in terms of the associated matrix.
The proof follows by induction.

Theorem 1. Let H be a DFA. Then for all w 2 In⇤, w 2 L(H) , tw(s0) 2 L(AH).

Let us recall now the traditional equivalence relation between states of a DFA: two
states q, q0 2 Q are said to be equivalent, in symbols q ⇠ q0, if for any w 2 In⇤, �̂(q, w) 2
Q

f

if and only if �̂(q0, w) 2 Q
f

(cf. [8]). In the following theorem we state the relation
between this relation and the Leibniz congruence over the associated matrix.

Theorem 2 ([4]). Let H be a DFA and q, q0 states of H. Then q ⇠ q0 i↵ q ⌘ q0(⌦AH(F)).

For each reachable FDFA-matrix A = hA, F i, there is a unique surjective homomor-
phism h : T

⌃

! A. It is not di�cult to see that L(A) = h�1(F). These facts, lead to the
so-called Myhill-Nerode theorem (cf. [4] for the details).

Theorem 3 ([4]). Let L ✓ In⇤. Then, L is a regular language i↵ hTFDFAIn
, Li⇤ is finite.

2 k-dimensional algebraic machines

As we have already claimed, the principal aim of this work is to extend the perspective
explained in the above section to other kind of automata. However, the matrix structure
has some limitations to deal, for example, with automata with output. To achieve this,
we generalise, in this section, the concept of matrix to the multi-sorted and k-dimensional
case. We start by introducing some notions from universal sorted algebra. Given a sig-
nature ⌃ and a non zero natural k, we define a k-formula as a sequence of k formulas

of same sort '̄ : s = h'0 : s, . . . ,'
k�1 : si and we denote the S-sorted set of k-formulas

of ⌃ by Fmk

⌃

(X). We write '̄(x0 :s0, . . . , xn�1 :s
n�1) to mean that the variables which

occur in '0, . . . ,'k�1 are among x0:s0, . . . , xn�1:sn�1. A k-value (of sort s) is a sequence
ā:s = ha0:s, . . . , ak�1:si with a0, . . . , an�1 2 A

s

. We also extend functions h : Fm
⌃

! A
to k-formulas componentwise.

Definition 4. A k-dimensional algebraic machine (k-machine for short) over a (multi-

sorted) signature ⌃ is a pair A = hA, F i, where A is a ⌃-algebra and F ✓ Ak

.

Let A = hA, F i be a k-machine and �, {'̄} ✓ Fmk

⌃

(X). The k-formula '̄ is a (se-

mantical) consequence of the set of k-formulas � in A, in symbols � |=A '̄, if for any
assignment h : X ! A, h(�) ✓ F implies h('̄) 2 F .

The models of classical propositional calculus over a propositional language are exam-
ples of 1-machines, considering as underlying algebra of the machine a Boolean algebra
over this signature and, as filter, the top of this algebra. The models of the (free) equa-
tional logic over a multi-sorted signature are examples of 2-machines, considering as
underlying algebra of the machine an algebra over this signature and as filter (a set of
2-values) the identity of this algebra. Note that, in this case, this relation coincides with
the standard satisfaction relation.

Now, we present a version of the Leibniz congruence to the k-dimensional case:

Definition 5 (Leibniz Congruence). Let A = hA, F i be a k-machine over a signature

⌃. The Leibniz congruence of F over A, in symbols ⌦A(F), is the binary relation defined

as follows: for any a, b 2 A
s

, a ⌘ b(⌦A(F)
s

) if for every k-formula '̄(z:s, x0:s0, . . . , xn�1:
s

n�1) and for all c0 2 A
s0 , . . . , cn�1 2 A

s

n�1 ,

'̄A(a, c0, . . . , cn�1) 2 F i↵ '̄A(b, c0, . . . , cn�1) 2 F.

It is straightforward to show that ⌦A(F) is indeed a congruence on A. Moreover, it
is the largest congruence on A compatible with F in the sense that, for any a, b 2 A,
a ⌘ b(⌦A(F)) implies that, a 2 F , b 2 F . The detailed study of the properties of
the Leibniz congruence in the multisorted setting can be found in [10]. A k-machine
A = hA, F i is said to be reduced when ⌦A(F) = id

A

. We define the reduction of A
as the k-machine A⇤ = hA/⌦A(F), F/⌦A(F)i. It can be proved that the reduction of a
matrix is always reduced (cf. [10]).

Let ⌃ = (S,F) be a signature, V ✓ S and A a ⌃-algebra. We define for each
a, b 2 A

s

the V -behavioural equivalence, in symbols ⌘A

V

, in the following way: a ⌘A

V

b
if for any v 2 V , for every formula '(z :s, u0 :s0, . . . , un�1 :s

n�1) of sort v, and for all
c0 2 A

s0 , . . . , cn�1 2 A
s

n�1 , 'A(a, c0, . . . , cn�1) = 'A(b, c0, . . . , cn�1). It is not di�cult
to see that ⌘A

V

is a congruence on A.
If we consider V as the set of observable sorts of the signature, this relation is the

well known observational equivalence in the algebraic specifications of abstract data types
setting. The next result is the theoretical support of proof methods to check behavioural
equivalence (cf. [7]).

Theorem 4. Let ⌃ = (S,F) be a signature, V ✓ S and A a ⌃-algebra. Then ⌘A

V

is the

largest congruence on A that coincides with the identity on V .

Proof. Let ✓ be a congruence on A which coincides with the equality in all the sorts in
V ✓ S. Since ✓ is a congruence, we have that for every a, b 2 A

s

and for every formula
'(z : s, u0 : s0, . . . , un�1 : s

n�1) : s0 with s0 2 V , a ✓
s

b implies '(a : s, u0 : s0, . . . , un�1 :
s

n�1) ✓s

0 '(b:s, u0 :s0, . . . , un�1 :s
n�1). Moreover, we have by hypothesis that, if s0 2 V ,

we have '(a:s, u0:s0, . . . , un�1:sn�1) = '(b:s, u0:s0, . . . , un�1:sn�1). Therefore, ✓ ✓⌘A

V

.

The following lemma expresses that ⌘A

V

✓ ⌦A(F).

Lemma 1. Let ⌃ = (S,F) be a signature, V ✓ S and A = hA, F i a 2-machine over ⌃
with F

V

= id
V

and F
s

= ; otherwise. Then, ⌘A

V

✓ ⌦A(F).

Proof. Suppose that 'A(a, c̄) = 'A(b, c̄) for every formula '(z : s, ū) and every c̄ 2
A

Q̄

. Let h 0(z : s, ū Q̄), 1(z : s, ū Q̄)i be a 2-formula V , and c̄ 2 A
Q̄

. Suppose that
h A

0 (a, c̄), A

1 (a, c̄)i 2 F , i.e., A

0 (a, c̄) = A

1 (a, c̄). Then,

 A

0 (b, c̄) = A

0 (a, c̄) = A

1 (a, c̄) = A

1 (b, c̄).

Thus for every pair of formulas and every sequence of parameters c̄, A

0 (a, c̄) =
 A

1 (a, c̄) i↵ A

0 (b, c̄) = A

1 (b, c̄). Therefore, ha, bi 2 ⌦A(F).

Moreover, since under the above conditions ⌦A(F) coincides with the identity on V ,
by Theorem 4, ⌘A

V

= ⌦A(F). This phenomena illustrates the strong relationship between
the Leibniz congruence and the observational equivalence in the sense of [7, 3].

Theorem 5. Let A = hA, F i be a k-machine. Then, |=A = |=A⇤ .

Proof. Suppose � |=A '̄. Let h : Fmk

⌃

(X) ! A⇤ be a homomorphism such that h(�) ✓
F/⌦A(F). Let g : Fmk

⌃

(X) ! A such that, for any '̄ 2 Fmk

⌃

(X), g('̄)/⌦A(F) = h('̄).
Since ⌦A(F) is compatible with F we have that g('̄) 2 F and, hence, that h('̄) 2
F/⌦A(F). Therefore � |=A⇤ '̄.

Suppose now � |=A⇤ '̄. Let h : Fmk

⌃

(X) ! A be a homomorphism such that h(�) ✓
F . Consider a g : Fmk

⌃

(X) ! A defined by g('̄) = h('̄)/⌦A(F). We have that g(�) ✓
F/⌦A(F) and, since � |=A⇤ '̄, that g('̄) 2 F . Therefore � |=A '̄.

3 Automata as k-machines

We stated in Section 1.2 that a DFA can be seen as a matrix and, therefore, as an
1-machine. In fact, we may also see a DFA as a 1-machine over a 2-sorted signature
by considering as universes the input alphabet and the set of states, and, as transition
function, the transition function of the underlying automaton together with the set of
final states (cf. [5]). In fact, using this approach we deal with all DFA as a class of
algebras over the same signature, whereas in our formulation we consider a signature
for each possible input alphabet. In the previous section we saw that the traditional
equivalence relation between states of a DFA H is the Leibniz congruence in the machine
A. An DFA is minimal if for any q, q0 2 Q, if q ⇠ q0 then q = q0; i.e., if its associated
1-machine is reduced. Moreover, it is well known that any DFA has a minimal equivalent
automaton, in the sense that, for each H there is a minimal DFA H0 such that L(H) =
L(H0). Now, since |=A = |=A⇤ (cf. Theorem 5) we have L(AH) = L(A⇤

H), and we can
build an equivalent minimal automaton from any other, by reducing its associate matrix.
It is sometimes important to consider exclusively the reachable part of a DFA. Given
it associated matrix A = hA, F i, we only have to consider the reachability machine

defined as A
Reach

= hA
Reach

, F
Reach

i with A
Reach

 A the subalgebra of A generated
by the constant s0 and F

Reach

= F \ A
Reach

. Following this perspective, we can find in
the literature, some natural results from the automata theory. For example, the global

behavioural equivalence, in sense of [16], can be seen as a generalisation of the equivalence
relation between automata (cf. [13]). In the following section we formalise several kind
of automata as k-machines. All of these considerations can be straightforward applied in
all of these formalisations.

3.1 Automata with output

There are in the literature two kind of automata with output: the Moore and the Mealy

machines. A Moore machine is a 6-tuple H
Moore

= (Q, In,Out, �,�, q0), where Q, In, �
and q0 are defined as in the DFA case (see Definition 3), Out is a finite set called output

alphabet and � : Q ! Out is a function called output function. We define �̂ : Q⇥ In⇤ !
Out⇤ by:

��̂(q, ✏) = �(q), for any q 2 Q,
��̂(q, aw) = �(q)�̂(�(q, a), w), for any w 2 In⇤, a 2 In, q 2 Q.
Similarly as in the DFA case, we consider a Moore machineH

Moore

= (Q, In,Out, �,�, q0)
as a 2-machine AH

Moore

= hA, F i over a signature with set of sorts S
Moore

= {Q,Out}
and

– F
Moore

= {�
i

|i 2 In} [{�} [{s0} with �
i

and � unary operations symbols and s0 a
constant;

– A is a 2-sorted algebra A = (Q,Out; hfAi
f2F

Moore

);
– �A

i

(q) = �(q, i), �A(q) = �(q) and sA

0 = q0;
– FOut = id

AOut and FQ = ;.
Observe that we can not define AH

Moore

as an ordinary matrix, since we need the multi-
sorting to deal with the set of states and the output alphabet. We also need to define
the filters as a set of pairs. Consider now the following technical results:

Lemma 2. Let H = (Q, In,Out, �,�, q0) be a Moore Machine q, q0 2 Q and w = a0 · · · ak�1 2
In⇤. Then, �̂(q, w) = �̂(q0, w) i↵ for any i < k, �(�̂(q, a0 · · · ai

)) = �(�̂(q0, a0 · · · ai

)).

Lemma 3. Let H = (Q, In,Out, �,�, q0) be a Moore Machine q, q0 2 Q and w 2 In⇤.
The following conditions are equivalent:

(i) For any w 2 In⇤, �̂(q, w) = �̂(q0, w);
(ii) For any w 2 In⇤, �(�̂(q, w)) = �(�̂(q0, w)).

Proof. Suppose that (i) holds. Case w = ✏, we have �̂(q, ✏) = �̂(q0, ✏) i↵ �(q) = �(q0) i↵
�(�̂(q, ✏)) = �(�̂(q0, ✏)). Case w = a0 · · · ak�1, we have by Lemma 2 that for any i < k,
�(�̂(q, a0 · · · ai

)) = �(�̂(q0, a0 · · · ai

)) and, in particular, for i = k � 1, we have that for
any w 2 In⇤, �(�̂(q, a0 · · · ak�1)) = �(�̂(q0, a0 · · · ak�1)).

Suppose now that (ii) holds. Case w = ✏, we have that �(�̂(q, ✏)) = �(�̂(q0, ✏)) i↵
�(q) = �(q0) i↵ �̂(q, ✏) = �̂(q0, ✏). Case w = a0 · · · ak�1, k � 1, we have by hypothesis that
for any i < k, �(�̂(q, a0 · · · ai

)) = �(�̂(q0, a0 · · · ai

)). Therefore, by Lemma 2, �̂(q, w) =
�̂(q0, w).

Recalling the traditional equivalence between states of a Moore machine, we have
that two states q, q0 are equivalent, in symbols q ⇠Out q0, if the execution of the output
function over any word, started in them, returns the same result (cf. [8]).

Theorem 6. q ⇠ q0 i↵ q ⌘ q0(⌦A(F)).

Since ⇠ is the largest congruence on A that coincides with the identity in the sort
Out (cf. Theorem 4) we can conductively check the equivalence between states of an
automaton. For example, to prove that q ⇠ q0 we just need to define a congruence
R ✓ A⇥A with RA

Out = id
AOut such that (q, q0) 2 R.

Whereas in the Moore machines, the output function tags the states of the automata,
in the Mealy machines, this function tags the transitions. However, there is a procedure by
which, from a Moore machine it is possible to construct an “equivalent” Mealy machine, in
the sense that, for any word w, �̂

Moore

(q0
Moore

, w) = �
Moore

(q0
Moore

)�̂
Mealy

(q0
Mealy

, w)
(cf. [8]). In this way, we can deal with a Mealy machine as a 2-machine, building the asso-
ciated machine of its equivalent Moore machine. Hence, given a Mealy machine H

Mealy

=
(Q, In,Out, �,�, q0) we can build an associated 2-machine AH

Mealy

= hA, F i considering
as underlying algebra the 2-sorted algebra A = (Q⇥(Out[{?}),Out[{?}; hfAi

f2F
Moore

)
with �A

i

((q, o)) = (�(q, i),�(q, i)), �A((q, o)) = o and sA

0 = (q0, ?) and considering as des-
ignated filter the set F = id

AOut[{?} . Note that we have to consider the special alphabet
symbol ? in order to define the constant s0. However, in the behaviour of the machine,
this element just (and allways) appears as the first element of the output string.

3.2 Nondeterministic finite automata

A nondeterministic finite automaton (NFA) is a 5-tuple H = (Q, In, �, q0, Qf

) defined as
in Definition 3, except for the transition function �. Here, the function � : Q⇥ In ! P(Q)
takes a state and an input symbol and returns a set of possibles next states, whereas in
the deterministic case, it returns exactly one next state. Hence, we extend the transition
function to �̂ : Q⇥ In⇤ ! P(Q) as usual:

� �̂(q, ✏) = {q}, for any q 2 Q;
� �̂(q, aw) =

S
q

02�(q,a) �̂(q
0, w), for any q 2 Q, w 2 In⇤, a 2 In.

A word w is accepted by a NFA if the execution of its transition function over w,
starting in the initial state q0, halts at least in one final state, i.e., if �̂(q0, w) \ Q

f

6= ;
(cf. [8]). One way to deal with these automata in our approach is by using the traditional
procedure to construct an equivalent DFA from a NFA. Hence, we can associate for
any NFA H

NFA

= (Q, In, �, q0,Qf

) a 1-machine AH
NF A

= hA, F i over the signature
FDFA, taking as underlying algebra the algebra A = (P(Q); s0, hfAi

f2F) with P(Q) =
{U |U ✓ Q}, for each i 2 In, �A

i

(X) =
S

x2X

�(x, i) and sA

0 = {q0} and considering the
set F = {M 2 P(Q) : M \Q

f

6= ;} as the filter.

Theorem 7. L(H
NFA

) = L(AH
NF A

).

Another way to deal with NFA is using the non-deterministic matrices (or N-matrices
for short) (cf. [2]):

Definition 6 (N-matrix). A non-deterministic matrix over a signature ⌃ is a pair

A =
⌦
(A, hfAi

f2⌃

), F
↵
, where A is a set, F ✓ A and for any n-ary operation symbol

f 2 ⌃, fA : A⇥ · · ·⇥A ! P(A) \ {;}.
A valuation is a function v : Fm

⌃

! A such that, for any n-ary f 2 ⌃ and for any
'1, . . . ,'n

2 Fm
⌃

, v(f('1, . . . ,'n

)) 2 fA(v('1), . . . , v('
n

)). A valuation v is a model of
' in A = hA, F i if v(') 2 F . Hence, using this formalism, we can associate for any NFA
H

NFA

= (Q, In, �, q0,Qf

) the N-matrix AH
NF A

= hA, F i where A = (Q; s0, h�iii2In), for
each i 2 In, the multi-functions satisfy �A

i

(q) = �(q, i) and sA

0 = q0, considering as filter
the set F = Q

f

.
Note that in this case, we can not characterize accepted words on a NFA as theorems

in its underlying machine: actually |=AHNFA tw(s0) means that the execution halts in
a final state in all of its possible paths when we just need that it halts in a final state
in one of these paths, ie. that tw(s0) has a model in AH

NDF A

. This is not surprising,
since the gap between N-matrices and matrices is much larger than the gap between

DFA and NFA. For example, it proofs that for any finite N-matrix AND we can define an
equivalent matrix AD (in sense that |=AND = |=AD). However, AD it is not necessarily
finite (cf. [2]). Hence, we define the language accepted by the N-matrix L(AH

NDF A

) as
the set L(AH

NDF A

) = {w 2 In⇤|tw(s0) has a model in AH
NDF A

}. Consequently, we have
that:

Theorem 8. L(H
NDFA

) = L(AH
NDF A

).

4 Conclusions and further developments

We have introduced an algebraic logic theory to treat input/output machines. The gen-
eralized algebraic logic approach to characterise known concepts of automata theory
provides an elegant and unified theory. This is just preliminary work, in the sense that it
lacks a deep body of results. Although the presented adaption to the work presented in [4]
is straightforward, our approach is promising. Our aim with this paper is just to set the
ground for developing such results, namely we discuss the way towards the development
of a consistent algebraic logic theory to shed a new light on automata theory.

There are two major directions in our future work. First, we would like to co-relate
results of these two fields. For example, the Leibniz congruence is a central concept of
AAL that has been intensively investigated and characterised in several works (eg. [10]).
Hence, one interesting issue is to look at this results from the perspective of equiva-
lence between states of automata. On other hand, there are some e�cient algorithms to
minimise and proof the equivalence between automata. Hence, it can be interesting to
study these methods in the context of the reduction of k-machines. Another interesting
topic is the research on the applicability of power matrix properties to the algebraic logic
context. Consider, for example, a matrix A = hA, F i where A is a monadic algebra and
F a singleton set {>}. It is not di�cult to see that we can reduce the verification of a
theorem with one variable |=A t(x) to the verification of a ground theorem |=P(A) t(s0)
with s

P(A)
0 = {Q} where Q is the universe of the underlying algebra of A and P(A) is

the power matrix of A eventually extended with the constant s0. This idea is inspired
by a method to check a reset word in a synchronising automata [1]. A synchronising
automaton consists of a DFA H with a reset word, i.e., with a word w

reset

such that, for
any state q 2 QH, b�(q, w

reset

) = q
reset

, for some particular state q
reset

2 QH, called reset

state (cf. [1]). Actually there are e�cient methods to search reset words and check the
synchronability of automata (eg. [17]). It may be also interesting to study this methods
in the view of theorem proving in matrix semantics.

The second direction is the study of other kind of automata in this algebraic perspec-
tive. Concerning Pushdown automata we have already got some improvements, namely
we can deal, in a AAL perspective, with a class of pushdown automata: the strongly

deterministic pushdown automata (SDPA). A Pushdown automaton (PA) is a 7-tuple
H

PA

= (Q, In,�, �, q0, Z0,Qf

), where Q, In and q0 are defined as in the DFA case (see
Definition 3), � is a finite set called stack alphabet, Z0 is a constant of � called by start

stack symbol and � is a mapping for Q⇥(⌃[{✏})⇥� ⇤ to finite subsets of Q⇥� ⇤. A PA is
a SDPA if for every q 2 Q, a 2 ⌃[{✏} and b 2 � ⇤, �(q, a, b) contains exactly one element.
A PA recognise two languages: the language recognised by final state and the language

recognised by empty stack (cf. [8]). Hence, given a SDPA H
SDPA

= (Q, In,�, �, q0, Z0, F)
we define the 1-machines Afs

H
SDP A

= hA, F
fs

i and Aes

H
SDP A

= hA, F
es

i over the signa-
ture F

DPA

where A = (Q ⇥ � ⇤; hfAi
f2F

DP A

) with �A

i

((q, p)) = �(q, i, p), sA

0 = (q0, z0),
F

fs

= {(q, p)|q 2 Q
f

, p 2 � ⇤} and F
es

= {(q, ✏)|q 2 Q}. Now, we define the language

recognised by final state as the language recognised by Afs

H
SDP A

and the language recog-
nised by the empty stack as the language recognised by Aes

H
SDP A

. The work presented
here is not enough to study the entire class since, in opposition to the finite automata
case, the class of languages recognised by deterministic pushdown automata is a proper
subclass of the languages recognised by the nondeterministic pushdown automata.

We hope to report on these and related questions in forthcoming papers.

Acknowledgment: Research supported by the Portuguese Fundação para a Ciência e

a Tecnologia (FCT) through Centro de Investigação e Desenvolvimento em Matemática

e Aplicações of University of Aveiro, by the project MONDRIAN (under the contract
PTDC/EIA-CCO/108302/2008) and by the grant SFRH/BDE/33650/2009 sup-
ported by FCT and by the company Critical Software S.A., Portugal.

References

1. Ananichev, D. and Volkov, M. V.: Synchronizing generalized monotonic automata, Theor.
Comput. Sci. vol. 330,1 pag.3–13 (2005)

2. Avron, A. and Lev, I.: Non-deterministic Multiple-valued Structures. J. Log. Comput. vol.
15, 3 , pp 241–261 (2005)

3. Bidoit, M. and Hennicker, R.: Behavioural theories and the proof of behavioural properties.
TCSci., vol 165(1): pp 3-55, (1996)

4. Blok, W.J. and Pigozzi, D.:Algebraic semantics for universal Horn logic without equality.
Universal algebra and quasigroup theory, Lect. Conf., Jadwisin/Pol. 1989, Res. Expo. Math.
19, 1-56. (1992)

5. Denecke, K. and Wismath, S.: Universal Algebra and Applications in Theoretical Computer
Science, CRC/C&H (2002)

6. Font, J.M. and Jansana, R. and Pigozzi, D.: A Survey of Abstract Algebraic Logic, Studia
Logica (2003)

7. Goguen, J. and Malcolm, G.: A hidden agenda. Theo. Comput. Sci. vol. 245, 1, pp 55-
101(2001)

8. Hopcroft, J. and Motwani, R. and Ullman, J.: Introduction to Automata Theory, Languages,
and Computation (2nd Edition), Addison Wesley (2000)

9. Howie, John M.: Automata and languages, Oxford Science Publications. Oxford: Oxford
University Press (1991)

10. Martins, M. A., Pigozzi, D.:Behavioural reasoning for conditional equations. Math. Struct.
in Comp. Science., Cambridge University Press, Vol. 17, 1075–1113 (2007)

11. Martins, M., Madeira and A. Barbosa, L.: Refinement via interpretation, Seventh IEEE
International Conference on Software Engineering and Formal Methods, IEEE Computer So-
ciety, pag. 250–259 (2009)

12. Martins, M., Madeira, A. and Barbosa, L.:Refinement by Interpretation, in a General Set-
ting, ENTCS, vol 259, pag. 105–121 (2009)

13. Martins, M. A.: On the Behavioral Equivalence Between k-data Structures, Comput. J.,
Oxford University Press, vol. 51, 2, pag. 181–191 (2008)

14. Mezei, J., Wright, J.B., Algebraic automata and context-free sets., Inf. Control, vol. 11, pag.
3-29, (1967)

15. Niehren, J., Podelski, A., Feature Automata and Recognizable Sets of Feature Trees, In
TAPSOFT’93, pag. 356–375. Springer-Verlag LNCS 668, (1993)

16. Sannella, D. and Tarlecki, A.: Foundations of Algebraic Specifications and Formal Program
Development, Cambridge University Press (To appear)

17. Trahtman, A. N.: An E�cient Algorithm Finds Noticeable Trends and Examples Concerning
the Cerny Conjecture, MFCS, pag. 789–800 (2006)

