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Abstract—Many emerging on-line data analysis applications
require applying continuous query operations such as correlation,
aggregation, and filtering to data streams in real-time. Distributed
stream processing systems allow in-network stream processing
to achieve better scalability and quality-of-service (QoS) pro-
vision. In this paper we present Synergy, a novel distributed
stream processing middleware that provides automatic sharing-
aware component composition capability. Synergy enables efficient
reuse of both result streams and processing components, while
composing distributed stream processing applications with QoS
demands. It provides a set of fully distributed algorithms to
discover and evaluate the reusability of available result streams
and processing components when instantiating new stream appli-
cations. Specifically, Synergy performs QoS impact projection to
examine whether the shared processing can cause QoS violations
on currently running applications. The QoS impact projection
algorithm can handle different types of streams including both
regular traffic and bursty traffic. If no existing processing
components can be reused, Synergy dynamically deploys new
components at strategic locations to satisfy new application
requests. We have implemented a prototype of the Synergy
middleware and evaluated its performance on both PlanetLab
and simulation testbeds. The experimental results show that
Synergy can achieve much better resource utilization and QoS
provisioning than previously proposed schemes, by judiciously
sharing streams and components during application composition.

Index Terms—Distributed Stream Processing, Component
Composition, Shared Processing, QoS, Resource Management.

I. INTRODUCTION

Stream processing applications have gained considerable

acceptance over the past few years in a wide range of emerging

domains such as monitoring of network traffic for intrusion

detection, surveillance of financial trades for fraud detection,

observation of customer clicks for e-commerce applications,

customization of multimedia or news feeds, and analysis of

sensor data in real-time [1], [2]. Streams are sequences of

data tuples arriving continuously, which need to be processed

in real-time to generate outputs of interest or to identify

meaningful events. Streams are processed by components;

each component represents a processing element that operates

on a set of input streams to produce a set of output streams.

Stream processing applications are instantiated as directed

acyclic graphs connecting components. Two components are

connected if the output of one becomes the input of the other to
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accomplish the application execution. Often, the data sources,

as well as the components that implement the application logic

are distributed across multiple machines connected through

a network, constituting a distributed stream processing sys-

tem (DSPS) (e.g., [3]–[8]).

The IBM System S reference application [9] provides a

concrete stream processing application example. It is a multi-

modal stream analytic and monitoring application for the

processing of claims related to disaster assistance. In a disaster

claim processing center, agents receive phone calls from

applicants to process claims. Correlated, multi-modal source

streams are then generated while a claim is being processed.

These may include data records, phone conversations, and

e-mail communication. The goal of this stream processing

application is to prevent fraudulent or unfairly treated claims,

as well as to identify problematic agents and their accomplices.

This is achieved by processing streams such as the conversa-

tions between agents and applicants, e-mail logs, video from

the processing center, and selective news feeds. More than

50 components with a variety of computational requirements

constitute the graph describing the application. The stream

processing components include load diffusers, decision trees,

joins, top-k selectors, and index builders. For example, a

component labels an agent as problematic by searching for

keywords in their conversations with applicants, while another

component computes a suspicion level for an applicant based

on the amount they claim and personal characteristics such as

their income. These components process a variety of streams,

ranging from text to audio and video, which have extremely

different rates. Stream sources often produce large volumes of

data at high rates, while workload spikes cannot be predicted in

advance. Providing low-latency, high-throughput execution for

such distributed applications entails considerable strain on both

communication and processing resources and thus presents

significant challenges to the design of a DSPS.

While a DSPS provides the components that are needed

to develop and execute an application, a major challenge

remains: How to select among different component instances

to compose stream processing applications on-demand. While

previous efforts have investigated several aspects of component

composition [5], [6] and placement [7] for stream applica-

tions, our research focuses on enabling sharing-aware compo-

nent composition for efficient distributed stream processing.

Sharing-aware composition allows different applications to

utilize previously generated streams and already deployed

stream processing components. The distinct characteristics

of distributed stream processing applications make sharing-

aware component composition particularly challenging. First,
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stream processing applications often have minimum quality-

of-service (QoS) requirements (e.g., end-to-end delay). In a

shared processing environment, the QoS of a stream process-

ing application can be affected by multiple components that

are invoked concurrently and asynchronously by many appli-

cations. Second, stream processing applications operate au-

tonomously in a highly dynamic environment, with load spikes

and unpredictable occurrences of events. Thus, composition

must be performed quickly, during run-time, and must be able

to adapt to dynamic traffic changes, including bursts. Third,

congruent with related efforts [5]–[9], we expect distributed

solutions to be more appropriate for federated DSPSs that

scale to thousands of streams, components, and nodes. This is

also supported by the analytical and experimental comparison

between centralized and distributed composition algorithms

provided in [10]. The overhead comparison therein indicates

that the relative merit between distributed and centralized solu-

tions is decided by the size of the overlay network, the overlay

topology, the number of stream processing components, the

application request rate, and the frequency with which state

updates have to be communicated to other nodes. The global

state of a large-scale DSPS is changing faster than it can be

communicated to a single host. This renders it challenging for

a single host to make accurate global decisions when large

numbers of nodes and applications are involved.

Despite the aforementioned challenges, there are significant

benefits to be gained from a flexible sharing-aware compo-

nent composition: i) enhanced QoS provisioning (e.g., shorter

service delay) since existing streams that meet the user’s

requirements can be furnished immediately, while the time-

consuming process of new component deployment is triggered

only when none of the existing components can accommodate

a new request; and ii) reduced resource load for the system,

by avoiding redundant computations and data transfers. This

results in a significant improvement in the performance and

scalability of the entire system.

In this paper we present Synergy, a distributed stream

processing middleware that provides sharing-aware component

composition. Synergy is implemented on top of a wide-area

overlay network and undertakes the composition of distributed

stream processing applications. Synergy supports both data

stream and processing component reuse while ensuring that

the application QoS requirements can be met. The decision of

which components or streams to reuse is made dynamically

at run-time taking into account the applications’ QoS require-

ments and the current system resource availability. Specifi-

cally, this paper makes the following major contributions:

–We propose a decentralized light-weight composition algo-

rithm that discovers streams and components at run-time and

checks whether any of the existing components or streams can

satisfy the application’s request. After the qualified candidate

components have been identified, components and streams are

selected and composed dynamically to meet the application

resource and QoS requirements.

–We integrate a QoS impact projection mechanism into the

distributed component composition algorithm to evaluate the

reusability of existing stream processing components accord-

ing to the applications’ QoS constraints. When a component is

shared by multiple applications, the QoS of each application

that uses the component may be affected due to increased

queueing delays on the processors and the communication

links. Synergy’s approach is to predict the impact of the

additional workload on the QoS of the affected applications

and ensure that a component reuse does not cause QoS vio-

lations in existing stream applications. Such a projection can

facilitate QoS provisioning for both the newly admitted and

the current applications. Our projection algorithm considers

not only regular but also bursty stream traffic [11] such as

voice-over-IP streams, network traffic and sensor data streams.

–Synergy dynamically deploys new components at strate-

gic locations to satisfy new application requests. Component

deployment is triggered when a requested component does

not exist, or when none of the existing components can

safely provide the requested stream processing due to resource

overloads or QoS violations.

–We have implemented a prototype of Synergy and evalu-

ated its performance on the PlanetLab [12] wide-area network

testbed. We have also conducted extensive simulations to

compare Synergy’s composition algorithm to existing alterna-

tive schemes. The experimental results show that: i) Synergy

consistently achieves much better QoS provisioning compared

to other approaches, for a variety of application loads, ii)

sharing-aware component composition increases the number

of admitted applications, while scaling to large request loads

and network sizes, iii) QoS impact projection greatly increases

the percentage of admitted applications that meet their QoS

requirements, iv) the QoS impact projection algorithm shows

good prediction accuracy for both regular and bursty stream

traffic, and v) Synergy’s decentralized composition protocol

has low message overhead and offers minimal setup time, in

the order of a few seconds.

II. SYSTEM MODEL

A. Stream Processing Application Model

Table 1 summarizes the notations we use while discussing

our model. A data stream sj consists of a sequence of contin-

uous data tuples. A stream processing component ci is defined

as a self-contained processing element that implements an

atomic stream processing operator oi on a set of input streams

{isi} and produces a set of output streams {osi}. Stream

processing components can have more than one input (e.g., a

join operator) and outputs (e.g., a split operator). Each atomic

operator can be provided by multiple components c1, . . . , ck,

which are essentially multiple instances of the same operator.

We associate metadata with each deployed component or

existing data stream in the system to facilitate the discovery

process. Both components and streams are named based on

a common ontology (e.g., oi.name = Aggregator.COUNT,

sj .name = Video.MPEGII.EntranceCamera). The name of a

stream produced by a source is given based on the ontology

and may incorporate the source node characteristics (e.g., IP

and port), if these affect the semantics of the stream. As

streams are processed by components, their names reflect the

stream processing operators that have been applied to them.

For example, in Figure 5, the name of s2 is o1(s1), to reflect
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Notation Meaning

ci Component

oi Operator

lj Virtual Link

sj Stream

ξ Query Plan

λ Application Component Graph

Qξ End-to-End QoS Requirements

Qλ End-to-End QoS Achievements

pvi
Processor Load on Node vi

blj
Network Load on Virtual Link lj

rpvi
Residual Processing Capacity on Node vi

rblj
Residual Network Bandwidth on Virtual Link lj

τci
Processing Time for ci

xci,vi
Mean Execution Time for ci on vi

σsj
Transmission Time for sj

ysj,lj
Mean Communication Time for sj on lj

qt Requested End-to-End Execution Time

t̂ Projected End-to-End Execution Time

poi
Processing Time Required for oi

bsj
Bandwidth Required for sj

Fig. 1. Notations.
Fig. 2. Synergy system architecture.

that s2 is the output of operator o1 on the input stream s1.

Similarly, the name of s4 is o2(o1(s1)).
A stream processing request (query) is described by a given

query plan, denoted by ξ. The query plan is represented

by a directed acyclic graph (DAG) specifying the required

operators oi and the streams sj among them. A query

plan can be dynamically instantiated into different application

component graphs, denoted by λ, depending on the processing

and bandwidth availability. The vertices of an application

component graph represent the components being invoked

at a set of nodes to accomplish the application execution,

while the edges represent virtual network links between the

components, each one of which may span multiple physical

network links. An edge connects two components ci and

cj if the output of the component ci is the input for the

component cj . The application component graph is generated

by Synergy’s component composition algorithm at run-time,

after selecting among different component candidates that

provide the required stream processing operators oi and satisfy

the end-to-end QoS requirements Qξ. Synergy’s component

composition algorithm is described in Section III-A.

B. QoS Model

A query plan ξ, describing a stream processing request,

includes the processing requirements of the requested op-

erators poi
, ∀oi ∈ ξ and the bandwidth requirements of

the corresponding streams bsj
, ∀sj ∈ ξ. The bandwidth

requirements are calculated according to the user-requested

stream rate, while the processing requirements are calculated

according to the data rate and profiled processing times for the

operators [13]. The stream processing request also specifies the

end-to-end requirements Qξ, for m different QoS metrics such

as end-to-end execution time and loss rate, Qξ = [q1, ...qm].
Although our schemes are generic to additive QoS metrics,

we focus on end-to-end execution time, denoted by qt, which

is computed as the sum of the processing and communication

times for a data tuple to traverse the whole query plan.

After admitting an application request, the residual process-

ing capacity on every node vi participating in the application

execution must be rpvi
≥ 0. Similarly, the residual available

bandwidth on each virtual link lj connected to each vi must be

rblj ≥ 0. Finally, the end-to-end QoS requirements specified

in the query plan ξ must be met by the final application

component graph λ, i.e., qλ
t ≤ q

ξ
t .

C. Synergy Architecture

Synergy is a wide-area stream processing middleware that

consists of a set of distributed hosts vi connected via virtual

links lj , that create an overlay mesh on top of the existing

IP network. Figure 2 shows an overview of the architecture.

Synergy leverages the routing layer of the underlying overlay

network for registering and discovering available components

and streams in a decentralized manner. Synergy adopts a fully

distributed architecture, where any node of the middleware can

compose a distributed stream processing application.

Each Synergy node, denoted by vi, is identified by its IP

and port. As illustrated in Figure 2, each node maintains

a metadata repository of active stream processing sessions,

streams, and components (including input and output buffers).

Additionally, the architecture of a Synergy node includes

the following main modules: i) a composition module that

is responsible for running the component composition algo-

rithm and uses: ii) a discovery module that is responsible

for locating existing data streams and components. In our

current Synergy prototype we implement a keyword-based

discovery service [14] on top of the Pastry distributed hash

table (DHT) [15]. However, our middleware can also be

integrated with other DHTs, or unstructured overlays [16],

since discovery is an independent module of our system. iii)

a routing module that routes data streams between different

Synergy nodes; and iv) a monitoring module that is responsible

for maintaining resource utilization information for vi and the

virtual links connected to vi. The monitoring module keeps

track of the CPU load and network bandwidth. The current

processor load pvi
and the residual processing capacity rpvi

on node vi are inferred from the CPU idle time as measured

from the /proc interface. The residual available bandwidth

rblj on each virtual link lj connected to vi is measured using

a bandwidth measuring tool (e.g., Iperf). We finally use blj to

denote the amount of current bandwidth consumed on lj .

D. Approach Overview

A stream processing application request is submitted di-

rectly to a Synergy node vs, if the client is running the

middleware, or redirected to a Synergy node vs that is closest

to the client based on a predefined proximity metric (e.g.,

geographical location). Alternative policies can select vs to be

the Synergy node closest to the source or the sink node(s) of
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the application. The user submits a query plan ξ, that specifies

the required operators and the order in which they will execute.

The processing requirements of the operators poi
, ∀oi ∈ ξ

and the bandwidth requirements of the streams bsj
, ∀sj ∈ ξ

are also included in ξ. The request also specifies the end-

to-end QoS requirements Qξ = [q1, ...qm] for the composed

stream processing application. These requirements (i.e., ξ, Qξ)

are used by the Synergy middleware running on that node

to initiate the distributed component composition protocol.

This protocol produces the application component graph λ that

identifies the particular components that shall be invoked to

instantiate the new request.

To avoid redundant computations, Synergy first tries to

discover whether any of the requested streams have been

generated by previously instantiated query plans. To maxi-

mize the sharing benefit, Synergy reuses the result stream(s)

generated during the latest possible stages in the query plan.

Thus, only the remaining operators in the query plan are

needed to generate the user requested stream(s). Synergy then

probes the candidate nodes that can provide these operators,

to determine: i) whether they have the available resources to

accommodate the new application, ii) whether the end-to-end

delay is within the required QoS, and iii) whether the impact

of the new application would cause QoS violations to existing

applications. During the probing process, the system may

need to decide where to deploy new processing components.

Deployment takes place if none of the existing components

can provide a requested stream processing operator, or if

there exist such components, but none of them can be safely

reused without resource overloads or QoS violations. Synergy

adopts a collocation-based component deployment strategy to

minimize the number of hops that streams travel through.

Figure 3 gives a very simple example of how probes can

be propagated hop-by-hop to test many different component

combinations. Assuming components c1 and c2 offer operator

o1, while components c3 and c4 offer operator o2, and assum-

ing that the components can be located at any node in the

system, probes will attempt to travel from the source S to the

destination D through paths S → c1 → c3 → D, S → c1 →
c4 → D, S → c2 → c3 → D, and S → c2 → c4 → D.

D

C2 C4

C3

O1 O2

C1

S

Fig. 3. Probing example.

A probe is dropped

in the middle of the

path if any of the

above conditions are

not satisfied in any

hop. Thus, the paths

that create resource

overloads, result to end-to-end delays outside the requested

QoS limits, or unacceptably increase the delays of the existing

applications, are eliminated. From the successful candidate ap-

plication component graphs, our composition algorithm selects

the one that results in a more balanced load in the system and

the new stream application is instantiated.

III. DESIGN AND ALGORITHM

A. Synergy Component Composition Protocol

Synergy’s fully distributed composition protocol is executed

when instantiating a new application. Given a stream process-

ing request, a Synergy node first gets the locally generated

query plan ξ and then instantiates the application component

graph based on the user’s QoS requirements Qξ. Figure 5

shows an example of a query plan, while Figure 6 shows a

corresponding component composition example. To achieve

decentralized, light-weight component selection, Synergy em-

ploys a set of probes to concurrently discover and select

the best composition. Synergy differs from previous work

(e.g., [5], [14]) in that it judiciously considers the impact of

stream and component sharing on both the new and existing

applications. The probes carry the original request information

(i.e., ξ, Qξ), collect resource and QoS information from the

distributed components, perform QoS impact projection, and

select qualified compositions according to the user’s QoS

requirements. The best composition is then selected among

all qualified ones, based on a load balancing metric. The

composition protocol, a high level description of which is

shown in Algorithm 4, consists of five main steps:

Step 1. Probe creation. Given a stream processing query

plan ξ, the Synergy node vs first discovers whether any

existing streams can be used to satisfy the user’s request.

The goal is to reuse existing streams as much as possible

to avoid redundant computations. For example, in Figure 5,

starting from the destination, vs will first check if the result

stream (s8) is available. If not, it will look for the streams

one hop away from the destination (s6 and s7), then two

hops away from the destination (s4 and s5) and so on, until

it can find any streams that can be reused. We denote this

Breadth First Search on the query plan as identification of

the maximum sharable point(s). The nodes generating the

reusable streams may not have enough available bandwidth

for more streaming sessions or may have virtual links with

unacceptable communication latencies. In that case all probes

are dropped by those nodes and vs checks whether there exist

components that can provide the operators requested in the

query plan, as if no streams had been discovered. The details

about determining the maximum sharable points and about

discovering sharable streams and components are described in

Section III-C. Next, the Synergy node vs initiates a distributed

probing process to collect resource and QoS states from those

candidate components that provide the maximum sharable

points. The goal of the probing process is to select qualified

candidate components that can best satisfy ξ and Qξ and result

in the most balanced load in the system. The initial probing

message carries the request information (ξ and Qξ) and a

probing ratio, that limits the probing overhead by specifying

the maximum percentage of candidate components that can be

probed for each required operator. The probing ratio can be

statically defined, or dynamically decided by the system, based

on the operator, the components’ availability, the user’s QoS

requirements, current conditions, or historical measurement

data [5]. The initial probing message is sent to the nodes

hosting components offering the maximum sharable points.

We do not probe the nodes that are generating streams before

the maximum sharable points, since the overhead would be

disproportional to the probability that they can offer a better

component graph in terms of QoS.
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Input: query 〈ξ, Qξ, 〉, node vs

Output: application component graph λ

vs identifies maximum sharable point(s) in ξ

vs spawns initial probes

for each vi in path

checks available resources

AND checks QoS so far in Qξ

AND checks projected QoS impact

if probed composition qualifies

sends acknowledgement message to upstream node

performs transient resource reservation at vi

discovers next-hop candidate components from ξ

deploys next-hop candidate components if needed

spawns probes for selected components

else drops received probe

vs selects most load-balanced component composition λ

vs establishes stream processing session

Fig. 4. Synergy composition algorithm.

S1
O1

O2 O4

O5O3

O6
S8

S6

S7
S5

S4

DestinationSource

S2

S3

Fig. 5. Query plan example.

Fig. 6. Synergy composition example.

Step 2. Probe processing. When a Synergy node vi receives

a probing message called probe Pi, it processes the probe

based on its local state and on the information carried by

Pi. A probe has to satisfy three conditions to qualify for

further propagation: First, vi calculates whether the requested

processing and bandwidth requirements poi
and bsj

can be

satisfied by the available residual processing capacity and

bandwidth rpvi
and rblj , of the node hosting the component

and of the virtual link the probe came from respectively. Thus,

both rpvi
≥ poi

and rblj ≥ bsj
have to hold. Second, vi

calculates whether the QoS values of the part of the component

graph that has been probed so far already violate the required

QoS values specified in Qξ. For the end-to-end execution

time QoS metric qt this is done as follows: The sum of the

components’ processing and transmission times so far has to

be less than qt. The time that was needed for the probe to

travel so far gives an estimate of the transmission times, while

the processing times are estimated in advance from profil-

ing [13]. Third, vi calculates the QoS impact on the existing

stream processing sessions by admitting this new request. In

particular, the expected execution delay increase due to the

additional stream volume introduced by the new request is

calculated. The details about the QoS impact projection are

described in Section III-D. Similarly, the impact of the existing

stream processing sessions on the QoS of the new request is

calculated. Both the new and the existing sessions have to

remain within their QoS requirements.

If any of the above three conditions cannot be met, the probe

is dropped immediately to reduce the overhead. Otherwise,

the node sends an acknowledgement message to its upstream

node, and performs transient resource reservation to avoid

overbooking due to concurrent probes for different requests.

The transient resource reservation is cancelled after a timeout

period if the node does not receive a confirmation message to

setup the stream processing application session.

Step 3. Hop-by-hop probe propagation. If the probe Pi

has not been dropped, vi propagates it further. vi derives

the next-hop operators from the query plan and acquires the

locations of all available candidate components for each next-

hop operator using the discovery module of the middleware.

Then vi selects a number of candidate components to probe,

based on the probing ratio. If more candidates than the number

specified by the probing ratio are available, random ones are

selected, or –if a delay monitoring service [17] is available–

the ones with the smallest communication delay are selected. If

no candidate components for the next operator are found, or if

no candidate components return acknowledgement messages, a

new component is deployed, following the protocol described

in Section III-B. The deployment protocol aims at collocating

the new component with either its upstream or its downstream

component in the query plan, in order to minimize the number

of hops that streams have to travel through.

After the candidate components have been selected, vi

spawns new probes from Pi to all selected next-hop candi-

dates. Each new probe, in addition to ξ (including poi
and

bsj
), Qξ, and the probing ratio, carries the up-to-date resource

state of vi, namely rpvi
and rblj , and of all the nodes the

previous probes have visited so far. Finally, vi sends all new

probes to the nodes hosting the selected next-hop components.

A protocol optimization to reduce probing could involve

piggybacking load and application QoS information on stream-

ing data. This way nodes that are hosting applications could

inform their downstream nodes regarding their current state

and would not need to be probed by them.

Step 4. Composition selection. After reaching the des-

tination specified in ξ, all successful probes belonging to

a composition request return to the original Synergy node

vs that initiated the probing protocol. After selecting all

qualified candidate components, vs first generates complete

candidate component graphs from the probed paths. Since

the query plan is a DAG, vs can derive complete compo-

nent graphs by merging the probed paths. For example, in

Figure 6, a probe can traverse c10 → c20 → c40 → c60 or

c10 → c30 → c50 → c60. Thus, vs merges these two paths

into a complete component graph. Second, vs calculates the

requested and residual resources for the candidate component

graphs based on the precise states collected by the probes.

Third, vs selects qualified compositions according to the user’s

operator, resource, and QoS requirements. Let Vλ be the set

of nodes that is being used to instantiate λ. We use ci.o to

represent the operator provided by the component ci. The

selection conditions are as follows:

operator constraints : ci.o = oi, ∀oi ∈ ξ, ∃ci ∈ λ (1)

QoS constraints : qλ
r ≤ qξ

r , 1 ≤ r ≤ m (2)

processing capacity constraints : rpvi
≥ 0, ∀vi ∈ Vλ (3)

bandwidth constraints : rblj ≥ 0, ∀lj ∈ λ (4)
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Among all the qualified compositions that satisfy the appli-

cation QoS requirements, vs selects the best one according

to the following load balancing metric φ(λ). The qualified

composition with the smallest φ(λ) value is selected:

φ(λ) =
∑

vi∈Vλ,oi∈ξ

poi

rpvi
+ poi

+
∑

lj∈λ,sj∈ξ

bsj

rblj + bsj

(5)

Step 5. Application session setup. Finally, the Synergy

node vs establishes the stream processing application ses-

sion by sending confirmation messages along the selected

application component graph. If no qualified composition can

be found (i.e., all probes were dropped, including the ones

without stream reuse), then the existing components and nodes

in the probing path are too overloaded. Thus, these nodes can-

not accommodate the requested application with the specified

QoS requirements, or host new components. vs can then try

to deploy a new complete application component graph in

strategically chosen places in the network [7], [18]. The goal

of the described protocol is to discover and select existing

streams and components to share, in order to accommodate

a new application request, assuming components are already

deployed on nodes. This is orthogonal to the policies that

might be in place regarding the deployment of new complete

application component graphs, which is outside the scope of

this paper. If deploying a new complete application component

graph also fails, vs returns a failure message.

Synergy is adaptable middleware, taking into account the

current status of the dynamic system at the moment the

application request arrives. Therefore, it does not compare

to optimal solutions calculated offline that apply to static

environments. Furthermore, Synergy decides the admission of

applications depending on whether QoS can be fully met or

not. Statistical methods [14] could be adopted to integrate

our solution with utility-based approaches [16], in which case

different levels of QoS would be offered. In that case, QoS

requirements can be expressed as satisfaction probabilities, and

histograms can be maintained to calculate the probabilities

of dynamic resource availability. Different weights can be

assigned to different applications based on their importance,

determining the probing ratio, as well as the maximum QoS

level of particular applications. The system would then decide

the probability with which a certain application could be

provided with the maximum possible QoS level.

B. New Component Deployment

New component deployment is triggered when i) no can-

didate components for a requested operator are returned by

the peer-to-peer overlay, or ii) when candidate components

exist, but none of them can be safely reused. This can be

the case if sharing the existing components would cause

resource overloads, or QoS violations to the new or to existing

applications. Each node processing a probe requires each next-

hop candidate component to send an acknowledgement mes-

sage back if the probe conditions can be satisfied. The node

initiates a new component deployment if it does not receive

any acknowledgement message from its next-hop candidates.

We choose to collocate the new component with either

its upstream or its downstream component, as this approach

minimizes the number of hops in the application component

graph. If collocation with an upstream component is decided, it

occurs at the node that just processed a probe. If collocation

with a downstream component is decided, it happens at the

node a probe is forwarded to after being processed. We now

discuss how the nodes to host a new component are chosen

and then we describe how component deployment takes place.

Depending on the position of the missing component in the

application component graph, we distinguish between three

different cases, shown in Figure 7: i) If the missing component

is at the beginning of the graph, we can collocate it with any

of its downstream candidates. Thus, in Figure 7.a), the missing

component for operator o1 can be collocated with c21, c22, or

c31. ii) If the missing component is at the end of the graph,

we can collocate it with any of its upstream candidates. Thus,

in Figure 7.b), the missing component for operator o6 can be

collocated with c41, c51, or c52. iii) If the missing component

is in the middle of the graph, we can collocate it with any of

its downstream or upstream candidates. Thus, in Figure 7.c),

the missing component for operator o4 can be collocated with

c21, c22, or c61. Our goal when trying to decide whether to

collocate with downstream or with upstream candidates is to

reduce network traffic. To that effect, we choose whether to

collocate with an upstream or a downstream candidate based

on the operator’s profiled selectivity [19], which is included in

the query plan ξ. The selectivity of an operator is calculated

as the ratio of the size of its output streams over the size of its

input streams, during the period of time the profiling occurs.

The selectivity of an operator can be less than one, e.g., for

a filter, equal to one, e.g., for a sort, or even greater than

one, e.g., for some cases of a join. For selectivity less than or

equal to one we collocate with an upstream candidate, while

for selectivity greater than one we collocate with a downstream

candidate component. Thus, the network traffic across the

components is minimized. For example, in Figure 7.c), if the

selectivity of the operator o4 is less than or equal to one,

we collocate the missing component for o4 with one of the

upstream candidates c21 or c22. If on the other hand the

selectivity of the operator o4 is greater than one, we collocate

the missing component with its downstream candidate c61.

Since, at each hop, many probes are spawned before the

final composition selection, many alternative deployments for

a new component may exist. For example, in Figure 7.c), if

the components that offer the operator o4 are missing, the

deployment alternatives may include the nodes hosting each

of the components c21 and c22. The resource and QoS checks

described in step 2 of the composition protocol are performed

on the tentatively deployed components as well. Thus a probe

is dropped if resource or QoS violations are detected.

Depending on resource availability, the upstream or down-

stream candidates may not be able to deploy the requested

component. In that case, the node that initiated the component

deployment does not receive any acknowledgement message,

and tries to identify other candidates. If the missing component

is in the middle of the graph, both downstream and upstream

candidates can be probed. If the extra candidates drop the

probe as well, overlay neighbors or nodes along the probing

path so far can be used. If none of these cases, for any of the
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Fig. 7. The three cases of new component deployment.

probing paths, results to a successful deployment, a complete

graph, as described in protocol step 5, can be deployed.

If the resource availability of a node allows the new

component deployment, a transient resource reservation for

this component takes place. Thus, resources are reserved,

to avoid overbooking by concurrent probing processes, but

the component is only tentatively deployed. After the final

component graph is selected, the new components that are

included in that graph are actually deployed. The rest of

the transient resource reservations made by the tentatively

deployed components timeout, which frees the resources for

future requests. Only the permanently deployed components

register their metadata with the peer-to-peer overlay, to enable

their discovery and reuse by other applications.

While the collocation-based component deployment strategy

minimizes the number of hops that streams travel through, it

does not necessarily provide the minimum end-to-end appli-

cation delay. The reason is that the triangle inequality does

not necessarily hold for all nodes in real-world, large-scale

distributed systems [17]. For example, in Figure 7.c), a node

to host c41 may exist, such that the delay c21 → c41 → c61

is smaller than the delay c21 → c61. However, examining all

nodes for all alternative probes, would lead to an explosion

of combinations. Yet, while our minimum hop component

deployment does not necessarily produce the optimal solution,

it heuristically provides us with several good alternatives that

satisfy the QoS of the application.

C. Maximum Stream Sharing

Synergy utilizes a peer-to-peer discovery module for regis-

tering and discovering the available components and streams in

a decentralized manner. As was mentioned in Section II-C, the

current Synergy implementation is built over Pastry [15]. We

follow a simple approach to enable the storage and retrieval

of the static metadata of components and streams in the DHT,

which include the location (node) hosting the component or

stream. As was described in Section II-A, each component and

stream is given a name, based on a common ontology. This

name is converted to a key, by applying a secure hash function

(SHA-1) on it, whenever a component or stream needs to be

registered or discovered. On the DHT this key is used to

map the metadata to a specific node, with the metadata of

multiple components offering the same operator, or multiple

streams carrying the same data, being stored in the same node.

Configuration changes caused by node arrivals and departures

are handled gracefully by the DHT. Whenever components

are deployed or deleted, or streams are generated by new

application sessions, or removed because they are not used

by any sessions anymore, the nodes hosting them register or

unregister their metadata with the DHT.

The stream processing query plan ξ specifies the operators

oi and streams sj needed for the application execution. Using

a Maximum Sharing Discovery algorithm, the Synergy node

in which the query plan was submitted utilizes the peer-to-

peer overlay for discovering existing streams and components.

Since different users can submit queries that have the same

or partially the same query plans, we want to reuse existing

streams as much as possible to avoid redundant computations.

The goal of the Maximum Sharing Discovery algorithm is

to identify the maximum sharable point(s) in ξ. This is the

operator(s) closest to the destination (in terms of hops in ξ),

whose output streams currently exist in the system and can

(at least partially) satisfy the user’s requirements. An extreme

case is that the final stream or streams already exist in the

system, which can then be returned to the user directly without

any further computation, as long as the residual bandwidth and

communication latencies permit so. For example in Figure 5 if

s8 is already available in the system, it can be reused to satisfy

the new query, incurring only extra communication but no

extra processing overhead. In that case, the maximum sharable

point in ξ is o6 and Synergy will prefer to use no components

if possible. If the final stream or streams are not available,

the Synergy node backtracks hop-by-hop the query plan to

find whether preceding intermediate result streams exist. For

example, in Figure 5, if result streams s8 and s7 are not found,

but s6 and s5 are already available in the system, they may

be reused to satisfy part of the query plan. By reusing these

existing streams, the Synergy node will prefer to compose a

partial component graph covering the operators after the reused

streams, if the resource and QoS constraints permit so. In that

case, the maximum sharable points in ξ are o3 and o4 and only

components offering operators o5 and o6 will be needed. To

discover existing streams and existing components the peer-

to-peer overlay is utilized as was described above.

D. QoS-Aware Component Sharing

To determine whether an existing candidate component

can be reused to satisfy a new request, we estimate the

impact of the component reuse on the latencies of the existing

applications. An existing component can be reused if the

additional workload brought by the new application will not

violate the QoS requirements of the existing stream processing
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applications (and similarly the load of the already running

applications will not violate the QoS requirements of the new

application). To calculate the impact of admitting a new stream

processing application on the QoS of the existing applications

(and likewise, the impact of the running applications on the

potential execution of the one to be admitted), a Synergy

node that processes a probe utilizes a QoS Impact Projection

algorithm. This algorithm runs in all nodes with candidate

components through which the probes are propagated. The

QoS Impact Projection is performed for all the applications

that use components on those nodes. The goal is, that, if

the projected QoS penalty will cause the new or the existing

applications to violate their QoS constraints, these components

are not further considered and are thus removed from the

candidate list. For example, in Figure 6, candidate components

c10 and c40 are used by existing applications. Assuming that

QoS violations would be projected as a result of the new

stream workload, c10 and c40 are not considered as candidate

components for the operators o1 and o4 respectively, and

therefore are grayed out in the Figure. On the contrary, even

though c20 and c39 are used by existing applications, they

are still considered as candidate components for the operators

o2 and o3 respectively, if no QoS violations are projected

for them. We now describe the details of the QoS Impact

Projection algorithm, first for regular traffic (Section III-D1)

and then for bursty traffic (Section III-D2).
1) QoS Impact Projection for Regular Traffic: The QoS

Impact Projection algorithm to estimate the effect of compo-

nent reuse works as follows: For each component ci, the node

estimates its execution time. This includes the processing time

τci
of the component ci to execute locally on the node and the

queueing time in the scheduler’s (FCFS) queue as it waits for

other components to complete. The queueing time is defined

as the difference between the arrival time of the component

invocation at the node and the time the component actually

starts executing. We can then determine the mean execution

time xci,vi
for each component ci on the node vi.

For regular traffic, we approximate arrivals of stream data

tuples with a Poisson distribution and the durations of their

processing with an exponential distribution. Data tuples arrive

continuously and the scheduler’s queue is large enough to store

them until they are processed. Under these assumptions, we

can model the application behavior as an M/M/1 system [20].

While such a model can only provide an approximation of

the execution time, it is commonly used due to its simplicity

and has also been used to represent streaming data [21].

Our experimental results show that this simplified model can

provide good projection performance for both synthetic and

real datasets. If pvi
represents the load on node vi hosting

component ci, and τci
represents the processing time for ci to

execute isolated on vi, the mean execution time for component

ci on node vi is given by xci,vi
=

τci

1−pvi

. The mean commu-

nication time ysj ,lj on the virtual link lj for the stream sj

transmitted from component ci to its downstream component

cj is estimated similarly: It includes the transmission time

σsj
for the stream sj , and also the queueing delay on the

virtual link. If blj represents the load (consumed bandwidth)

on virtual link lj connecting component ci to its downstream

component in the application component graph, the mean

communication time ysj ,lj to transmit stream sj through the

virtual link lj is then given by ysj ,lj =
σsj

1−blj

. Given the

processing times τci
and the transmission times σsj

required

respectively for the execution of the components ci and the

data transfer of the streams sj of an application, as well as

the current respective loads pvi
and blj , a Synergy node can

compute the projected end-to-end execution time for the entire

application as t̂ = maxpath

∑

vi∈Vλ,lj∈λ

(

τci

1−pvi

+
σsj

1−blj

)

,

where the maxpath is used in the cases where the application

is represented by a graph with multiple paths, in which case

the projected execution time of the entire application is the

maximum path delay.

The processing time τci
and transmission time σsj

are

derived from the processing and bandwidth requirements, poi

and bsj
respectively, which are included for the corresponding

operators oi and streams sj in the query plan ξ. The bandwidth

requirements are calculated according to the user-requested

stream rate, while the processing requirements are calculated

according to the data rate and profiled processing times for

the operators [13]. The current processor and network loads,

pvi
and blj respectively, are known locally at the individual

nodes. These values are used to estimate the local impact δ of

the component reuse on the existing applications as follows

(based on the projected execution time):

Let
τci

1−pvi

denote the mean execution time required for

executing component ci on the node vi by the application.

After sharing the component with the new application, the

projected execution time would become:
τci

1−(pvi
+pci

) , where

(pvi
+ pci

) represents the new processing load on the node

after reusing the component ci. pci
represents the maximum

profiled load for ci. This makes the projection conservative, so

that QoS violations will be avoided. Alternatively, a projection

can be less pessimistic by using average or minimum instead

of maximum load. We then compute the impact δ on the

application execution time, as the difference between the

projected end-to-end execution time after the reuse, t̂′, and

the execution time before the reuse, t̂:

δ = t̂′ − t̂ =
τci

1 − (pvi
+ pci

)
−

τci

1 − pvi

(6)

The projected impact δ is acceptable if δ + t̂ ≤ qt, in other

words if the new projected execution time is acceptable. In

the above inequality, qt is the requested end-to-end execution

time QoS metric that was specified by the user in Qξ. Similar

to ξ, it is cached for every application on each node that is

part of the application. t̂ is the current end-to-end execution

time for the entire application. t̂ is measured by the receiver

of a stream processing session and communicated to all nodes

participating in it using a feedback loop [16]. This enables

the processing to adapt to significant changes in the resource

utilization, such as finished applications or execution of new

components. For an application that is still in the admission

process, t̂ is approximated by the sum of the processing and

transmission times up to this node, as carried by the probe.

2) QoS Impact Projection for Bursty Traffic: Oftentimes

streaming data, such as voice-over-IP data, network traffic, or
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sensor measurements generated in an emergency application,

can be bursty, and therefore well approximated by an ON/OFF

model [11], [22]. In an ON/OFF model, segments of data

arrivals with high rate are followed by segments of data

arrivals with low rate. Similar to [11], [22], we approximate

bursty traffic using an ON/OFF model. Each segment of the

ON/OFF traffic represents regular traffic, the arrival of data

tuples of which is approximated using a Poisson distribution.

We apply an M/M/1 queueing model within each segment of

the ON/OFF traffic. Thus, using an M/M/1 system we model

the traffic within each segment as having constant mean arrival

rate of data tuples. Modeling it using M/M/1 allows us to apply

queueing theory to estimate the mean execution time within

each segment, as was described in Section III-D1. We do not

use the same M/M/1 model to generate bursty traffic. Traffic

within each segment, which is regular, is approximated using a

separate M/M/1 model. A change in the measured mean arrival

rate of data tuples signifies the transition to a new segment.

b

t
p

t

a

w

t

p

p

W

Fig. 8. The two stream signatures
shown in a) are aggregated to get the
combined signature of b).

We define a stream seg-

ment, denoted by zi, as a

time interval with approxi-

mately constant mean arrival

rate of data tuples. We parti-

tion bursty traffic into a se-

quence of such stream seg-

ments. This way we approxi-

mate bursty streaming data by

assuming Poisson arrivals of

stream data tuples within each

segment, but with different

rates in different segments.

However, the challenge is to

identify the correlation be-

tween the segments of differ-

ent streams, because the seg-

ments of high and low rates

for different streams do not

necessarily coincide. To ad-

dress this challenge we em-

ploy the concept of stream

signatures [23]. For each stream we construct and maintain

a data arrival time series called the signature of the stream, to

describe its workload pattern. The signature Ωj of a stream

sj is a time series of the load associated with processing the

data tuples of the stream within a sliding window of length

W , Ωj = {p1, . . . pi, . . . pW }, where pi denotes the average

processing load for segment zi in the bursty stream. Measure-

ments are added to the signature of a stream every time the

mean arrival rate of data tuples changes, and substitute old

measurements after the window is filled. Signatures are stored

as arrays of measurements. Each new measurement added to a

stream’s signature is calculated from the number of data tuples

that have arrived since the last measurement, multiplied by

the processing load (i.e., percentage of CPU cycles) spent for

each data tuple. The signatures of the streams currently being

processed by a node are maintained by its monitoring module.

For the streams of the application that is currently being

admitted, if their signatures are not provided, we either obtain

them through off-line profiling, or approximate them using the

load measurements of the existing components the application

will be using. As the execution of the new application begins,

the sliding windows of the signatures of its streams are filled

with the actual processing loads.

As Figure 8 shows, the processing load of sharing a compo-

nent is calculated as the combination of the processing loads

of all of the component’s input streams. During a segment zi,

in which the mean arrival rate of data tuples remains constant,

the execution time for processing data tuples is approximated

by an M/M/1 queueing model. When estimating the workload

of multiple input streams, we use the shortest segment length

w among the segment lengths of all input streams, as is shown

in Figure 8. The benefit of employing stream signatures is

two-fold: First, they enable us to identify the shortest segment

length w, i.e., the shortest time interval with constant mean

arrival rate of data tuples among multiple bursty streams.

Second, they enable us to combine the processing loads of

multiple bursty streams, by aggregating the measurements of

all streams for each segment of minimum length w. Hence, in

the example of Figure 8, the shortest segment length w within

the sliding window of length W is identified. It is then used

to divide the signatures into segments of minimum length and

perform the aggregations of the streams’ processing loads.

Combining the processing loads of multiple streams by
aggregation is possible because of two reasons. The first reason
is that we aggregate the processing loads of the individual
streams within the shortest segment length w, for which all
streams have constant mean arrival rate of data tuples. The
second reason is that, assuming an M/M/1 queueing model
for each individual stream in each segment of length w, the
combination of all streams within that segment also follows an
M/M/1 queueing model [20]. Thus, assuming pΩj,w

represents
the measurement (i.e., processing load) belonging to a signa-
ture Ωj,w of a stream sj for the shortest segment length w, the
mean execution time for component ci on node vi processing
all input streams Svi

in a segment of length w is given by
xci,vi,w =

τci

1−
P

Ωj,w∀sj∈Svi

pΩj,w

. After sharing the component

with the new application, which incurs additional maximum
processing load pci

, the projected execution time for each
segment of length w would become:

τci

1−(
P

Ωj,w∀sj∈Svi

pΩj,w
+pci

) .

We can then compute the impact δw on the projected execution
time for the entire application, for every segment of length
w within the window of length W . As alternative admission
criteria we can use average, minimum, or maximum projected
execution times over all segments to project the impact. δw

is computed as the difference of the projected end-to-end
execution time after the reuse, t̂′, from the one before, t̂:

δw = t̂
′
−t̂ =

τci

1 − (
P

Ωj,w∀sj∈Svi

pΩj,w
+ pci

)
−

τci

1 −

P

Ωj,w∀sj∈Svi

pΩj,w

(7)

The projected impact is acceptable if δw + t̂ ≤ qt, ∀w ∈ W ,

i.e., if the new projected execution time is acceptable for every

segment of length w within the window of length W .

Equations (6) and (7) are the formulas used in the QoS

Impact Projection algorithm, for regular and for bursty arrival

rates respectively. A Synergy node has available, locally, all

the required information to compute the impact δ for all

applications it is currently participating in. This information
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is available by maintaining local load information, monitoring

the local processor utilization, and caching ξ and Qξ for all

running applications, along with their current end-to-end exe-

cution times. Synergy uses the projected application execution

time to estimate the effect of the component reuse on the

existing applications, by considering the effect of increased

processor load on the time required to invoke the component.

This projection is performed for all applications currently

invoking a component to be reused, for all applications invok-

ing other components on the node, and also for the application

that is to be admitted. If the projected impact is acceptable for

all applications, the component can be reused, and the node

sends an acknowledgement message to inform its upstream

node accordingly. Otherwise, and if there are no other local

components that can be reused, the probe is dropped.

IV. EXPERIMENTAL EVALUATION

A. Prototype over PlanetLab

1) Methodology: Our Synergy prototype was implemented

as a multi-threaded system including about 20000 lines of

Java code, running on each of 88 physical nodes of Plan-

etLab [12]. The implementation was based on the SpiderNet

service composition framework [14]. 100 components were

deployed uniformly across the nodes, with a replication degree

of 5. We used a probing ratio of 10%. Application requests

asked for 2 to 4 components chosen randomly and for the

corresponding streams between the components. We generated

approximately 9 requests per second throughout the system,

using a Zipf distribution with α = 1.6, expecting stream

processing applications to follow trends similar to media

streaming and web content provisioning applications [24].

We also experimented with different request distributions in

the simulations. We compared Synergy against two different

composition algorithms: A Random algorithm that randomly

selected one of the candidates for each application component.

A Composition algorithm (such as [14]), that performs QoS-

aware composition but does not consider result stream reuse

or the effects of component reuse on the applications’ QoS.

2) Results and Analysis:

Average Application End-to-End Delay. Figure 9 shows the

average application end-to-end delay achieved by the three

composition approaches for each transmitted data tuple. Syn-

ergy offers a 45% improvement over Random and a 25%

improvement over Composition. The average end-to-end delay

is in the acceptable range of less than a second. Reusing

existing result streams offers Synergy an advantage, since the

end-to-end delay is reduced for some requests by avoiding

redundant stream processing.

Successful Application Requests. An important efficiency

metric of a component composition algorithm is the number

of requests it manages to accommodate and meet their QoS

demands, shown in Figure 10. Synergy successfully accommo-

dates 27% more applications than Composition and 37% more

than Random. Random does not take the QoS requirements

into account, thus misassigns a lot of requests. While Com-

position takes operator, resource, and QoS requirements into

account, it does not employ QoS impact projection to prevent

QoS violations on currently running applications. This results

in applications that fail to meet their QoS demands during

their execution, due to dynamic arrivals of new requests in the

system. In contrast, Synergy manages to increase the capacity

of the system and also limit the QoS violations.

Protocol Overhead. We show the overhead of the composi-

tion protocols which is attributed to the probe messages in Fig-

ure 11. To discover components and streams, we use the DHT-

based routing scheme of Pastry, which keeps the number of

discovery messages low, while the number of messages needed

to probe alternative component graphs quantifies our protocol’s

overhead. Synergy’s sharing-aware component composition

manages to reduce the number of probes: By being able to

discover and reuse existing streams to satisfy parts or the entire

query plan, it keeps the number of candidate components that

need to be probed smaller. Also important is that the overhead

grows linearly with the number of nodes in the system, which

allows the protocol to scale to larger numbers of nodes. The

probing ratio is another knob that can be used to tune the

protocol overhead further [5]. While Random’s overhead could

also be tuned to allow less candidates to be visited, its per hop

selections would still be QoS-unaware.

Setup Time (ms) Random Composition Synergy

Discovery 240 188 243

Probing 4509 4810 3141

Total 4749 4998 3384

Fig. 15. Breakdown of average setup time.

Average Setup

Time. Table 15

shows the break-

down of the aver-

age time needed

for an applica-

tion setup, for the

three composition algorithms. The setup time is divided into

time spent to discover components and streams, and time spent

to probe candidate components. As is shown, the discovery of

streams and components is only a small part of the time needed

to set up a stream processing session. Most of the time is spent

in transmitting probes to candidate components and running
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the composition algorithm. Sharing streams allows Synergy to

save time from component probing, which effectively leads to

32% faster setup time than Composition. The total setup time

is only a few seconds. Having to discover less components

balances out the cost of having to discover streams. Discov-

ering a stream, especially if it is the final output of the query

plan, can render multiple component discoveries unnecessary.

B. Simulations

1) Methodology: To further evaluate the performance of

Synergy’s sharing-aware composition algorithm, we imple-

mented a distributed stream processing simulator in about

8500 lines of C++ code. The network topology fed to the sim-

ulator was a transit-stub topology of 1500 routers, generated

by the GT-ITM Internet topology generator [25]. We simulated

a large overlay network of 500 nodes chosen randomly from

the underlying topology. Nodes and links were assigned pro-

cessing and communication capacities from discrete classes,

to simulate a heterogeneous system. 1000 components were

distributed uniformly across the nodes of the system, with a

uniform replication degree of 5; i.e., 200 unique components

and 800 component replicas were deployed at the nodes.

Application requests (i.e., query plans) consisted of requests

with 2 to 10 operators chosen randomly. For each application,

we set its QoS requirement 30% higher than the time needed

for the application to execute in isolation. We investigated

both the performance of Synergy’s composition algorithm and

its sensitivity to the above parameters and those results are

presented in [26]. We compared Synergy not only against

Random and Composition, but also against a Greedy algorithm

that at each composition step selected the candidate component

that resulted in the minimum next-hop delay. Note that this

does not necessarily result in the minimum end-to-end delay

for the entire application. To implement this algorithm in a

distributed prototype some delay monitoring service such as

the ones discussed in [17] would be needed.

2) Results and Analysis: In this set of experiments we

investigated the performance of Synergy’s collocation-based

component deployment strategy, described in Section III-B.

Average Application End-to-End Delay. To trigger new

component deployment, we included in the query plan of

each application request an operator that was not offered

by any component in the system. We kept query plan sizes

uniformly distributed from 2 to 10 operators, as mentioned in

Section IV-B1. Synergy collocated the new component with

another component of the application component graph, based

on the heuristics described in Section III-B, also performing

the required resource and QoS checks. Composition and

Greedy deployed the new component on the node that had the

minimum delay from the upstream node, i.e., from the node

hosting the previous component in the application component

graph. Additionally, Composition selected the next closest

node if the deployment would cause a resource violation.

Finally, Random blindly selected a node to deploy the new

component. Figure 12 shows the average application end-to-

end delay achieved by the different algorithms. The execution

delay is averaged over 100 application instantiations. Syn-

ergy’s collocation-based component deployment reduces av-

erage end-to-end delay by approximately 20% over the delay-

based deployment of Composition and Greedy. Furthermore,

it does not require maintaining delay information. Hence, it

is an attractive strategy for infrequent component deployment.

When many components need to be deployed, in which case

resource and QoS violations due to the collocation of multiple

components may be more frequent, techniques for placing a

complete component graph may be considered [7], [18].

Selectivity. Synergy’s collocation-based deployment takes

the operators selectivity into account to minimize network

traffic across components. We investigated the selectivity of

operators of a real stream processing application operat-

ing on real streams, to quantify the traffic reduction. We

implemented a top-k network traffic monitoring application

(http://synergy.cs.ucr.edu/screenshots.html) from the stream

query repository [27] and recorded the output of the operators

for streams produced by seven different traces of network

traffic from the Internet traffic archive [28]. Figure 13 shows

that for three out of seven operators of the query plan, average

traffic reduction reaches 69%, 82%, and 72% respectively,

while for the count operator traffic is reduced to just one

data tuple. While the traffic reduction depends on the operator

semantics, it is consistent among different datasets, making

selectivity an important factor when deploying components.

In the next set of experiments we examined the accu-

racy of Synergy’s QoS impact projection algorithm described

in Section III-D. In particular we looked at how the pro-

jected processing delay of individual streams compared to

the actual processing delay experienced by the data tuples of

these streams, by experimenting with both real and synthetic

datasets. In all figures we also show the processing delay of

the isolated stream, that is, the processing delay if no queueing

for processing other streams existed.

Projection accuracy for real network traffic. We investigated
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Fig. 16. Projection accuracy for sensor traffic.
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Fig. 17. Projection accuracy for regular traffic.
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Fig. 18. Projection accuracy for bursty traffic.
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Fig. 19. Projection accuracy for bursts with
period 0.5 second.
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Fig. 20. Projection accuracy for bursts with
period 5 seconds.
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Fig. 21. Projection accuracy for bursts with
high rate 3 tuples/s and low rate 1 tuple/s.
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Fig. 22. Projection accuracy for bursts with
high rate 300 tuples/s and low rate 100 tuples/s.
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Fig. 23. Projection accuracy for bursts with
high rate 20 tuples/s and low rate 10 tuples/s.
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Fig. 24. Projection accuracy for bursts with
high rate 40 tuples/s and low rate 10 tuples/s.

the projection accuracy for processing a trace of TCP traffic

between the Lawrence Berkeley Laboratory and the rest of the

world, which was trace LBL-TCP-3 from the Internet traffic

archive [28]. Each data tuple was 192 bits long, and contained

a timestamp, and fields defining the source, destination, and

size of packets exchanged. As can be seen in Figure 14, the

generated stream was bursty and did not follow any easily

identifiable pattern. Synergy’s QoS impact projection follows

the bursts very closely, projecting processing delays close

to the ones experienced. The projections for the low rate

segments are mostly above the actual delays, which may lead

to more conservative compositions, but no QoS violations.

Projection accuracy for real sensor traffic. Next we investi-

gated the projection accuracy for bursty streams that followed

a pattern, specifically the data streams produced by sensors

installed in redwood trees collected by the UC Berkeley

Sonoma dust project [29]. Each data tuple produced was 352

bits long, and contained a timestamp, multiple fields charac-

terizing the sensor that produced it, as well as a variety of

measurements, including humidity. A burst of measurements

lasting approximately one second was generated every five

minutes. Figure 16 shows that these periodic bursts were

followed closely by Synergy’s projection algorithm, which

accurately identified the segments of high and zero rate.

Projection accuracy for synthetic regular traffic. We next

generated regular traffic, with data tuples arriving at a rate

of 20 tuples/second and following a Poisson distribution.

Figure 17 shows that the processing delay trends are followed

closely by Synergy’s projection algorithm, while the projected

delay values are in a close range to the actual ones.

Projection accuracy for synthetic bursty traffic. We also

generated bursty traffic with a period of 2.5 seconds, high rate

of 30 tuples/second and low rate of 10 tuples/second. Figure 18

shows that Synergy’s projection algorithm accurately identifies

the high and low rate segments. Similar to the projection for

network traffic of Figure 14, the projections for the low rate

segments are mostly conservative, i.e., above the actual delays.

However, most importantly, the high rate segment projections

are not optimistic, and therefore do not lead to QoS violations.

Finally, we investigated the accuracy of Synergy’s QoS

impact projection under various conditions, by changing in-

dividual parameters of the synthetic bursty streams, while

keeping the rest of them as in the experiment of Figure 18.

Sensitivity to burst period. Figures 19 and 20 show the

projection accuracy for bursty traffic with periods of 0.5 and 5

seconds respectively. As can be seen, the length of the bursts
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does not affect the accuracy with which the algorithm identifies

segments of low and high rate.

Sensitivity to burst rate. Figures 21 and 22 show the

projection accuracy when varying the burst rate. Figure 21

shows traffic with high rate of 3 tuples/second and low rate

of 1 tuple/second, while Figure 22 shows traffic with high

rate of 300 tuples/second and low rate of 100 tuples/second.

We observe that these variations in rate make more evident

the conservative projection for low rate segments described in

Figure 18, which may lead to more conservative compositions,

but not to QoS violations. We note that we have not observed

such extreme rates for either of the two real traffic datasets.

Sensitivity to burst ratio. Figures 23 and 24 show the pro-

jection accuracy when varying the ratio of the rates of the high-

and low-rate segments. Figure 23 shows traffic with high rate

of 20 tuples/second and low rate of 10 tuples/second, while

Figure 24 shows traffic with high rate of 40 tuples/second and

low rate of 10 tuples/second. We observe that the ratio of the

high and low rates does not affect the detection of segments,

nor the accuracy with which processing delays are projected.

V. RELATED WORK

Distributed stream processing [3], [8] has been the focus

of several recent research efforts from many different per-

spectives. In [7], [18] the placement problem of a complete

component graph in a DSPS to make efficient use of the

network resources and maximize query performance is dis-

cussed. Our work is complementary, in that our focus is on the

effects of sharing existing components, and we address partial

component graph deployment only when previously deployed

components cannot be reused. While [7] mentions component

reuse, they do not focus on the impact on already running ap-

plications. [6] describes an architecture for distributed stream

management that makes use of in-network data aggregation

to distribute processing and reduce communication overhead.

A clustered architecture is assumed, as opposed to Synergy’s

totally decentralized protocols. Service partitioning to achieve

load balancing taking into account the heterogeneity of the

nodes is discussed in [30]. While a balanced load is the final

selection criterion among candidate component graphs in Syn-

ergy as well, our focus is on QoS provisioning. The distributed

composition probing approach is first presented in [5], [14].

Synergy extends this work by considering stream reuse and

evaluating the impact of component sharing. Our techniques

for distributed stream processing composition apply directly

to multimedia streams [16] as well. This paper builds upon

our earlier work [26] by augmenting the composition protocol

with new component deployment, extending the QoS impact

projection algorithm to handle both regular and bursty streams,

and experimentally investigating the projection accuracy.

While we focus on component composition for stream

processing, our techniques may apply to other composite

applications with QoS requirements, such as QoS-sensitive

web services. Similar to Synergy, works on web service com-

position [31]–[33] take into account QoS metrics. They discuss

dynamic composition algorithms that select web services so

that utility is maximized [31], end-to-end QoS is guaran-

teed [32], or maximized [33]. [32] proposes heuristics with

near-optimal solutions in polynomial time, while [33] presents

optimal solutions using integer programming. The main dif-

ference between these approaches and Synergy is that they

propose centralized solutions that rely on global knowledge,

whereas Synergy employs a distributed composition protocol.

While centralized solutions might be appropriate for a web

services environment, a distributed approach is more suitable

for highly-dynamic and very large-scale distributed stream

processing environments [5]–[9]. However, our maximum

sharing discovery and QoS impact projection algorithms are

independent of the composition protocol and may be combined

with existing web service composition approaches [31]–[33].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we have presented Synergy, a distributed

stream processing middleware that provides sharing-aware

component composition. Synergy is built on top of a totally

decentralized overlay architecture and utilizes a Maximum

Sharing Discovery algorithm to reuse existing streams, and a

QoS Impact Projection algorithm to reuse existing components

and yet ensure that the QoS requirements of the currently

running applications will not be violated. Both our prototype

implementation of Synergy over PlanetLab and our simula-

tions of its composition algorithm show that sharing-aware

component composition can enhance QoS provisioning for

distributed stream processing applications.

Our future work includes the integration of iterative ex-

ecution of Synergy’s composition protocol with techniques

for increasing application reliability. This can enable DSPSs

that are more reliable in the presence of overloads, as well

as more robust against node or link failures at run-time

or during composition. Proactive migration [34] can guard

against QoS violations. On the other hand, predictive failure

management [35], and availability-aware placement [36] can

protect against component or node failures. To offer fault

tolerance, either reactive or proactive failure recovery schemes

can be used [10]. In reactive recovery a new application com-

ponent graph is composed upon failure, while in proactive re-

covery backup application component graphs are maintained.

Integrating replication with composition can also increase

fault tolerance. To that end, consistency trade-offs [37], and

checkpoint scheduling [38] are worth investigating.

REFERENCES

[1] S. Chandrasekaran et al., “TelegraphCQ: Continuous dataflow process-
ing for an uncertain world,” in Proceedings of CIDR, Asilomar, CA,

USA, January 2003.
[2] R. Motwani et al., “Query processing, resource management, and

approximation in a data stream management system,” in Proceedings

of CIDR, Asilomar, CA, USA, January 2003.
[3] D. Abadi et al., “The design of the Borealis stream processing engine,”

in Proceedings of CIDR, Asilomar, CA, USA, January 2005.

[4] L. Chen, K. Reddy, and G. Agrawal, “GATES: A grid-based middleware
for distributed processing of data streams,” in Proceedings of IEEE

HPDC-13, Honolulu, HI, USA, June 2004.
[5] X. Gu, P. Yu, and K. Nahrstedt, “Optimal component composition for

scalable stream processing,” in Proceedings of 25th ICDCS, Columbus,

OH, USA, June 2005.
[6] V. Kumar, B. Cooper, Z. Cai, G. Eisenhauer, and K. Schwan, “Resource-

aware distributed stream management using dynamic overlays,” in
Proceedings of 25th ICDCS, Columbus, OH, USA, June 2005.



14

[7] P. Pietzuch, J. Ledlie, J. Shneidman, M. Roussopoulos, M. Welsh, and
M. Seltzer, “Network-aware operator placement for stream-processing
systems,” in Proceedings of 22nd ICDE, Atlanta, GA, USA, April 2006.

[8] L. Amini, N. Jain, A. Sehgal, J. Silber, and O. Verscheure, “Adaptive
control of extreme-scale stream processing systems,” in Proceedings of

26th ICDCS, Lisboa, Portugal, July 2006.

[9] K. L. Wu et al., “Challenges and experience in prototyping a multi-
modal stream analytic and monitoring application on System S,” in
Proceedings of 33rd VLDB, Vienna, Austria, September 2007.

[10] X. Gu and K. Nahrstedt, “On composing stream applications in peer-
to-peer environments,” IEEE Transactions on Parallel and Distributed

Systems, vol. 17, no. 8, pp. 824–837, July 2006.

[11] M. Hammad, M. Franklin, W. Aref, and A. Elmagarmid, “Scheduling for
shared window joins over data streams,” in Proceedings of 29th VLDB,

Berlin, Germany, September 2003.

[12] A. Bavier et al., “Operating system support for planetary-scale network
services,” in Proceedings of NSDI, San Francisco, CA, March 2004.

[13] T. Abdelzaher, “An automated profiling subsystem for QoS-aware ser-
vices,” in Proceedings of 6th IEEE RTAS, Washington, DC, June 2000.

[14] X. Gu and K. Nahrstedt, “Distributed multimedia service composition
with statistical QoS assurances,” IEEE Transactions on Multimedia,
vol. 8, no. 1, pp. 141–151, February 2006.

[15] A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object lo-
cation and routing for large-scale peer-to-peer systems,” in Proceedings

of IFIP/ACM Middleware, Heidelberg, Germany, November 2001.

[16] F. Chen, T. Repantis, and V. Kalogeraki, “Coordinated media streaming
and transcoding in peer-to-peer systems,” in Proceedings of 19th IPDPS,

Denver, CO, USA, April 2005.

[17] J. Ledlie, P. Gardner, and M. Seltzer, “Network coordinates in the wild,”
in Proceedings of NSDI, Cambridge, MA, USA, April 2007.
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