
An Exercise on Transition Systems

Paula R. Ribeiro1 L. S. Barbosa2

Department of Informatics
Minho University, Portugal

Shuling Wang3

LMAM and Department of Informatics, School of Mathematical Sciences
Peking University, Beijing, China

Abstract

Labelled transition systems admit different but equivalent characterizations either as relational structures
or coalgebras for the powerset functor, each of them with their own merits. Notions of simulation and
bisimulation, for example, are expressed in the pointfree relational calculus in a very concise and precise
way. On the other hand, the coalgebraic perspective regards processes as inhabitants of a final universe and
allows for an intuitive definition of the semantics of process’ combinators.
This paper is an exercise on such a dual characterisation. In particular, it discusses how a notion of weak
bisimilarity can be lifted from the relational to the coalgebraic level, to become an effective reasoning tool
on coinductively defined process algebras.

Keywords: process algebra, bisimularity, coalgebraic, relational.

1 Introduction

Recent approaches to process calculi semantics build on representations of labelled

transition systems as coalgebras for (some combinations of) the powerset functor.

Such coalgebraic characterizations not only provide a generic setting for fundamen-

tal constructions (e.g., bisimulation regarded as equality in the final coalgebra),

but also makes it easier to generalize typical transition systems concepts to broader

classes of dynamic systems (e.g., probabilistic automata [12,2] or hybrid systems

[11]).

In this context, references [6,7] introduced a denotational approach to the design

of process algebras in which processes are identified with inhabitants of a final

1 Email: priobom@gmail.pt
2 Email: lsb@di.uminho.pt
3 Email: joycy@math.pku.edu.cn

Electronic Notes in Theoretical Computer Science 207 (2008) 89–106

1571-0661/$ – see front matter © 2008 Elsevier B.V. All rights reserved.

www.elsevier.com/locate/entcs

doi:10.1016/j.entcs.2008.03.087

mailto:priobom@gmail.pt
mailto:lsb@di.uminho.pt
mailto:joycy@math.pku.edu.cn
http://www.elsevier.com/locate/entcs

coalgebra and their combinators defined by coinductive extension (of ’one-step’

behaviour generator functions). The universality of such constructions entails both

definitional and proof principles on top of which the development of the whole

calculus is based. Combined with the pointfree ‘calculational’ style entailed by

category theory, this leads to a generic way of reasoning about processes in which, in

particular, proofs by bisimulation, which classicaly involve the explicit construction

of such a relation [15], are replaced by equational reasoning 4 .

In this approach, transition systems over a set A of labels, classicaly specified as

binary relations

α←− : A × U ←− U (1)

are given by coalgebras

α : P(A × U)←− U (2)

for P(A × Id), where P and Id denote, respectively, the (finite) powerset and the

identity functor. It is well-known that set-valued functions, such as coalgebra (2) are

models of binary relations and, conversely, any such relation is uniquely transposed

into a set-valued function. The existence and uniqueness of such a transformation

leads to the identification of a transpose operator Λ [8] characterized by an universal

property which, for this particular case, becomes

α = Λ α←− ≡ α←−= ∈ · α (3)

Moreover, whenever P in (2) is restricted to the finite powerset, to enforce the

existence of a final universe, equivalence (3) establishes again a bijective correspon-

dence between the resulting coalgebras and image finite relations. In any case, the

fundamental observation is that, the transpose being an isomorphism, one may rea-

son either in one side of equivalence (3) or in the other, whichever offers a richer

setting for calculation.

This paper reports on such an exercise: seeking for a suitable definition of weak

bisimulation within the coalgebraic setting mentioned above, we realized that such

equivalences would be described in more intuitive way in a relational setting. Con-

structions are then translated back to the coalgebraic level, where they add up to

the coinductive, equational calculational toolkit. In a sense, as discussed elsewhere

[17], the role of the powerset transpose is similar to that of the Laplace transform

to reduce arbitrary expressions to a polynomial format. We believe this way of pro-

ceeding is not unrelated to this workshop aim of harnessing theories for supporting

software construction.

A subsidiary objective of this paper is to show that, irrespective of the (coal-

gebraic or relational) level of expression, effective reasoning requires a ’concise and

precise’ notation and an expressive calculus. In most cases this entails going point-

free, thus replacing application by composition. For example, in the relational

setting, keeping track of nested quantified variables quickly becomes a nightmare.

4 In the dual world of functional programming the role of such ’universals’ is the basis of a whole discipline of
algorithm derivation and transformation, which can be traced back to the so-called Bird-Meertens formalism
[9] and the foundational work of T. Hagino [10].

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–10690

Therefore the paper is formulated within the pointfree calculus of binary relations

as developed in, e.g., [4] and the second part of [8].

The paper is organized as follows. Section 2, provides the basic backgound for the

paper. In particular, it recalls the rudiments of the relational calculus, introduces

notation and briefly reviews the calculational approach to process calculi introduced

elsewhere by the first author. Section 3 revisits the relationship connecting the

coalgebraic and the relational levels and provides a pointfree relational account of

simulation and bisimulation. Characterizing the weak versions of such concepts is

the purpose of section 4 which contains the main contribution of the paper. The

proposed approach is illustrated by a number of examples. In particular, we show

how process properties formulated in terms of weak bisimulation can still be proved

in the equational, pointfree style used in [6] and popularised in the ’mathematics

of program construction community’. Finally, section 5 summarizes what has been

achieved and enumerates a few research questions for the future.

2 Background

Although the paper resorts to a quite standard mathematical notation to express

sets, functions and relations, this section fixes some notation and reviews a few basic

notions. Furthermore, it contains a brief introduction to the coinductive approach

to process algebra design proposed in [6,7], which provides the context for this

paper.

2.1 Relations

Let R : B←− A denote a binary relation on (source) type A and (target) type B, and

bRa stand for the representation of 〈b, a〉 ∈ R. The set of relations from A to B is

ordered by inclusion ⊆, with relation equality being established by anti-symmetry.

Fact R ⊆ S means that relation S is either more defined or less deterministic than

R, that is, for all a and b of the appropriate types, bRa⇒ bS a.

The algebra of relations is built on top of three basic operators: composition

(R ·S), meet (R∩S) and converse (R◦). As expected, aR◦b iff bRa, meet corresponds

to set-theorectical intersection and · generalizes functional composition: b(R · S)c
holds iff there exists some a ∈ A such that bRa ∧ aS c.

Any function f can be seen as the relation given by its graph, which, in this

paper, is also denoted by f . Therefore b f a ≡ b = f a. In this setting functions

enjoy a number of properties of which the following is singled out by its role in the

pointwise to pointfree conversion:

b (f ◦ · R · g) a ≡ (f b) R (ga) (4)

Conversely, any relation R : B ←− A can be uniquely transposed into a set-valued

function ΛR : PB←− A, where the transpose operator Λ satisfies the following uni-

versal property: f = ΛR ≡ (bRa ≡ b ∈ (f a)). The interplay between functions and

relations is also captured by the so-called shunting laws [4], of which the following

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 91

will be used in the paper:

f · R ⊆ S · g ≡ R ⊆ f ◦ · S · g (5)

Several constructions in the relational calculus emerge as Galois connections [3],

C � C′. Such is the case, for example, of the left and right division operators given,

respectively by

·R � /R and R· � R\

References [8] and, mainly, [4], provide a detailed account of the calculus of

binary relations, in a pointfree calculational style.

2.2 Processes

Technically, the coinductive reconstruction of classical process algebra proposed

in [6,7] amounts to the systematic use of the universal property of coinductive

extension, i.e., the existence, for each arbitrary T-coalgebra 〈U, p : T U ←− U〉, of a

unique morphism [(p)] to the final coalgebra ωT : T νT ←− νT satisfying

k = [(p)]T ⇔ ωT · k = T k · p (6)

Such [(p)], which, in the tradition of [14] or [8] is referred to as the p anamorphism,

represents the behaviour generated by p and comes equipped with a bunch of laws

usefull in calculation 5 .

As explained in the previous section, in [6] processes are regarded as inhabitants

of the final coalgebra ω : P(Act × ν) ←− ν, whose carrier is the set of possibly

infinite labelled trees, finitely branched and quotiented by the greatest bisimulation

[1]. On top of it process combinators are defined. Typically, the so-called dynamic

combinators, i.e., combinators which are ‘consumed’ on action occurrence, have a

direct definition in terms of the available observations. For example, inaction is

represented as a constant nil : ν ←− 1 upon which no relevant observation can

be made, i.e., ω · nil = ∅. Prefix gives rise to an Act-indexed family of operators

a. : ν←− ν, with a ∈ A, whereas the possible actions of the non deterministic choice

of two processes p and q corresponds to the collection of all actions allowed for p
and q. Formally, ω ·+ = ∪ · (ω×ω) and ω · a. = sing · labela, where sing = λx . {x}
and labela = λx . 〈a, x〉.

On the other hand, static combinators, which persist over action occurrence,
being recursive, are defined as anamorphisms. An example, used later in the paper,
is interleaving � : ν ←− ν × ν which represents an interaction-free form of parallel
composition. The following definition captures the intuition that the observations
over the interleaving of two processes correspond to all possible interleavings of

5 The existence assertion underlying (6) (corresponding to the left to right implication) provides a definition
principle for (circular) functions to the final coalgebra which amounts to equip their source with a coalgebraic
structure — the gene — specifying the next-step dynamics. The uniqueness part, underlying right to left
implication in (6), on the other hand, entails coinduction as a proof principle.

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–10692

observations of their arguments. Thus, � = [(α�)], where 6

α� = ν × ν
� �� (ν × ν) × (ν × ν)

(ω×id)×(id×ω) �� (P(Act × ν) × ν) × (ν × P(Act × ν))

τr×τl �� P(Act × (ν × ν)) × P(Act × (ν × ν)) ∪ �� P(Act × (ν × ν))

The interested reader is refered to [6,7] for the full development of process calculi

along the lines just sketeched.

3 Bisimulation Revisited

3.1 The Relational Transpose

The relational transpose (3) is the basic tool to swap from the coalgebraic into the

relational setting, or vice-versa. In section 4 this will be applied to discuss weak

bisimulation for coinductively defined processes For the moment, however, we shall

revisit the notion of bisimulation speaking the language of relations. On the one

hand this is necessary to pave the way to section 4; on the other it provides an

interesting example of how equational pointfree reasoning style actually simplifies

relational proofs.

Our first step is to show that transposition extends to morphisms. Recall that a

morphism h : β←− α from coalgebra α to β is a function between the corresponding

state spaces preserving the dynamics of the source coalgebra, i.e., such that

P(id × h) · α = β · h (7)

What is the relational counterpart of this equation? The answer is given by an easy

calculation.

Lemma 3.1 A function h : V ←− U is a morphism relating two P(A × Id)-
coalgebras, α and β, defined over U and V, respectively, if and only if

(id × h) · α←− = β←− · h (8)

whose formulation involves the corresponding transition systems α←− and β←− .

Proof.

6 Morphisms τr : P(Act × (X ×C)) ←− P(Act × X) × C and τl : P(Act × (C × X)) ←− C × P(Act × X) stand for,
respectively, the right and left strength associated to functor P(Act × Id).

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 93

(id × h) · α←− = β←− · h

≡ { Λ is an isomorphism }

Λ((id × h) · α←−) = Λ(β←− · h)

≡ { Λ(f · R) = P f · ΛR and Λ(R · f) = ΛR · f }

P(id × h) · Λ(α←−) = Λ(β←−) · h

≡ { definition of α←− }

P(id × h) · Λ(∈ ·α) = Λ(∈ · β) · h

≡ { Λ(R · f) = ΛR · f }

P(id × h) · Λ(∈) · α = Λ(∈) · β · h

≡ { Λ(∈) = id }

P(id × h) · α = β · h

�

Representing α←− as an A-indexed family of binary relations α

a
←− : U ←− U for

all a ∈ A 7 , equation (8) reads

h · α
a
←− = β

a
←− · h (9)

For each a ∈ A, (9) can be decomposed into the conjuntion of two inclusions:

h · α
a
←− ⊆ β

a
←− · h (10)

β

a
←− · h ⊆ h · α

a
←− (11)

which, once turned into predicates and made pointwise, adopt the more familiar

form

∀u,u′∈U . u′ α
a
←− u ⇒ h u′ β

a
←− h u (12)

∀u∈U,v′∈V . v′ β
a
←− h u ⇒ ∃u′∈U . u′ α

a
←− u ∧ v′ = h u′ (13)

Proof.

7 For notational convinenence the converse of this relation will be written as (α
a
←−)◦ =

a
−→α .

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–10694

h · α
a
←− ⊆ β

a
←− · h

≡ { shunting rule (5) }

α

a
←− ⊆ h◦ · β

a
←− · h

≡ { going pointwise }

∀u,u′∈U . u′ α
a
←− u ⇒ u′ (h◦ · β

a
←− · h) u

≡ { law (4) }

∀u,u′∈U . u′ α
a
←− u ⇒ h u′ β

a
←− h u

and

β

a
←− · h ⊆ h · α

a
←−

≡ { going pointwise }

∀u∈U,v′∈V . v′ (β
a
←− · h) u ⇒ v′ (h · α

a
←−) u

≡ { law (4) and relational composition }

∀u∈U,v′∈V . v′ β
a
←− h u ⇒ ∃u′∈U . u′ α

a
←− u ∧ v′ = h u′)

�

Taken jointly these equations express that, not only the dynamics of α (represented

by transition system α←−) is preserved by h (10), but also the dynamics of β is

reflected backwards through the same h (11). This leads us directly to bisimulations.

3.2 Simulation and Bisimulation

The classical definition of simulation, as given e.g. in [15], reads as follows:

Definition 3.2 Given transition systems α←− : U × A ←− U and β←− : V × A ←− V
over the same label set A, a simulation of α←− in β←− is a relation S : V ←− U such
that

∀a∈A∀u∈U,v∈V . vS u ⇒ (∀u′∈U . u′ α
a
←− u ⇒ (∃v′∈V . v′ β

a
←− v ∧ v′S u′)) (14)

This definition can be rephrased in a form in which the first order expression is

turned into a purely algebraic expression:

Lemma 3.3 A relation S : V ←− U is a simulation of α←− in β←− iff, for all

a ∈ A

S ·
a
−→α ⊆

a
−→β · S (15)

Proof.

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 95

∀a∈A∀u∈U,v∈V . vS u ⇒ (∀u′∈U . u′ α
a
←− u ⇒ (∃v′∈V . v′ β

a
←− v ∧ v′S u′))

≡ { definition of relational composition }

∀a∈A∀u∈U,v∈V . vS u ⇒ (∀u′∈U . u
a
−→α u′ ⇒ v (

a
−→β · S) u′

≡ { definition of left relational division }

∀a∈A∀u∈U,v∈V . vS u ⇒ v ((
a
−→β · S)/

a
−→α) u

≡ { going pointfree }

S ⊆ (
a
−→β ·S)/

a
−→α

≡ { Galois connection: (·R) � (/R) }

S ·
a
−→α ⊆

a
−→β · S

�

Using equation (15) the proof of the following folklore result becomes rather

concise: no more than 3 steps in each derivation.

Lemma 3.4 (1) The empty relation (⊥) and identity (id) are simulations. (2) The

composition and (3) the union of two simulations is still a simulation.

Proof.

(i) Let α←− be a transition system over A and state space U. Then

⊥·
a
−→α ⊆

a
−→β ·⊥ ∧ id ·

a
−→α ⊆

a
−→α · id

≡ { ⊥ and id are, respectively the zero and identity element of · }

true

(ii) Consider, now, β←− : V × A ←− V, γ←− : Z × A←− Z and α←− : U × A←− U,

where simulations S : β←−←− γ←− and R : γ←−←− α←− are defined.

Then,

(S · R) ·
a
−→α ⊆

a
−→β · (S · R)

⇐ { S ·
a
−→γ ⊆

a
−→β ·S , R·

a
−→α ⊆

a
−→γ ·R, ·-assoc, monotony }

(S · R) ·
a
−→α ⊆ (S · R) ·

a
−→α

≡ { trivial }

true

(iii) Consider, now, systems β←− : V × A←− V and α←− : U × A←− U connected

by simulations S : β←−←− α←− and R : β←−←− α←− . Then,

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–10696

(S ∪ R) ·
a
−→α ⊆

a
−→β · (S ∪ R)

≡ { (R·) and (·R) as lower adjoints preserve ∪ }

(S ·
a
−→α ∪R ·

a
−→α) ⊆ (

a
−→β · S ∪

a
−→β ·R)

⇐ { ∪ definition }

S ·
a
−→α ⊆

a
−→β · S ∧ R ·

a
−→α ⊆

a
−→β ·R

≡ { hypothesis }

true
�

The standard definition of bisimulation — a relation S such that S itself and its

converse S ◦ are both simulations — can also be rephrased as follows:

Lemma 3.5 A relation S : V ←− U is a bisimulation between α←− and β←− iff

S ·
a
−→α ⊆

a
−→β · S ∧ β

a
←− · S ⊆ S · α

a
←− (16)

for all a ∈ A.

Proof. The first conjunct is the definition of S as a simulation. For the second

S ◦ is a simulation

≡ { defining equation (15) }

S ◦·
a
−→β ⊆

a
−→α · S

◦

≡ { (
a
−→γ)◦ = γ

a
←− }

S ◦ · (β
a
←−)◦ ⊆ (α

a
←−)◦ · S ◦

≡ { (R · S)◦ = S ◦ · R◦ }

(β
a
←− · S)◦ ⊆ (S · α

a
←−)◦

≡ { converse is monotonic: R ⊆ S ≡ R◦ ⊆ S ◦ }

β

a
←− · S ⊆ S · α

a
←−

�

Introducing variables, we quickly arrive at

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 97

β

a
←− · S ⊆ S · α

a
←−

≡ { Galois connection: (R·) � (R\) }

S ⊆ β

a
←− \ (S · α

a
←−)

≡ { going pointwise }

∀v∈V,u∈U . vS u ⇒ v (β
a
←− \ (S · α

a
←−)) u

≡ { pointwise definition of relational right division \ }

∀v∈V,u∈U . vS u ⇒ (∀v′∈V . v′ α
a
←− v ⇒ v′ (β

a
←− · S) u′)

≡ { pointwise definition of relational composition · }

∀v∈V,u∈U . vS u ⇒ (∀v′∈V . v′ α
a
←− v ⇒ (∃u′∈U . u′ β

a
←− u ∧ v′S u′))

which, in conjunction with (14), is the well-known expression used to define bisim-

ulation in classical process algebra (cf., [18,15]).

A useful result whose proof becomes almost trivial using formulation (16) is

that the existence of a coalgebra morphism between two coalgebras relates by a

bisimulation the pairs of states it connects. Formally,

Lemma 3.6 The graph of a morphism h : β ←− α between coalgebras α and β is a

bisimulation.

Proof. As a coalgebra morphism connecting α and β, h verifies inequations (10)

and (11). The latter is equivalent to the second conjunct in (16). A similar corre-

spondence holds between the first conjunct and (10):

h · α
a
←− ⊆ β

a
←− · h

≡ { law (4) }

α

a
←− ⊆ h◦ · β

a
←− · h

≡ { converse is monotonic }

(α
a
←−)◦ ⊆ (h◦ · β

a
←− · h)◦

≡ { converse definition }

a
−→α ⊆ h◦·

a
−→β · h

≡ { law (4) }

h ·
a
−→α ⊆

a
−→β · h

�

4 Weak Bisimulation

4.1 Observational Reduction and Weak Bisimulations

Weak notions of equivalence, which abstract away specific subsets of actions consid-

ered internal or non observable, have a fundamental role in process calculi. However

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–10698

they are difficult to capture directly in a coalgebraic setting (but see [20], mentioned

in section 5). In this section we approach a particular instance of the problem

based on relational transposition. The starting point is the classical definition of

weak bisimulation wrt a set Υ ⊆ A encoding internal actions. In Ccs, for example,

Υ = {τ}.

Definition 4.1 Given α←− : A × U ←− U e β←− : A × V ←− V over A and a subset
Υ ⊆ A of non observable actions, a weak simulation of α ←− in β ←− is a relation
S : V ←− U such that

∀u∈U,v∈V . vS u ⇒ ∀a∈A−Υ∀u′∈U . u′ α
a
⇐= u ⇒ (∃v′∈V . v′ β

a
⇐= v ∧ v′S u′) ∧

∀u′∈U . u′ α⇐= u ⇒ (∃v′∈V . v′ β⇐= v ∧ v′S u′)

where α⇐= is the union, for all τ ∈ Υ, of the transitive, reflexive closure of α
τ
←− , denoted

by tr(α
τ
←−). Relation α

a
⇐= is defined by abbreviation:

α

a
⇐=

abv
= α⇐= · α

a
←− · α⇐= (17)

for all a ∈ A − Υ. A weak bisimulation is a weak simulation whose converse is still a weak
simulation.

Clearly the union of all weak bisimulations, denoted by ≈, is a weak bisimulation

and an equivalence relation. Our strategy consists of transforming each coalgebra

α into another coalgebra α̂ such that a strict bisimulation over α̂ will correspond to

a weak one over the original α. Therefore, the standard procedure which seeks for

a morphism to witness a bisimulation, remains valid once applied to α̂, instead of

α. The construction of α̂ is depicted in the following diagram:

α : P(A × U)←− U ∈ · ��
α←− : A × U ←− U

O

��
α̂ : P(A × U)←− U α� : A × U ←− UΛ��

Formally,

Definition 4.2 The observational reduction α̂ of a coalgebra α : P(A × U) ←− U, is
defined by

α̂ = ΛO (∈ ·α) = ΛO (α←−) = Λ α� (18)

where α�

(a, u′) α� u ≡ u′ α
a
⇐= u (if a � Υ) (19)

(τ, u′) α� u ≡ u′ α⇐= u (if τ ∈ Υ) (20)

Clearly, a weak bisimulation over two coalgebras coincides with a strict bisimulation

between the corresponding observational reductions. By construction an observa-

tional reduction of γ encodes all of its γ

a
⇐= and γ⇐= transitions. Therefore a

morphism between them, which preserves and reflects transitions, entails a weak

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 99

bisimulation between the underlying coalgebras. Such a morphism is a coalgebra

morphism, as shown in the previous section. Then, by lemma 3.6, it is a witness of

a strict bisimulation between the corresponding observational reductions.

Example 4.3 Consider coalgebras α and β corresponding to transition systems:

α = s1
a ��

i

���
�

�
�

�
�

�
�

�
�

�
�

s2

s3
a �� s4 j��

β = t1 a �� t2

For Υ = {i, j} their observable reductions are

α̂ = s1τ ��
a ��

τ

���
�

�
�

�
�

�
�

�
�

�
�

a

��

s2 τ��

s3

τ

		
a �� s4 τ��

β̂ = t1τ

a �� t2 τ��

Define a morphism h : {t1, t2} ←− {s1, s2, s3, s4} connecting states s1 and t1, initial in α and
β, respectively, as follows: h s1 = h s3 = t1 and h s2 = h s4 = t2. The reader may easily
check that β̂ · h = P(id × h) · α̂.

Example 4.4 As a second example, consider Ccs processes c · P and τ · τ · c · P, with τ
standing for internal activity. The denotation of each process term P in the final coalgebra
carrier is [P] ∈ ν. The relevant fragments of ω are depicted as follows:

[c · nil]

c
��

[τ · c · nil]τ�� [τ · τ · c · nil]τ��

[nil]

[c · nil]

c
��

[nil]

The corresponding fragments in the observational reduction ω̂ of final coalgebra ω are:

[c · nil]

τ

��

c
��

[τ · c · nil]τ��

τ

��

c

[τ · τ · c · nil]τ��

τ

��

c
��

τ

��

[P]

τ

��

[c · nil]

τ

��

c
��

[nil]

τ

��

Morphism h : ω̂ ←− ω̂ defined by h [τ · τ · c · nil] = h [τ · c · nil] = [c · nil] and as

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106100

the identity in all other elements of ν, establishes a strict bisimulation over ω̂ between the
denotations of c · nil and τ · τ · c · nil. Therefore, c · nil ≈ τ · τ · c · nil.

The following lemma establishes that strict bisimilarity is contained in ≈.

Lemma 4.5 Any morphism h from α : P(Act × U)←− U to β : P(Act × V)←− V is

also a morphism from α̂ to β̂.

Proof. Let h be such that β · h = P(id × h) · α. We show that β̂ · h = P(id × h) · α̂ as

follows

β̂ · h = P(id × h) · α̂

≡ { definition 4.2 }

Λ · β� · h = P(id × h) · Λ · α�

≡ { Λ(f · R) = P f · ΛR }

Λ · β� · h = Λ · (id × h) · α�

≡ { Λ is an isomorphism }

β� ·h = (id × h) · α�

To prove this last equality, let a � Υ and check that β

a
� ·h = h · α

a
� .

β

a
� ·h

≡ { definition of β� }

β⇐= · β
a
←− · β⇐= · h

≡ { β⇐== tr(β
τ
←−) }

tr(β
τ
←−) · β

a
←− · tr(β

τ
←−) · h

≡ { h : β←− α is a morphism }

h · tr(α
τ
←−) · α

a
←− · tr(α

τ
←−)

≡ { α⇐== tr(α
τ
←−) }

h · α⇐= · α
a
←− · α⇐=

≡ { definition of β� }

h · α
a
�

�

4.2 Proving ≈-laws

Equipped with a suitable notion of weak bisimulation, which is moreover paramet-

ric on a set of internal actions Υ, we may come back to our original motivation:

rephrasing process algebras in a coalgebraic setting and reasoning coinductively in

an equational style. The couple of examples in this section illustrate the kind of

results we have in mind and the corresponding proof strategy.

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 101

Example 4.6 The first example is the law which in, Ccs, characterizes observational
equivalence:

p ≈ τ · p (21)

To show this we seek for a suitable morphism h : ω̂←− ω̂. Let then

h(τ · p) = p for all p ∈ ν

h = id otherwise

It remains to show that h, as defined, is actually a morphism, i.e., ω̂ · h = P(id × h) · ω̂
which, given the definition of h, reduces to ω̂(τ · p) = ω̂p.

ω̂(τ · p)

≡ { definition 4.2 }

Λ ω� (τ · p)

≡ { definition of ω� and transposition }

{(a, p′)| p′ ω
a
⇐= τ · p} ∪ {(τ, p′)| p′ ω⇐= τ · p}

≡ { definition of ω⇐= }

{(a, p′)| p′ ω
a
⇐= p} ∪ {(τ, p′)| p′ ω⇐= p}

≡ { definition of ω� and transposition }

Λ ω� p

≡ { definition 4.2 }

ω̂ p

Example 4.7 Consider, now, the following conditional law:

p + q ≈ p′ + q′ ⇐ p′ ≈ p ∧ q′ ≈ q (22)

Again we seek for a morphism h connecting the relevant terms such that

ω̂ · + · (h × h) = P(id × h) · ω̂ · + (23)

This equation requires the definition of combinator + over ω̂. Recall that ω ·+ = ∪·(ω×ω),
which, once combined with the definition of observable reduction in (18), leads to

ω̂([p + q]) = ω̂p ∪ ω̂q ∪ {(τ, r)| r ω⇐= [p + q]} (24)

Thus ω̂ ([a · nil + b · nil]) = {(a, [nil]), (b, [nil]), (τ, [(a · nil + b · nil)])} whereas ω̂ ([τ · a ·
nil + b · nil]) = {(a, [nil]), (b, [nil]), (τ, [(a · nil + b · nil)]), (τ, [a · nil])} although, as shown
in the previous example, a · nil ≈ τ · a · nil. Therefore, equation (22) does not hold.

Example 4.8 Consider, finally, a congruence law for the interleaving combinator:

p � q ≈ p′ � q′ ⇐ p′ ≈ p ∧ q′ ≈ q (25)

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106102

Suppose equivalences p′ ≈ p and q′ ≈ q are witnessed by morphisms f : ω̂ ←− ω̂ and
g : ω̂←− ω̂, not necessarily coincidents. Define h : ν←− ν such that

h · � = � · (f × g) (26)

and is the identity in all other cases. Let us show that h is a morphism between the obser-
vational reductions of ω, i.e.,

ω̂ · h = P(id × h) · ω̂ (27)

Clearly, equation (27) holds for all arguments for which h is the identity. Therefore, the
only case to be checked is the application to interleaving expressions (e.g., p � q), reducing
our task to prove

ω̂ · h · � = P(id × h) · ω̂ · � (28)

By definition of h, ω̂ · h ·� = ω̂ ·� · (f × g). But what can be said about term ω̂ ·�? Note
that diagram

ν ω ��P(Act × ν)

ν × ν

�

��

α� ��P(Act × (ν × ν))

P(id×�)

��

generalizes to

ν ω̂ ��P(Act × ν)

ν × ν

�

��

α̂� ��P(Act × (ν × ν))

P(id×�)

��

where α̂� = Λ α�
� , just as ω̂ = Λ ω� . Actually, by lemma 4.5, the latter diagram

is implied by the former. It is not difficult to find a direct definition for Λ α�
� : it is

enough to replace ω by ω̂ in the definition of α� given in the end of section 2, and consider
a τ-labelled transition from the pair of arguments to itself. For example, α̂� (τ ·a ·nil, b ·nil)
is the union of singleton {(τ, ([τ · a · nil], [b · nil]))} with {(τ, ([a · nil], [b · nil])), (a, ([nil], [b ·
nil])), (b, ([a · nil], [nil]))}. Therefore,

α̂� = ∪ · (α1 × α2)· � (29)

where α1 = ∪ · (τr × τl) · ((ω̂ × id) × (id× ω̂)) · � and α2 = sing · labelτ. Now we check,
for i = 1, 2, that

P(id × �) · αi · (f × g) = P(id × h) · P(id × �) · αi (30)

The case i = 1 is proved by

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 103

P(id × �) · α1 · (f × g)

= { definition of α1 }

P(id × �) · ∪ · (τr × τl) · ((ω̂ × id) × (id × ω̂))· � ·(f × g)

= { � natural, × functor }

P(id × �) · ∪ · (τr × τl) · (((ω̂ · f) × g) × (f × (ω̂ · g)))· �

= { f and g are morphisms , × functor }

P(id × �) · ∪ · (τr × τl) · (((P(id × f) × g) × (f × P(id × g))) · ((ω̂ × id) × (id × ω̂))· �

= { τr , τl and ∪ natural }

P(id × �) · P(id × (f × g)) · ∪ · (τr × τl) · ((ω̂ × id) × (id × ω̂))· �

= { definition of α1 }

P(id × �) · P(id × (f × g)) · α1

= { (26) }

P(id × h) · P(id × �) · α1

The proof of case i = 2 is similar. Finally, equation (28) is checked as follows,

ω̂ · h · �

= { (26) }

ω̂ · � · (f × g)

= { � is a morphism for ω̂ }

P(id × �) · α̂� · (f × g)

= { definition of α̂� }

P(id × �) · ∪ · (α1 × α2)· � ·(f × g)

= { � and ∪ natural, × functor }

∪ · ((P(id × �) · α1 · (f × g)) × (P(id × �) · α2 · (f × g)))· �

= { both instances of equation (30) }

∪ · ((P(id × h) · P(id × �) · α1) × (P(id × h) · P(id × �) · α2))· �

= { ∪ natural }

P(id × h) · P(id × �) · ∪ · (α1 × α2)· �

= { definition of α̂� }

P(id × h) · P(id × �) · α̂�

= { � is a morphism for ω̂ }

P(id × h) · ω̂ · �

5 Conclusions and Future Work

Set as a simple exercise, this paper introduced a concrete notion of weak bisimula-

tion for labelled transition systems, which is parametric on a definition of internal

activity. As a ’by-product’, the paper illustrated how basic results in transition

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106104

systems theory admit intuitive and simple characterizations and proofs, when for-

mulated in a pointfree style.

Lots of questions remain to be answered. The most proeminent asks to what

extent this approach can be extended to broader classes of coalgebras. The quest

for canonical ways of absracting from hidden transitions is still an open question in

coalgebra research. Generalizing the approach sketeched here entails the need for

new transposition operators possibly to categories different from Rel. A very simple

case relates coalgebras for the maybe monad with a category of partial functions, but

such is just a specialization of the case dealt in this paper. The interesting question

would be to consider coalgebras expressing probabilistic behaviour or particular

timing constraints, while retaining the simplicity and calculational flavour of our

approach. Related work includes [19], which deals with Set functors for which a

notion of natural accessor can be defined, and, more recently, [20]. The latter, rather

generic although resorting to heavy (categorial) notation, is based on process traces

factorised wrt a set of invisible actions. It should be stressed, however, that the

motivation for this paper was somewhat different: we looked for a concrete notion

of weak bisimulation to be used in effective and simple calculations with processes’

denotations.

Another question concerns the possible scalling up of this work to process alge-

bras with mobility. However, we are still far from developing a coinductive, calcu-

lational, account of the π-calculus [16] along the lines of [6], even if its (coalgebraic)

semantics has already been tackled, at a foundational level, in e.g. [13,5]. We are

currently working on this topic resorting to coalgebras over dependent types.

References

[1] P. Aczel, Final universes of processes, Proc. Math. Foundations of Programming Semantics (Brooks
et al, ed.), Springer Lect. Notes Comp. Sci. (802), 1993.

[2] L. Alfaro, T. Henziger, and R. Jhala, Compositional methods for probabilistic systems, Proc. the
12th International Conference on Concurrency Theory, Springer Lect. Notes Comp. Sci. (2154), 2001,
pp. 351–365.

[3] R. Backhouse, Galois connections and fixed point calculus, Algebraic and Coalgebraic Methods in the
Mathematics of Program Constuction (R. Crole, R. Backhouse, and J. Gibbons, eds.), Springer Lect.
Notes Comp. Sci. (2297), 2002, pp. 89–148.

[4] R. C. Backhouse and P. F. Hoogendijk, Elements of a relational theory of datatypes, Formal Program
Development (B. Möller, H. Partsch, and S. Schuman, eds.), Springer Lect. Notes Comp. Sci. (755),
1993, pp. 7–42.

[5] M. Baldamus, Compositional constructor interpretation over coalgebraic models for the π-calculus,
Proc. of CMCS’00 (H. Reichel, ed.), vol. 33, Elect. Notes in Theor. Comp. Sci., Elsevier, 2000.

[6] L. S. Barbosa, Process calculi à la Bird-Meertens, CMCS’01 (Genova), vol. 44.4, Elect. Notes in Theor.
Comp. Sci., Elsevier, April 2001, pp. 47–66.

[7] L. S. Barbosa and J. N. Oliveira, Coinductive interpreters for process calculi, Proc. of FLOPS’02,
Springer Lect. Notes Comp. Sci. (2441), September 2002, pp. 183–197.

[8] R. Bird and O. Moor, The algebra of programming, Series in Computer Science, Prentice-Hall
International, 1997.

[9] R. S. Bird and L. Meertens, Two exercises found in a book on algorithmics, Program Specification and
Transformation (L. Meertens, ed.), North-Holland, 1987, pp. 451–458.

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106 105

[10] T. Hagino, A typed lambda calculus with categorical type constructors, Category Theory and Computer
Science (D. H. Pitt, A. Poigné, and D. E. Rydeheard, eds.), Springer Lect. Notes Comp. Sci. (283),
1987, pp. 140–157.

[11] T. Henziger, Hybrid automata with finite bisimulations, Proc. the 22th Inter. Colloquium on Automata,
Languages, and Programming (ICALP), Springer Lect. Notes Comp. Sci. (944), 1995, pp. 324–335.

[12] K. Larsen and A. Skou, Bisimulation through probabilistic testing, Information and Computation (1991),
no. 94, 1–28.

[13] M. Lenisa, Themes in final semantics, Ph.D. thesis, Universita de Pisa-Udine, 1998.

[14] E. Meijer, M. Fokkinga, and R. Paterson, Functional programming with bananas, lenses, envelopes
and barbed wire, Proceedings of the 1991 ACM Conference on Functional Programming Languages and
Computer Architecture (J. Hughes, ed.), Springer Lect. Notes Comp. Sci. (523), 1991, pp. 124–144.

[15] R. Milner, Communication and concurrency, Series in Computer Science, Prentice-Hall International,
1989.

[16] R. Milner, J. Parrow, and D. Walker, A calculus of mobile processes (parts I and II), Information and
Computation 100 (1992), no. 1, 1–77.

[17] J. N. Oliveira and C. J. Rodrigues, Transposing relations: From Maybe functions to hash tables, 7th
International Conference on Mathematics of Program Construction (D. Kozen, ed.), Springer Lect.
Notes Comp. Sci. (3125), July 2004, pp. 334–356.

[18] D. Park, Concurrency and automata on infinite sequences, Springer Lect. Notes Comp. Sci. (104), 1981,
pp. 561–572.

[19] J. Rothe and D. Masulovic, Towards weak bisimulation for coalgebras, Proc. Int. Workshop on
Categorical Methods for Concurrency, Interaction, and Mobility (CMCIM’02) (A. Kurz, ed.), vol. 68,
Elect. Notes in Theor. Comp. Sci., Elsevier, 2002.

[20] A. Sokolova, E. de Vink, and H. Woracek, Weak bisimulation for action-type coalgebras, Proc. Int.
Conf. on Category Theory and Computer Science (CTCS’04) (L. Birkedal, ed.), vol. 122, Elect. Notes
in Theor. Comp. Sci., Elsevier, 2005, pp. 211–228.

P.R. Ribeiro et al. / Electronic Notes in Theoretical Computer Science 207 (2008) 89–106106

	Introduction
	Background
	Relations
	Processes

	Bisimulation Revisited
	The Relational Transpose
	Simulation and Bisimulation

	Weak Bisimulation
	Observational Reduction and Weak Bisimulations
	Proving -laws

	Conclusions and Future Work
	References

