
Contents lists available at ScienceDirect

Computer Languages, Systems & Structures

Computer Languages, Systems & Structures 44 (2015) 218–237
http://d
1477-84

n Corr
E-m
journal homepage: www.elsevier.com/locate/cl
On the verification of architectural reconfigurations

Alejandro Sanchez a,b,n, Alexandre Madeira b, Luís S. Barbosa b

a Universidad Nacional de San Luis, Ejército de los Andes 950, D5700HHW Argentina
b HASLab INESC TEC & Universidade do Minho, 4710-057 Portugal
a r t i c l e i n f o

Article history:
Received 6 February 2015
Received in revised form
30 May 2015
Accepted 10 July 2015
Available online 17 July 2015

Keywords:
Architectural reconfiguration
Architectural description language
Modal logic
Graded hybrid logic
x.doi.org/10.1016/j.cl.2015.07.001
24/& 2015 Elsevier Ltd. All rights reserved.

esponding author.
ail addresses: asanchez@unsl.edu.ar (A. Sanc
a b s t r a c t

In a reconfigurable system, the response to contextual or internal change may trigger
reconfiguration events which, on their turn, activate scripts that change the system's
architecture at runtime. To be safe, however, such reconfigurations are expected to obey
the fundamental principles originally specified by its architect. This paper introduces an
approach to ensure that such principles are observed along reconfigurations by verifying
them against concrete specifications in a suitable logic. Architectures, reconfiguration
scripts, and principles are specified in ARCHERY, an architectural description language with
formal semantics. Principles are encoded as constraints, which become formulas of a two-
layer graded hybrid logic, where the upper layer restricts reconfigurations, and the lower
layer constrains the resulting configurations. Constraints are verified by translating them
into logic formulas, which are interpreted over models derived from ARCHERY specifications
of architectures and reconfigurations. Suitable notions of bisimulation and refinement, to
which the architect may resort to compare configurations, are given, and their relation-
ship with modal validity is discussed.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The purpose of dynamic architectural reconfiguration [1] is to maintain the quality level of a system as contextual or
internal conditions vary. This is primarily achieved through a combination of sensors, which somehow measure the system,
and actuators, i.e., scripts which modify the system's architecture under specified situations. Reconfigurations, however, may
disrupt the basic design principles, originally fixed by the architectural patterns in use. Therefore, a mechanism is required
to ensure that emerging reconfigurations conform to the design principles, regardless of how they take place.

This paper introduces an approach to provide such a mechanism. It focuses on reconfigurations that constitute undesired
sequences of change, or that lead to forbidden configurations. Design principles are specified as formulas in a modal logic,
and then are verified against models of reconfigurations. For this, we extend an architectural description language (ADL) [2]
called ARCHERY [3,4], which is a domain specific language [5] used to animate, analyse and verify system's architectures. It is
organized as a core and a number of modules. The core is for modelling architectures in terms of architectural patterns, and
the modules are for specifying constraints and reconfiguration scripts. A constraint restricts either structure, behaviour or
possible reconfigurations of a system. Reconfiguration scripts are executed by a configuration manager when conditions,
specified as constraints, hold. The language semantics is given by a translation into a process algebra [3], for the behavioural
part, and by an encoding into bigraphical reactive systems [4], for the structural part. Constraints are translated into a modal
hez), madeira@di.uminho.pt (A. Madeira), lsb@di.uminho.pt (L.S. Barbosa).

www.sciencedirect.com/science/journal/14778424
www.elsevier.com/locate/cl
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.07.001&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cl.2015.07.001&domain=pdf
mailto:asanchez@unsl.edu.ar
mailto:madeira@di.uminho.pt
mailto:lsb@di.uminho.pt
http://dx.doi.org/10.1016/j.cl.2015.07.001
http://dx.doi.org/10.1016/j.cl.2015.07.001

Fig. 1. A configuration with two nurses.

Fig. 2. A nurse being substituted.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 219
logic and are verified against models derived from architectural specifications [6–8]. We extend ARCHERY's syntax and the
underlying mathematical framework to support models and properties of reconfigurations.

The underlying logic proposed here is a two-layer graded hybrid logic. As usual in modal logic, models are relational
structures over a state space (whose elements are called worlds, states, or points). Being hybrid, the logic is equipped with

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237220
both nominals and a reference operator. The former is a proposition that is only satisfied at the world it identifies. The latter
constrains a formula to hold at the world named by a specified nominal. Together they make possible to express, for
instance, that two worlds are identical, or that their relationship is irreflexive. Other features of the logic are its hierarchical
character [9], which enforce two layers of description, the use of graded modalities to describe the cardinality of relations,
and operations to select and iterate over a set of relations. Hierarchical formulas allow us to describe models organized into
layers of abstraction, which result from the common practice of refining a world into a more elaborated model. Data
parameters are also allowed in relations.

Notions of simulation and bisimulation are introduced for models of this logic. They provide refinement and equivalence
relations, respectively, in order to discuss whether a script can replace, or be interchanged, with another.

Global properties of the logic are studied. Reconfiguration scripts are said to be equivalent if, and only if, they satisfy the
same formulas. Preservation of modal equivalence by bisimilarity is proved, and a full Hennessy–Milner like theorem arises
for the non-graded fragment.

In this context, the contributions of the article are an ADL to define two-level constraints whose first level describes
reconfigurations and the second, the resulting configurations; the characterization of the associated logic as well as of
suitable notions of model bisimulation and refinement; a derivation of models from architectural specifications; and finally
a translation that takes constraints and yields a formula in the two-layer graded hybrid logic. Behavioural constraints and
triggers are not dealt here; the interested reader is referred to the first author forthcoming thesis [10].

The approach proposed here is illustrated with a fragment of the blood transfusion process, the architecture of a medical
procedure which is critical in the sense that it may involve risk to patients [11]. In particular, it requires ensuring blood
compatibility between the donor and the patient, since an incompatible transfusion can cause a reaction with fatal
consequences. A major source of these incidents is misidentification, which might occur at stages of the process that require
checking patient's identity, or handling material with patient identification data. Architectural principles are laid down to
prevent misidentification, and the approach is used to verify them.

Organization: After describing the blood transfusion example in Section 2, a background summary of the ARCHERY lan-
guage is provided in Section 3, Section 4 presents the logic, introduces bisimulation and refinement relations, and studies
their properties. Section 5 introduces the derivation of models, the translation of constraints, and illustrates the approach
with the verification of some constraints from the example. Then Section 6 describes related work, and Section 7 sums up
and mentions ongoing and future work.
2. A blood transfusion process: avoiding misidentification

The example process starts after a blood transfusion is prescribed to a patient and ends when the patient is discharged.
The procedure is supported by a software system, accessed through mobile devices by the involved staff that includes a
physician, nurses, and the administration. It requires collecting a blood sample from the patient, establishing blood group
and factor, selecting suitable blood units, performing the actual transfusion, and monitoring the patient for a given period of
time. The patient is discharged when such period ends without any adverse reaction being observed. Fig. 1 depicts an
example configuration using an informal notation, in which white rectangles represent components, small grey rectangles,
ports, and arrows, interactions. It includes a patient (pat), a physician (phy), two nurses (n1 and n2), and the administration
(adm).

The staff, however, may change during the procedure. Nurses can enter (leave, resp.) the ward, and can be assigned
(unassigned, resp.) to (from, resp.) a blood transfusion patient. These changes must avoid configurations in which a
misidentification is more likely to occur, and proceed under the supervision of the administration.

Consider, for instance, the sequence of reconfigurations represented by the transition system on the left of Fig. 2 that
substitutes nurse n2 with n3. We focus on configurations c0, c3, c5, and c7, which are refined into (informal) architectural
diagrams on the right. Configuration c0 is similar to that described in Fig. 1. In configuration c3, a nurse (n3) has entered the
ward and checked in with administration, the latter represented by the two connections between n3 and adm. Then, nurse
n2 is unassigned from patient pat, which is represented in c5 by the absence of connections between them. Subsequently,
nurse n3 is assigned to the patient and the result is shown in configuration c7. The sequence finalizes with nurse n2 leaving
the ward (removed from the configuration).

Several architectural principles are defined to prevent configurations in which a misidentification might occur. It is
requested that a physician and at least two nurses are assigned to each patient undergoing a blood transfusion. The
physician orders and monitors the procedure, one nurse leads it, and the other assists the former to prevent a
misidentification. Then, it must be kept invariant in every configuration that any patient must have (S1) a designated
physician; and (S2) at least two nurses assigned. Changes, on the other hand, must observe the following constraints: (R1)
upon entering a ward, a nurse must check-in with administration before receiving any patient assignment; (R2) a nurse
cannot be unassigned from a patient if less than two nurses are left assigned; and (R3) a nurse must have no assignments
before checking out with administration and leaving.

In the example, configuration c5 does not satisfy S2. We use reconfiguration constraints to ensure that changes observe
these requirements, and avoid error-prone situations.

Fig. 3. Syntax for patterns.

Fig. 4. Syntax for instances.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 221
3. The ARCHERY language

3.1. Architectures

The specification of an architecture comprises one or more (architectural) patterns, a main architecture, and data
specifications. A pattern defines (architectural) elements (components and connectors) and might have associated
constraints (see syntax in Fig. 3). For instance, pattern Ward defines elements Patient, Physician, Nurse, and
Administration in Listing 1 to represent configurations that carry out blood transfusions.

Listing 1. Blood transfusion pattern.
Each element includes an interface that contains one or more ports, each of which is defined by a polarity, a port type, and
a name. The polarity indicates how communication among attached ports flows, and can be either in or out. Ports are
synchronous: actually a suitable process algebra expression can be used to emulate any other port behaviour. The port type
indicates how many participants are necessary for a communication to take place, and can be either and, xor, or or. While
an and port requires all attached participants to synchronise, a xor port requires exactly one. In between, an interaction
with an or port requires at least one, but it may include any number of participants. For instance, the interface of
Administration defines xor ports patI and patO. An element can optionally include a behaviour: a set of actions, and a
set of process descriptions expressed in a subset of the mCRL2 process algebra. The sequel focuses on the structural
dimension and excludes such behavioural specifications.

Table 1
Reconfiguration operations.

Name Syntax Description

Create variable v:T Creates variable v of type T

Destroy variable destroy(v) Destroys variable v

Create instance v¼T() Creates an instance of type T and leaves it in v

Destroy instance clear(v) Destroys any instance in variable v

Attach attach(f,o,t,i) Attaches port o of instance in f to port i of instance in t

Detach detach(f,o,t,i) Removes attachment that goes from port o of instance in variable f to port i of instance in
variable t

Add renaming show(v,p,q) Renames port p in variable v to q

Remove renaming hide(v,q) Removes renaming q of architecture in variable v

Move instance imove(s,t) Whatever is referred by variable s becomes referred by t; the reference to the contents of t is
lost, but its attachments and renamings remain

Move variable vmove(v,a) Moves variable v to the architecture in variable a

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237222
Instances – architectures and element instances – are defined according to the syntax in Fig. 4. They are stored in
variables that are defined by an identifier and a type that must match an element or pattern name. See, for instance, line 1 of
Listing 2. Allowed values are instances of a type (element or pattern), that do not necessarily need to match the variable's
own type.

Listing 2. A configuration for performing a blood transfusion.
An architecture describes the configuration a set of instances adopt. It contains a token that must match a pattern name,
a set of variables, an optional set of attachments, and an optional interface. The type of each variable in the set is limited to
an element in the pattern the architecture is instance of. An attachment indicates which output port communicates with
which input port; each includes port references to an output and to an input port. A port reference is an ordered pair of
identifiers: the first one matching a variable identifier, and the second matching a port of the variable's instance. For
instance, the attachments in the example configuration connect two nurses with a patient and the administration. The
architecture interface is a set of one or more port renamings. Each port renaming contains a port reference and a token with
the external name of the port. Ports not included in this set are not visible from the outside. An architecture can have
associated constraints, which are defined as described in Section 3.3.

3.2. Reconfigurations

Reconfiguration scripts are sequences of operations that affect the structure of architectures. Configuration managers
execute them when the associated triggering conditions are met. They also have the ability to stop, reconfigure, and restart
architectures from a given state.

Reconfiguration operations are devoted to the creation and removal of instances, attachments, renamings and variables,
as well as to the movement of instances. Table 1 shows name, format, and a brief description of them.

Scripts that change configurations by performing a blood transfusion are shown in Listing 3. Moving a Nurse (instance)
into a Ward (configuration) represents allowing the nurse in. Attaching a Nurse to Administration materializes checking
the nurse in. Similarly, if the attachment is to a Patient, it represents assigning the nurse to the patient. These scripts are
triggered by constraints that describe behaviour the participants show.

Fig. 5. Constraint types.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 223
Listing 3. Reconfiguration scripts for nurse management.
For instance, the sequence of reconfigurations shown in Fig. 2 is the result of executing such scripts as follows:
�
 enter(w,n3) lets nurse n3 in,

�
 checkIn(n3,adm) checks n3 in (conf. c3),
�
 unassign(pat,n2) unassigns nurse n2 from the patient (conf. c5),
�
 assign(pat,n2) assigns n2 to the patient (conf. c5), and
�
 leave(n2) lets nurse n2 out of the ward.
3.3. Constraints

The constraint language allows us to precisely describe design decisions by associating constraints to a pattern, or to a
pattern instance [7]. A constraint restricts design dimensions – structure, behaviour, or reconfigurations – through one or
more formula declarations (see Fig. 5).

The language for declaring formulas is defined generically. The actual languages are instances of it, obtained by making
constructs specific to the design dimension that is intended to be restricted. We present the generic language and instances
for specifying both (i) constraints over structure; and (ii) two-layer constraints whose upper and lower layers restrict
reconfigurations and obtained structures.

3.3.1. Two-layer generic formulas
A formula is interpreted from a local and internal point of view over a model M – a labelled graph whose nodes W are

called worlds. Each edge is labelled by a modal symbol M, taken from a set Mod. A modal symbol identifies an accessibility
relation R½M� in W �W , where an ordered pair ðw1;w2Þ indicates that it is possible to access w2 from w1 through an edge
with label M. Formulas are interpreted at a specific world within M. But note that in a two-layer model M, there is a model
M0 associated to each w in M.

Actual models are derived from specifications of architectures and their reconfigurations. The resulting graphs
correspond to a metamodel given by the dimension being restricted [12]. The two corresponding metamodels are presented
as a class diagram, and define the structure of such graphs. The diagrams present the types of nodes and how their instances
are related. Modal symbols (relation labels in the diagram) name relations between either constituents of an architecture, or
two configurations, where the second is obtained upon executing an operation to the first, in a reconfiguration sequence. In
the latter case, a syntax for the structure of symbols, which represent the execution of reconfiguration operations, is also
provided.

The language provides symbol terms SymT to match symbols according to their structure. They are built upon atomic
symbols and filters. A filter is either a path identifying a configuration variable, a configuration variable type, a variable for

Fig. 6. Symbol formulas.

Fig. 7. Formula declarations.

Fig. 8. Metamodel for architectures: structure.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237224
configuration variables, or a port identifier. Actual atomic symbols and filter combinations depend on the language
instantiation.

Symbol formulas SymF allow for selecting and operating upon sets of symbols, and binding variables in symbol terms (see
Fig. 6). A symbol formula can be either a symbol term, a constant, a negated symbol formula, a conjunction, a disjunction, or
a quantifier. Constants true and false represent the universe (Mod) and the empty sets, respectively. Negation,
conjunction and disjunction represent the corresponding set operations of complement, intersection and union. Quantifiers
bind configuration variables in filters. A type in a filter is a simplified version of an existential quantifier. The relations that a
SymF selects are called SymF�relations.

Formula declarations consist of an identifier, optional configuration parameters, and a formula (see Fig. 7). Configuration
parameters are used to let pass identifiers of configuration variables to a formula.

A formula F is either a propositional formula, a modal formula, a graded modality formula, a hybrid formula, a quantifier,
or a nested formula. Propositional, modal, and graded formulas describe the model in terms of the underlying metamodel. A
proposition characterizes a feature in a given world. Modal and graded operators scan worlds according to accessibility
relations passed as a parameter in the form of a relation formula RelF.

Relation formulas combine relations. A relation formula RelF is either a symbol formula, a concatenation, a union, or an
iteration. A concatenation returns the composition of two relations, and a union their union. An iteration is the successive
concatenation of relations defined by a relation formula. There are two types: one that admits the absence of the relation,
and one that requires at least one occurrence of it.

In a modal formula, a possibly formula 〈RelF〉 F indicates that the present world is RelF�related with another world
satisfying (formula) F, whereas a necessarily formula ½RelF� F indicates that any RelF�relationship from the present world
leads to a world satisfying F.

Similarly, graded modality formulas come in two flavours as well. An at least formula 〈n;RelF〉F that is satisfied at worlds
where F holds in at least nþ1 RelF�related worlds, and an all but formula ½n;RelF� F that describes worlds where F holds
in all but at most n RelF�related worlds.

Fig. 9. Metamodel for reconfiguration scripts.

Fig. 10. Syntax for reconfiguration constraints.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 225
Hybrid formulas are built of a nominal I, which is satisfied if the current world is the unique world referenced by such I,
and of a reference operator at I F, satisfied if at the world named by I, F is.

A nested formula consists of an identifier, and actual configuration parameters, and describes nested models. The usage of
configuration parameters by nested constraints depends on the restricted dimension. Language instances vary in the
constructs they offer, as it is indicated on their introduction.

3.3.2. Structural constraints
Models for interpreting structural constraints are derived from architectures, according to the metamodel shown in

Fig. 8. Worlds are instances, ports, actions, variables, port references, attachments, names, and renamings. The relationships
among worlds conform the relations in function R, and their labels become plain atomic modal symbols ASYM. For
convenience, the extra symbols attd and evt are also included. The former identifies the relationship between two worlds
representing variables connected through an attachment. It is obtained as R½vref�○○R½strt�○○R½end�○R½vref�, where R½s�○
denotes the converse of a relation. The latter is obtained as R½prt� [R½act�.

Propositions are classified as follows: (a) Naming propositions that hold when evaluated at a (world) w representing an
action or port with their name. They exist for each name used in actions and ports. (b) Meta-type propositions that hold
when w belongs to a specific participant set, e.g., PatternInstance. (c) Emptiness proposition (namely Empty) that holds
when w is a variable with no associated instance. (d) Type propositions that test if w is an instance or a variable of a type in
the specification. For example, the Ward pattern generates propositions Ward, Physician, Patient, Nurse, and
Administration.

Each variable in an architectural specification defines a nominal in the set Nom. Each nominal holds exactly at the world
that represents the corresponding variable. In addition, they are also included in a subset NomTYPE, depending on the
variable's type. Variables and parameters in formulas are bound to nominals.

Structural constraints that specify requirements S1 and S2 are shown in Listing 4. In both cases, a parameter p receives a
nominal referencing (a world that represents) a patient. The first constraint requires the specific patient to have an attached
physician. It uses a reference operator that holds if the rest of the constraint holds at the patient. This happens when a
physician is attached to the patient in the configuration, which is indicated with a possibly operator for the relation that
attachments in configurations give rise to. The second constraint requires the patient to have at least two nurses assigned.
The at least operator is used in this case to indicate that a number of nurses, greater than one, are expected to be attached to
the patient.

Listing 4. Nurses per patient.
3.3.3. Specifying reconfiguration constraints
Interpretation models for reconfiguration constraints have two layers. Each world represents a configuration and has an

associated model for interpreting nested structural constraints. Relationships represent reconfiguration operations.
The metamodel for reconfigurations consists of a single type and a reflexive relation (see Fig. 9). The type represents

configurations that an architecture may adopt, and the reflexive relation stands for a family of relations among
configurations. An ordered pair of configurations is in one of such relations whenever a reconfiguration operation leads

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237226
from the first to the second configuration. Relation labels vary according to the operation and to its parameters. Then, worlds
and symbols of the model correspond to configurations and reconfiguration operations, respectively.

Reconfiguration constraints exclude nominals, and redefine symbol terms to yield symbols that represent actual
reconfiguration operations. Symbol terms consist of an operation name and filters, according to the syntax shown in Fig. 10,
allowing us to match operation invocations (see Table 1).

The reconfiguration constraint in Listing 5 specifies restriction R1 that ensures that a nurse first checks-in and then receives
patient assignments. Assume the initial configuration in Listing 2, and a nurse in a variable n3. A sequence of script executions
will not satisfy the constraint if it allows the nurse in, and assigns the nurse to a patient, without checking the nurse in.

Listing 5. No assignment before check-in.
Reconfiguration constraint in Listing 6 specifies R2. It ensures that any sequence of scripts that unassigns a nurse leaves
enough assigned. Again, assume that a sequence of scripts are triggered replacing nurse n2 with nurse n3 in the initial
configuration, such as in Fig. 2. Since the sequence executes the unassignmet first, it fails to satisfy the constraint, because it
leaves the patient with only nurse n1 assigned. Note that the nested constraint only checks the situation of the patient
whom nurse has been unassigned.

Listing 6. All unassigments leave enough nurses assigned to patients.
Reconfiguration constraint in Listing 7 checks restriction R3, which ensures that any checkout takes place if the nurse has
no patient assigned. It fails if, for instance, in a reconfiguration sequence such as the one in Fig. 2, nurse n2 is checked out
without unassigning the patient first.

Listing 7. No assignments before checking-out.
Under some circumstances it is interesting to relax structural constraints during the execution of a sequence of scripts, as long as
they hold in the final configuration. For instance, when a patient enters, it may initially not have a physician and nurses assigned to
him. The constraint in Listing 8 establishes that properties S1 and S2 must hold whenever a sequence of scripts cannot progress.

Listing 8. Patients safe configurations.
4. A two-layer graded hybrid logic

4.1. Syntax

Underlying the semantics of architectural descriptions and reconfigurations in ARCHERY, is a powerful logic enabling the
description of two-layer models, the reference to possible states (i.e. configurations) as well as to relations between them
and their cardinality. As usual, such relations are denoted by modal symbols.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 227
Formulas are called state formulas and are built upon regular formulas that define strings of modal symbols, which in
turn are taken from sets given by symbol formulas. Their designation comes from their interpretation as (the) sets of states
(in which they hold).

Symbol formulas, on the other hand, are interpreted as sets of modal symbols, and built as described in Definition 1.
Modal symbols may take a data expression as a parameter, which is either a variable v or a function f with data expressions
e;…; e as parameters. Symbol formulas represent sets as follows: an atomic modal symbol m is a singleton set fmg; the
symbol > is the set Sym of all atomic modal symbols in the model; the negation :α is the complement of the set given by α;
the conjunction α4α0 is the intersection of the sets given by α and α0; an atomic modal symbol with a data parameter m(e)
is the singleton set fmðaÞg, where a is the value obtained upon evaluating e; and the universal quantifier 8v:D:α is the union
of the sets obtained upon replacing v with each possible a in the set given by α.

Definition 1 (Symbol formulas). Let DVar and Func be disjoint sets of variables and function symbols, respectively. The set
Exp of data expressions is recursively defined by

ek 3 vk ∣ f kðek;…; ekÞ
for kAf0;1g where vkADVark has a type Dk, and f kAFunck has type Dk �…� Dk-Dk. Let Sym be a set of atomic modal
symbols. The set MForm of symbol formulas is recursively defined, for kAf0;1g, by

αk 3 mk ∣ >k ∣ :αk ∣ αk4αk ∣mkðeÞ ∣ 8vk:Dk:αk

where mkASymk.□

For simplicity, a single data parameter is used in formulas. Multiple data parameters are obtained through projections of
a composite data sort. At each level, the following operators are given by abbreviation:

? ¼:> ; α3α¼:ð:α4:αÞ; (v:D:α¼:8v:D::α:
Regular formulas are defined according to the grammar in Definition 2. At both levels, their constructs are concatenation

(β:β), sum (βþβ) and iteration (βn), which are interpreted as relational composition, union and transitive reflexive closure,
respectively. Additionally, the transitive closure βþ is given by β:βn.

Definition 2 (Regular formulas). The set RForm of regular formulas is recursively defined by

βk 3 αk ∣ βk:βk ∣ βkþβk ∣ β
n

k

for kAf0;1g where αkAMForm.□

State formulas are formed according to the grammar in Definition 3. At both levels, a formula is either a nominal (i), a
proposition (p), a negation (:φ), a conjunction (φ4φ), a possibility (〈β〉φ), a graded possibility (〈n;β〉φ), or local reference
(@iφ) to a state I. State formulas describe two-layer models by allowing basic constructs φb

1 at level 0.

Definition 3 (State formulas). A signature is an n-family of disjoint, possibly empty, sets of symbols Δ¼ ðPropk;NomkÞkA f0;1g.
The set SFormðΔÞ of state formulas is recursively defined as

φ0 3 φb
1 ∣ i0 ∣ p0 ∣ :φ0 ∣ φ04φ0 ∣ 〈β〉0 φ0 ∣ 〈n;β〉0 φ0 ∣ @i0φ0

and

φb
1 3 p1 ∣ i1 ∣ 〈β〉1 φ1 ∣ 〈n;β〉1 φ1 ∣@i1φ1

φ1 3 i1 ∣ p1 ∣ :φ1 ∣ φ14φ1 ∣ 〈β〉1 φ1 ∣ 〈n;β〉1 φ1 ∣ @i1φ1

where pkAPropk, and ikANomk for kAf0;1g.□
Additionally, at both levels, the following constructs are defined by abbreviation:

? ¼:> ; φ13φ2 ¼:ð:φ14:φ2Þ
φ1-φ2 ¼:φ13φ2; φ12φ2 ¼φ1-φ24φ2-φ1

½β�φ¼:〈β〉:φ; :〈n;β〉φ¼ ½n;β�:φ

4.2. Semantics
Definition 4 (2-layer model). A 2-layer model MAModelðΔÞ is a tuple M¼ ðMkÞkA f0;1g ¼ ðWk;Qk;Rk;VkÞkA f0;1g recursively
defined as follows:
�
 ðWkÞkA f0;1g are disjoint sets;

�
 ðQkÞkA f0;1g are predicates with Q0DW0 and Q1DW0 �W1 such that

W1 ¼ fw1: (w0AW0:Q0ðw0Þ4Q1ðw0;w1Þg;

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237228
ðRk:Modk-Qk � QkÞkA f0;1g is a pair of functions; and
�

�
 ðVProp

k ;VNom
k ÞkA f0;1g are pairs of functions:

○ VProp
0 : Prop0-PðW0Þ and VProp

1 : Prop1 � Q0-PðW1Þ, and
○ VNom

0 :Nom0-W0 and VNom
1 :Nom1-W1.
A 2-layer model M is said to be hierarchical if

R½s�0 ¼ fðw0;w0
0Þ:R½s�1ððw0;w1Þ; ðw0

0;w1ÞÞ for some w1 and w0
1g

for any sAMod1. A hybrid model M¼ ðW ;R;VÞ is a tuple where W ¼W0, R¼ R0, and V ¼ V0.□

Let us fix the following notation: expression m½d↦r� denotes a map m0 in which m0ðd0Þ ¼mðd0Þ for all d0ad and m0ðdÞ ¼ r
otherwise; suppðmÞ denotes the set of values mapped by m and is called its support.

Definition 5 (Satisfaction). Let D denote the set of values of a variable v of type D, and let v¼ ðvkÞkA f0;1g be a pair of data
environments. The value of a data expression is given by a pair of interpretation functions ð1Uk;vk

: Exp-DkÞkA f0;1g given by

1vkUk;vk
9vkðvkÞ; 1f kðek;… ekÞUk;vk

9 f kð1ekUk;vk
;…;1ekUk;vk

Þ;

parametric on a data environment vk:DVark-Dk that assigns a value to a variable, and such that varðekÞDsuppðvkÞ, where
varðekÞ denotes the variables occurring in an expression ek.
The interpretation of a symbol formula is given by a pair of functions ð1Uk;vk

:MForm-ModkÞkA f0;1g defined inductively as

1mkðekÞUk;vk
9fmkð1ekUk;vk

Þg; 1>kUk;vk
9Modk

1:αkUk;vk
9Modk⧹1αkUk;vk

; 1αk4αkUk;vk
91αkUk;vk

\ 1αkUk;vk

18vk:Dk:αkUk;vk
9 ⋂

a:Dk

1αkUv0
k
;

where v0k ¼ vk½v↦a�.
The interpretation of a regular formula is given by a pair of functions ðJ Jk;vk :RForm-RelkÞkA f0;1g defined inductively as

follows:

JαJk;vk 9fðw;w0Þ: ðw;w0ÞAR½s� for some sA1αUk;vk
g

Jβk:β
0
k Jk;vk 9 Jβk Jk;vk○Jβ0

k Jk;vk
Jβkþβk Jk;vk 9 Jβk Jk;vk [Jβk Jk;vk

Jβn Jk;vk 9 JβJn

k;vk

where Relk is the set of all relations in Qk � Qk, Jβ1 Jk;vk○Jβ2 Jk;vk is a concatenation, and JβJn

k;vk
is a transitive reflexive

closure.
Let M be a 2-layer model. The satisfaction of state formulas w.r.t. a data environment v is given by a pair of relations

ðFkÞkA f0;1g defined as follows:

M0; v0;w0F0 φb
1 iff M1; v1;w1F1φb

1 and Q1ðw0;w1Þ for some w1AW1 ð1Þ

Mk; vk;wkFk ik iff wk ¼ VNom
k ðikÞ ð2Þ

M0; v0;w0F0 p0 iff w0AVProp
0 ðp0Þ ð3Þ

M1; v1;w1F1 p1 iff w1AVProp
1 ðp1;w0Þ and Q1ðw0;w1Þ ð4Þ

Mk; vk;wkFk φk4φ0
k iff Mk; vk;wkFkφk and Mk; vk;wkFkφ0

k ð5Þ

Mk; vk;wkFk :φk iff it is false that Mk; vk;wkFkφk ð6Þ

Mk; vk;wkFk 〈β〉kφk iff Mk; vk; vkFkφk

for some vrAWr ; rAf0;…; kg
such that ððw0;…;wkÞ; ðv0;…; vkÞÞA JβJk;vk ð7Þ

Mk; vk;wkFk 〈n;β〉kφk iff no jfvk:Mk; vk; vkFkφk

for some vrAWr ; rAf0;…; kg
such that ððw0;…;wkÞ; ðv0;…; vkÞÞA JβJk;vk gj ð8Þ

Mk; vk;wkFk @ikφk iff Mk; vk;V
Nom
k ðikÞFkφk ð9Þ

for kAf0;1g, and each wrAWr ; rAf0;…; kg with Qkðw0;…;wkÞ.□

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 229
4.3. Bisimulation and invariance

Bisimulation offers a basic, actually quite strong, form of equivalence between models of the logic proposed in this
section, and consequently between ARCHERY configurations. This section introduces suitable notions of bisimulation and
refinement and explores their relationship with logical satisfaction. This leads to a Hennessy–Milner like theorem of broad
relevance. We start by recalling what a bisimulation is in the standard (one layer) hybrid modal logic:

Definition 6 (Bisimulation). Let M¼ ðW ;R;VÞ and M0 ¼ ðW 0;R0;V 0Þ be two hybrid models over the same signature. A
bisimulation between M and M0 consists of a relation

ZDW �W 0

such that
(Nom)
 for any iANom, VðiÞ Z V 0ðiÞ,
and for any wAW and w0AW 0,

w Z w0

implies that
(Atoms)
 for any σAProp [NOM, wAVðσÞ iff w0AV 0ðσÞ;

(n-Zig)
 for any positive n, for each mASym and for any n distinct vkAW , kA0;…;n such ðw; vkÞAR½m�, there are n distinct

v0kAW 0, kA1;…;n, such that ðw0; v0kÞAR0½m� with vk Z v0k for any kA0;…;n.

(n-Zag)
 for any positive n, for each mASym and for any n distinct v0kAW 0, kA0;…;n such ðw0; v0kÞAR0½m�, there are n distinct

vkAW , kA1;…;n, such that ðw; vkÞAR½m� with vk Z v0k for any kA0;…;n.
Definition 7 (Hierarchical bisimulation). A hierarchical bisimulation between two hierarchical models M¼
ðWk;Qk;Rk;VkÞkA f0;1g and M0 ¼ ðW 0

k;Q
0
k;R

0
k;V

0
kÞkA f0;1g consists of a family of relations ðZkDQk � Q 0

kÞkA f0;1g, such that
�
 for any kAf0;1g, Zk is a bisimulation,

�
 for any w0;w0

0 such that w0 Z0 w0
0,

(i) and for each w1 such that and Q1ðw0;w1Þ there is a w0
1 such that

ðw0;w1ÞZ1ðw0
0;w

0
1Þ ð10Þ

(ii) and each w0
1 such that and Q 0

1ðw0
0;w

0
1Þ there is a w1 such that (10)
The following result establishes bisimulation invariance with respect to the proposed logic.

Theorem 1. Let Z be a bisimulation between the hierarchical models M¼ ðWk;Qk;Rk;VkÞkA f0;1g and M0 ¼ ðW 0
k;Q

0
k;R

0
k;V

0
kÞkA f0;1g;

and wAW ;w0AW 0 two states such that ðw0;w1ÞZ1ðw0
0;w

0
1Þ. Then, for any data environment v and for any formula φ, we have

that

M1; v1;w1F1φ iff M0
1; v1;w

0
1F1φ

Proof. We start observing that, since both Z1 and Z0 are bisimulations, the invariance of 0-sentences across Z0 and the
invariance of 1-sentences across Z1, with the exception of sentences φb

1, can be proved as in the standard hybrid modal logic
with graded modalities (e.g. [13,14]), by induction over the structure of the sentences. The preservation of the latter comes
as follows:

M1; v1;w1F1φb
1

� fdefn: of Fkg
M0; v0;w0F0φb

1 for some w1 such that Q1ðw0;w1Þ
� fstep ⋆g
M0

0; v0;w
0
0F0φb

1 for some w0
1 such that Q 0

1ðw0
0;w

0
1Þ

� fdefn: of Fkg
M0

1; v1;w
0
1F1φb

1

For step ⋆ note that items (i) and (ii) in Definition 7 assure the existence of w1AW1 and w0
1AW 0

1 such that
ðw0;w1ÞZ1ðw0

0;w
0
1Þ. Hence, the equivalence is justified by the invariance result for of hybrid logics with graded modalities.□

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237230
The existence of a Hennessy–Milner like theorems for the logic is now discussed. For this, let us consider that a
hierarchical model M is image-finite when each of its outer and inner accessibility relations are image-finite, i.e., for each
wAWk and mASymk, the sets fw0: ðw;w0ÞAR½m�kg, kAf0;1g, are finite.

Actually, for any two image-finite models M and M0 and for any wAW and w0AW 0 we can prove the equivalence of
statements:

(i) M1;w1F1φ iff M0
1;w

0
1F1φ

(ii) There is a bisimulation ZDW �W 0 between M and M0.
whenever φ is free graded modalities. To discuss under which conditions the implication ðiÞ) ðiiÞ (i.e. the converse of
Theorem 1) holds, let us consider the relation M1;w1F1φ iff M0

1;w
0
1F1φ

Z≔fðw;w0ÞAW �W 0jM1;w1F1φ iff M0
1;w

0
1F1φg

Clearly Z satisfies the (Nom) and (Atoms) conditions in the definition of bisimulation. Let ukAW , k¼ 1;…;n such that
ðw;ukÞAR½m� for any k¼ 1;…;n. Suppose also that there are not n distinct u0

kAW 0, k¼ 1;…;n, such that ðw0;u0
kÞAR½m� and

uk Z u0
k. By hypothesis, wA1〈n;m〉>UM;v. By (i), this entails w0A1〈n;m〉>UM0 ;v. Therefore, we conclude that uk Z u0

k does not
hold. Hence, there is at least a formula ψk such that ukA1ψ kUM;v and u0

k =21ψ kUM0 ;v. Restricting the modalities to the non-
graded case, the verification of (ZIG) comes from observing that wA1〈m〉⋁kA f1;…;ngψ kUM;v leads to a contradiction (because
w0A1〈m〉⋁kA f1;…;ngψ kUM0 ;v and u0

k =21ψ kUM0 ;v). However, in the graded case, we cannot find any formula 〈n;m〉Φ to achieve
such kind of contradiction.

Finally we observe that the recent work [15] presents a description logic with graded modalities that is endowed with a
bisimulation notion satisfying a Henessy–Milner property. Its ZIG-ZAG correspondence, however, is established by a
bijective relation, which is a very strong condition in view of our purposes.

4.4. Refinement

We introduce, in this section, a property preserving relation between hierarchical models.

Definition 8. Let M¼ ðW ;R;VÞ and M0 ¼ ðW 0;R0;V 0Þ be two hybrid models over the same signature. A simulation between M
and M0 consists of a relation SDW �W 0 such that
(Nom)
 for any iANom, VðiÞ Z V 0ðiÞ,
and for any wAW and w0AW 0, w Z w0 implies that :
(Atoms)
 for any σAProp [NOM, if wAVðσÞ then w0AV 0ðσÞ;

(n-Zig)
 for any positive n, for each mASym and for any n distinct vkAW , kA0;…;n such ðw; vkÞAR½m�, there are n distinct

v0kAW 0, kA1;…;n, such that ðw0; v0kÞAR0½m� with vk S v0k for any kA0;…;n.
Definition 9 (Hierarchical refinement). A hierarchical refinement between two hierarchical models M¼ ðWk;Qk;Rk;VkÞkA f0;1g
and M0 ¼ ðW 0

k;Q
0
k;R

0
k;V

0
kÞkA f0;1g consists of a family of relations ðSkDQk � Q 0

kÞkA f0;1g, such that
�
 for any kAf0;1g, Sk is a simulation,

�
 for any w0, w0

0 such that w0 S0 w0
0, and for each w1 such that and Q1ðw0;w1Þ there is a w0

1 such that ðw0;w1ÞS1ðw0
0;w

0
1Þ:

Next theorem establishes the preservation of properties over across. The proof is omitted since it can be directly derived
from the one of Theorem 1. Note however that, since the refinement relation just imposes the directional preservation of the
propositions and atomic formulas, the preservation of negation, and consequently of boxes, is lost. Hence,

Theorem 2. Let S be a refinement relation between the hierarchical models M¼ ðWk;Qk;Rk;VkÞkA f0;1g and
M0 ¼ ðW 0

k;Q
0
k;R

0
k;V

0
kÞkA f0;1g and wAW , w0AW 0 two states such that ðw0;w1ÞZ1ðw0

0;w
0
1Þ. Then, for any data environment v and

for any formula φ without diamonds and negations, we have that

M1; v1;w1F1φ implies M0
1; v1;w

0
1F1φ:

5. Verifying hierarchical constraints

Verifying a constraint over a specification requires deriving an interpretation model M and then translating the
constraint into the corresponding logic. The derivation of interpretation models for structural constraints is detailed in
Appendix A. On the other hand, the derivation of two-layer models can be found in [10],

Fig. 11. Partial model for the initial configuration.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 231
Reconfiguration constraints become formulas of a 2-layer modal logic. Translations differ on how variables are treated. In
structural constraints, variables are bound to nominals. Then, the meaning of forall x:TYPEID is the conjunction of
formulas at x F ½x=i�, for each iANomvar:TYPEID, where ½x=i� denotes the substitution of x by i in F. Dually, the meaning of
exists x:TYPEID F is a disjunction of formulas at x F ½x=i�, for each iANomTYPEID. Note that in reconfiguration constraints,
variables become data variables. The types that a pattern defines become data sorts, configuration variables become values
of such sorts, and ports become values of a port data sort. Appendix B provides the precise definition of the translations.

To illustrate our approach, we verify now the constraint safeUnassign (in Listing 6) over the sequence of script
executions that replaces a nurse, shown in Fig. 2.

First, it is shown that the initial configuration satisfies the nested structural constraint enoughNurses (see Listing 4).
The result of translating the ARCHERY specification of the initial configuration into an interpretation model is shown in Fig. 11.
It is partial since instances of administration and physician are omitted. In addition, names (see the metamodel) and their
relationships are also dropped. Each node in the graph represents a world and includes an identifier in the first line; the
satisfied propositions in the second line; and the satisfied nominals in the third line. A short code is used for the
propositions that depend on the pattern: N (Nurse) and Pat (Patient). A short symbol is used to avoid using the longer
symbols of propositions: V (Variable), PI (PatternInstance), EI (ElementInstance), P (Port), I (In), O (Out), A (Attachment), R
(Renaming), PR (PortReference), Act (Action), and N (Name).

The resulting model is simplified into the model shown in Fig. 12(a), by considering the relation attd, which is the only
one present in the formula. It does not show worlds representing instances in variables, ports, and attachments.

The nested constraint is translated into formula

@pat 〈1; attd〉 Nurse:

with the parameter bound to pat, the unique patient in the initial configuration. Its verification proceeds as follows:

@pat 〈1; attd〉 Nurse
¼ fby ð4Þg
@pat 〈1; attd〉fw2;w4g

¼ fby ð8Þg
@pat fw3g

¼ fby ð9Þg
W

The formula is satisfied by the initial configuration.
In contrast, configuration c5 in Fig. 2 does not. Nurse n2was unassigned before assigning n3. The derived model is shown

in Fig. 12(b) and the verification is as follows:

@pat 〈1; attd〉 Nurse
¼ fby ð4Þg
@pat 〈1; attd〉fw2;w4;w5g

¼ fby ð8Þg

Fig. 12. Partial models. (a) Initial configuration. (b) Configuration upon unassignment.

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237232
@pat ∅
¼ fby ð9Þg
∅

The model for the sequence of script executions, which is referred as subs0 in the sequel, is partially shown in Fig. 13. Its
first level consists of the primitives that result from the execution of subs0, and it shows the nested models for the initial
configuration c0 and for the configuration upon the unassignment of the nurse c5.

The translation of the reconfiguration constraint safeUnassign, shown in Listing 6, yields formula

½>n:detachðpat;nurO;n2; patIÞ� ψ ðpatÞ;
where ψ stands for the formula of constraint enoughNurses. The symbol term is replaced by the only symbol that matches
the criteria within the necessity operator. Likewise, the parameter of the nested constraint is fixed to the unique variable of
type Patient in the successive configurations. The formula is verified as follows:

½>n:detachðpat;nurO;n2; patIÞ� ψ ðpatÞ
¼ fby ½β�φ¼:〈β〉:φg
:〈>n:detachðpat;nurO;n2; patIÞ〉 :ψ ðpatÞ

¼ fby ð1Þg
:〈>n:detachðpat;nurO;n2; patIÞ〉 :ðW⧹fc5gÞ

¼ fby ð6Þg
:〈>n:detachðpat;nurO;n2; patIÞ〉 fc5g

¼ fby ð7Þ and 〈β:β0〉¼ 〈β〉〈β0〉g
:〈>n〉 fc4g

¼ fby ð7Þ and 〈β:β0〉¼ 〈β〉〈β0〉 four timesg
:fc0g

¼ fset complementg
W⧹fc0g

Since the result excludes the initial configuration, reconfigurations subs0 fail to satisfy the constraint. On the other hand,
the reconfigurations in Fig. 14(a), subs1 in the sequel, satisfy it, as they assign the patient to n3 before unassigning n2.
Reconfigurations subs0 and subs1 are not bisimilar, and none of them are refinement of the other.

Consider now reconfiguration subs2 in Fig. 14(b). It proceeds as subs1, but offers an optional sequence of operations that
the configuration manager can perform. Nurse n4 is let in, and checked in by such additional operations. Reconfigurations
subs2 and subs1 are not bisimilar, but subs2 is a refinement of subs1. The relation that satisfies Definition 9 contains pairs
ðcj; c0jÞ where cj and c0j are in the interpretation models of subs1 and subs2, respectively, and jAf0…10g. Since subs2 is a
refinement of subs1, Theorem 2 can be applied to avoid verifying constraints already valid in subs1. However, since the
constraint we are studying includes diamonds, it is out of the scope of such a theorem, and the verification on subs2 is still
required.

Fig. 13. Partial 2-layer model (subs0).

Fig. 14. Correct reconfigurations. (a) Nurse substitution (subs1). (b) Substitution and optional check in (subs2).

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 233
6. Related work

An architectural description language ADL provides a number of typical abstractions to model software architectures.
Reference [2] identifies components, connectors, and configurations as essential elements in such a description. In addition,
the concept of architectural pattern (or style) [16,17] facilitates the development of specifications since it allows abstracting
recurring forms. ACME [18], Darwin [19–21], Wright [22,23], and ADR [24] are among the languages that support these
abstractions.

ADLs with formal semantics provide a sound foundation for the tool-supported development of dynamically
reconfigurable architectural models. It is possible to distinguish among languages precisely defined upon process algebras
and graphical theories [25]. While Darwin [19] and Wright [23] are examples of the former, ADR [24] combines both.
ARCHERY [4] models the behavioural part of software architectures with process algebras [26], and the structural part with
bigraphical reactive systems [27].

These languages represent and analyse dynamic reconfigurable architectures in different ways [19,23,28]. They enforce
architectural principles in a pattern either by construction or by restriction. The former requires defining pattern-specific

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237234
reconfiguration operations that can only produce correct configurations according to design principles [29]. Then, design
decisions are left implicit in these operations. ADR [24] uses this mechanism. The latter approach requires the explicit
specification of constraints that prevent generic (re)configuration operations leading to incorrect configurations. ARCHE-

RY follows this approach. ADLs Darwin [20] and ACME [30] also follow this approach by providing a translation into the Alloy
language [31], which is based on a first-order relational logic and is supported by a bounded model checker implemented
upon a SAT solver.

The approach proposed in this paper has connections to the one documented in [32], which is based on a layered
approach for addressing dynamic reconfiguration. It includes a layer where properties about configurations are specified
using first order logic, a layer where reconfiguration events can be related to configuration properties, another one that
restricts the way configuration properties appear in traces, and, finally, a layer that describes valid combinations of
reconfiguration events and traces of configurations, specified in a linear temporal logic.

An ADL for reasoning about behavioural constraints, expressed in a combination of first order and temporal logic, in the
presence of dynamic reconfiguration is proposed in [33]. The concept of an architectural reconfiguration contract [34]
relates the behaviour of a system and its dynamic reconfigurations. It establishes at which states a configuration can be
replaced by another one, and the states at which the new configuration can be safely left. ARCHERY's support for this concept
is part of ongoing work.

7. Conclusions and future work

This paper proposes the use of hierarchical constraints to ensure that architectural reconfigurations on a system proceed
as expected. Resulting configurations respect system's architectural principles, as inherited from the specific architectural
pattern adopted or originally fixed by the software architect. The ARCHERY language is used to specify architectures,
reconfigurations and constraints. Translations into a two-layer graded hybrid logic are presented, which enable the formal
verification of constraints. The approach is illustrated with the verification of architectural principles that must be respected
by (re)configurations of a service architecture for the blood transfusion procedure.

7.1. Future and ongoing work

Ongoing work is concerned with the specification of nested behavioural constraints, the usage of constraints for
triggering reconfiguration scripts, and the provision of tool-support for a fragment of the language that excludes nesting, i.e.,
constraints that can be translated into a graded hybrid logic. Future work, on the other hand, includes the study of tool-
support for the whole constraint language, and the development of a comprehensive case study in the context of electronic
government.
Acknowledgements

This work is funded by ERDF - European Regional Development Fund through the COMPETE Programme (operational
programme for competitiveness) and by National Funds through FCT, the Portuguese Foundation for Science and
Technology, within project FCOMP-01-0124-FEDER-028923. The second author is also supported by the FCT grant SFRH/
BPD/103004/2014.

Appendix A. Deriving models for structural constraints

As a convention, the expression m½l⇉u� denotes m½l↦mðlÞ [u� if u is a set, and m½l↦mðlÞ [fug� otherwise.

Definition 10 (Model derivation for structural constraints). Let W: Part-W be a function that yields a world that represents
a participant in an architecture, where Part ¼ Var⊎ElemInst ⊎PatInst ⊎Att ⊎PortRef ⊎Ren ⊎Id ⊎Act, let ModelS be the set of
models for MS, and let N : TYPE-PðNomÞ be a map that yields, for a type defined by a pattern, the nominals representing
variables of such type in a given architecture. The derivation is given by a function I :Var �W �ModelS �N -ModelS �N
which is inductively defined as follows:

I ðv¼ ðid type instÞ;wv; ðW ;R;VÞ;N Þ
¼ I ðinst;wi; ðW [fwv;wig;R½hlds⇉ðwv;wiÞ�;V ½V⇉wv�½type⇉wv�Þ;
N ½type⇉id�Þ; where wv ¼WðvÞ and wi ¼WðinstÞ

I ðinst¼ ðtype ports actsÞ;wi; ðW ;R;VÞ;N Þ
¼ I ðports acts;wi; ðW ;R;V ½type⇉wi�½EI⇉wi�Þ;N Þ

I ðport¼ ðid dir ptypeÞ ports acts;wi; ðW ;R;VÞ;N Þ
¼ I ðports acts;wi; ðW [fwport;widg;
R½prt⇉ðwi;wportÞ�½name⇉ðwport;widÞ�;
V ½P⇉wport�½dir⇉wport�½id⇉wport�½ptype⇉wport�½N⇉wid�Þ;N Þ

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 235
where wport ¼WðportÞ and wid ¼WðidÞ
I ð½ � acts;wi; ðW ;R;VÞ;N Þ ¼ I ðacts;wi; ðW ;R;VÞ;N Þ
I ðact¼ id acts;wi; ðW ;R;VÞ;N Þ

¼ I ðacts;wi; ðW [fwact;widg;R½act⇉ðwi;wactÞ�½name⇉ðwact;widÞ�;
V ½Act⇉wact�½N⇉wid�Þ;N Þ; where wact ¼WðactÞ

I ð½ �;wi; ðW ;R;VÞ;N Þ ¼ ððW ;R;VÞ;N Þ
I ðinst¼ ðtype vs atts rensÞ;wi; ðW ;R;VÞ;N Þ

¼ I ðvs atts rens;wi; ðW ;R;V ½type⇉wi�½PI⇉wi�Þ;N Þ
I ðv vs atts rens;wi; ðW ;R;VÞ;N Þ

¼ I ðvs atts rens;wi; ðW 0;R0½U⇉ðwi;wvÞ�;V 0Þ;N 0Þ
where ððW 0;R0;V 0Þ;N 0Þ ¼ I ðv;wv; ðW ;R;VÞ;N Þ

I ð½ � atts rens;wi; ðW ;R;VÞ;N Þ ¼ I ðatts rens;wi; ðW ;R;VÞ;N Þ
I ðatt¼ ððvo;portoÞ; ðvt ;porttÞÞ atts rens;wi; ðW ;R;VÞ;N Þ

¼ I ðatts rens;wi; ðW [fwatt;wPRo ;wPRt g;
R½att⇉ðwi;wattÞ�½strt⇉ðwatt;wPRo Þ�½end⇉ðwatt;wPRt Þ�
½vref⇉fðwPRo ;wvo Þ; ðwPRt ;wvt Þg�
½pref⇉fðwPRo ;wporto Þ; ðwPRt ;wportt Þg�;

V ½A⇉watt�½PR⇉fwPRo ;wPRt g�Þ;N Þ
where watt ¼WðattÞ;wPRo ¼Wððvo;portoÞÞ and wPRt ¼Wððvt ;porttÞÞ

I ð½ � rens;wi; ðW ;R;VÞ;N Þ ¼ I ðrens;wi; ðW ;R;VÞ;N Þ
I ðren¼ ððv;portÞ; idÞ rens;wi; ðW ;R;VÞ;N Þ

¼ I ðrens;wi; ðW [fwren;wPR;widg;
R½ren⇉ðwi;wrenÞ�½rend⇉ðwren;wPRÞ�
½vref⇉ðwPR;wvÞ�½pref⇉ðwPR;wportÞ�
½prt⇉ðwi;wrenÞ�½name⇉ðwren;widÞ�;

V ½R⇉wren�½PR⇉wPR�½N⇉wid�½id⇉wren�Þ;N Þ
where wren ¼WðrenÞ and wPR ¼Wððv;portÞÞ

I ð½ �;wi; ðW ;R;VÞ;N Þ ¼ ððW ;R;VÞ;N Þ□

Appendix B. Translating constraints

The translation of a set of constraints yields a formula map that returns, for a given identifier, the corresponding
constraint translated into a modal formula. The function in Definition 11 takes a structural constraint and a formula
environment and yields a new formula environment that includes the translation of the constraint. A notational convention
adopted to present the translation is to consider terminals and non-terminals of the syntax as sets. For instance, fAF is used
to indicate that expression f is built according to non-terminal F .

Definition 11 (Translation: structural constraints). Let f be a formula map with type FM¼ ID-SForm. Given f, a structural
constraint in SConst is translated into a state formula of the graded hybrid logic by function T S: SConst � FM-FM
inductively defined as

T Sðfd fds; fÞ ¼ f½id↦FSðf ;T Sðfds; fÞÞ�
where fdAFDecl, fdsAFDecln, idA ID, fAF, and FS: F � FM-SForm is defined as

FSðtrue; fÞ ¼ >
FSðfalse; fÞ ¼ ?
FSðp; fÞ ¼ p
FSðnot f ; fÞ ¼ :FSðf ; fÞ
FSðf or g; fÞ ¼ FSðf ; fÞ3FSðg; fÞ
FSðf and g; fÞ ¼ FSðf ; fÞ4FSðg; fÞ
FSðf implies g; fÞ ¼ FSðf ; fÞ-FSðg; fÞ
FSðf iff g; fÞ ¼ FSðf ; fÞ2FSðg; fÞ
FSð½r� f ; fÞ ¼ ½RSðrÞ�0 FSðf ; fÞ
FSð½n; r�f ; fÞ ¼ ½n;RSðrÞ�0 FSðf ; fÞ
FSð〈r〉f ; fÞ ¼ 〈RSðrÞ〉0 FSðf ; fÞ
FSð〈n; r〉f ; fÞ ¼ 〈n;RSðrÞ〉0 FSðf ; fÞ
FSðid a1…an; fÞ ¼ fðidÞ½f1…fn=a1…an�

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237236
FSði; fÞ ¼ i
FSðat i; fÞ ¼@i

FSðcvar; fÞ ¼ cvar
FSðat cvar; fÞ ¼@cvar

FSðexists cvar:type:f ; fÞ ¼ ⋁
iANomtype

@i FSðf ; fÞ½cvar=i�

FSðexists cvar:f ; fÞ ¼ ⋁
iANom

@i FSðf ; fÞ½cvar=i�

FSðforall cvar:type:f ; fÞ ¼ ⋀
iANomtype

@i FSðf ; fÞ½cvar=i�

FSðforall cvar:f ; fÞ ¼ ⋀
iANom

@i FSðf ; fÞ½cvar=i�

where p is a proposition, gAF , rARelF , nAN, a1…an are actual parameters, f1…fn are formal parameters, iANom, cvar is a
variable, type is a type defined by a pattern, and with function RS:RelF-RForm inductively defined as

RSðsÞ ¼MSðsÞ; RSðr1:r2Þ ¼ RSðr1Þ:RSðr2Þ
RSðr1þr2Þ ¼ RSðr1ÞþRSðr2Þ; RSðrnÞ ¼ RSðrÞn
RSðrþ Þ ¼ RSðrÞþ

with sASymF , r1; r2ARelF , and MS: SymF-MForm is defined as

MSðmÞ ¼m; MSðnot sÞ ¼ : MSðsÞ
MSðtrueÞ ¼ > ; MSðfalseÞ ¼ ?
MSðs1 and s2Þ ¼MSðs1Þ4MSðs2Þ; MSðs1 or s2Þ ¼MSðs1Þ3MSðs2Þ

for m an atomic modal symbol, and s1, s2ASymF .□

Definition 12 (Translation: reconfiguration constraints). Given a formula map f, a reconfiguration constraint in RConst is
translated into a state formula of the 2-layer graded hybrid logic by functions

TR:RConst � FM-FM; FR: F � FM-SForm;

RR:RelF-RForm; and MR: SymF-MForm:

The clauses of TR coincide with the clauses of TS. The clauses of FR coincide with the clauses of FS with the exceptions as
follows: clauses that translate hybrid features, which are elided; clauses that translate quantifiers, which are replaced by
clauses

FRðexists cvar:type:f ; fÞ ¼ (cvar:type:FRðf ; fÞ
FRðexists cvar:f ; fÞ ¼ (cvar:FRðf ; fÞ
FRðforall cvar:type:f ; fÞ ¼ 8 cvar:type:FRðf ; fÞ
FRðforall cvar:f ; fÞ ¼ 8 cvar:FRðf ; fÞ;

and an added clause for translating nested constraints

FRðnest id; fÞ ¼ fðidÞ:
Function RR coincides with function RS. The clauses of function MR coincide with the clauses of MS with the addition of a
clause for translating structured symbols in Fig. 10 matching reconfiguration operations as follows:

MRðm½a1…an�; fÞ ¼mða1…anÞ:
where mA ASYM and ajA Filter.□

References

[1] Medvidovic N. Adls and dynamic architecture changes. In: Joint proceedings of the second international software architecture workshop (ISAW-2) and
international workshop on multiple perspectives in software development (Viewpoints '96) on SIGSOFT '96 workshops. New York, NY, USA: ACM
Press; 1996. p. 24–7.

[2] Medvidovic N, Taylor R. A classification and comparison framework for software architecture description languages. IEEE Trans Softw Eng 2000;26(1):
70–93.

[3] Sanchez A, Barbosa LS, Riesco D. A language for behavioural modelling of architectural patterns. In: Proceedings of the third workshop on behavioural
modelling, BM-FA '11. New York, NY, USA: ACM; 2011. p. 17–24.

[4] Sanchez A, Barbosa LS, Riesco D. Bigraphical modelling of architectural patterns, In: The eighth international symposium on formal aspects of
component software, FACS 2011, Oslo, Norway, September 14–16, 2011, Revised selected papers, Lecture notes in computer science, vol. 7253. Berlin,
Heidelberg: Springer; 2012. p. 313–30.

[5] van Deursen A, Klint P, Visser J. Domain-specific languages: an annotated bibliography. SIGPLAN Not. 2000;35(6):26–36.
[6] Sanchez A, Barbosa LS, Riesco D. Verifying bigraphical models of architectural reconfigurations. In: The seventh international symposium on

theoretical aspects of software engineering, TASE 2013, 1–3 July 2013, Birmingham, UK. USA: IEEE Computer Society; 2013. p. 135–8.

http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref2
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref2
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref5

A. Sanchez et al. / Computer Languages, Systems & Structures 44 (2015) 218–237 237
[7] Sanchez A, Barbosa LS, Riesco D. Specifying structural constraints of architectural patterns in the archery language. In: Simos TE, Tsitouras C, editors.
Proceedings of the international conference on numerical analysis and applied mathematics 2014 (ICNAAM-2014), vol. 1648, AIP proceedings; 2015. p.
310008(1)–(5).

[8] Sanchez A, Barbosa LS, Madeira A. Modelling and verifying smell-free architectures with the archery language. In: Canal C, Idani A, editors. Software
engineering and formal methods, Lecture notes in computer science, vol. 8938. Switzerland: Springer International Publishing; 2015. p. 147–63.

[9] Madeira A, Martins MA, Barbosa LS, Hennicker R. Refinement in hybridised institutions. Form Asp Comput 2015;27(2):375–95.
[10] Sanchez A. A calculus of architectural patterns (to appear) [Ph.D. thesis], Universidad Nacional de San Luis; 2015.
[11] Services UKB. Handbook of transfusion medicine. 5th edition. United Kingdom: The Stationery Office; 2013.
[12] Mellor SJ, Kendall S, Uhl A, Weise D. MDA distilled. Redwood City, CA, USA: Addison Wesley Longman Publishing Co., Inc.; 2004.
[13] van der Hoek W. On the semantics of graded modalities. J Appl Non-Class Logics 1992;2(1).
[14] Areces C, Blackburn P, Marx M. Hybrid logics: characterization, interpolation and complexity. J Symb Log 2001;66(3):977–1010.
[15] Divroodi AR, Nguyen LA. On bisimulations for description logics. Inf Sci 2015;295:465–93.
[16] Buschmann F, Meunier R, Rohnert H, Sommerlad P, Stal M. Pattern-oriented software architecture volume 1: a system of patterns, 1st edition. England:

Wiley; 1996.
[17] Shaw M, Garlan D. Software architecture: perspectives on an emerging discipline.USA: Prentice Hall; 1996.
[18] Garlan D, Monroe R, Wile D. ACME: an architecture description interchange language. In: Proceedings of the 1997 conference of the centre for

advanced studies on collaborative research, CASCON '97. IBM Press; 1997. p. 169–83.
[19] Magee J, Kramer J. Dynamic structure in software architectures. In: Proceedings of the fourth ACM SIGSOFT symposium on foundations of software

engineering, SIGSOFT '96. New York, NY, USA: ACM; 1996. p. 3–14.
[20] Georgiadis I, Magee J, Kramer J. Self-organising software architectures for distributed systems. In: Proceedings of the first workshop on self-healing

systems, WOSS '02. New York, NY, USA: ACM; 2002. p. 33–8.
[21] Kramer J, Magee J, Uchitel S. Software architecture modeling and analysis: a rigorous approach. In: Bernardo M, Inverardi P, editors. Formal methods

for software architectures, Lecture notes in computer science, vol. 2804. Berlin, Heidelberg: Springer; 2003. p. 44–51.
[22] Allen R, Garlan D. A formal basis for architectural connection. ACM Trans Softw Eng Methodol 1997;6(3):213–49.
[23] Allen R, Douence R, Garlan D. Specifying and analyzing dynamic software architectures. In: Astesiano E, editor. Fundamental approaches to software

engineering, Lecture notes in computer science, vol. 1382. Berlin, Heidelberg: Springer; 1998. p. 21–37.
[24] Bruni R, Lluch Lafuente A, Montanari U, Tuosto E. Style based architectural reconfigurations. Bull Eur Assoc Theor Comput Sci 2008;94:161–80.
[25] Bradbury JS, Cordy JR, Dingel J, Wermelinger M. A survey of self-management in dynamic software architecture specifications. In: Proceedings of the

first ACM SIGSOFT workshop on self-managed systems, WOSS '04. New York, NY, USA: ACM; 2004. p. 28–33.
[26] Groote JF, Mathijssen A, Reniers M, Usenko Y, van Weerdenburg M. The formal specification language . In: Methods for modelling software systems:

Dagstuhl seminar 06351; 2007.
[27] Milner R. Bigraphical reactive systems. In: Larsen KG, Nielsen M, editors. CONCUR, Lecture notes in computer science, vol. 2154. Berlin, Heidelberg,

Germany: Springer; 2001. p. 16–35.
[28] Medvidovic N, Rosenblum DS, Redmiles DF, Robbins JE. Modeling software architectures in the unified modeling language. ACM Trans Softw Eng

Methodol 2002;11(1):2–57.
[29] Le Métayer D. Describing software architecture styles using graph grammars. IEEE Trans Softw Eng 1998;24:521–33.
[30] Kim JS, Garlan D. Analyzing architectural styles with alloy. In: Proceedings of the ISSTA 2006 workshop on role of software architecture for testing and

analysis, ROSATEA '06. New York, NY, USA: ACM; 2006. p. 70–80.
[31] Jackson D. Alloy: a lightweight object modelling notation. ACM Trans Softw Eng Methodol 2002;11(2):256–90.
[32] Dormoy J, Kouchnarenko O, Lanoix A. Using temporal logic for dynamic reconfigurations of components. In: Barbosa LS, Lumpe M, editors. Formal

aspects of component software—the seventh international workshop, FACS 2010, Guimarães, Portugal, October 14–16, 2010, Revised selected papers,
Lecture notes in computer science, vol. 6921. Berlin, Heidelberg, Germany: Springer; 2010. p. 200–17.

[33] Aguirre N, Maibaum TSE. A temporal logic approach to the specification of reconfigurable component-based systems. In: The 17th IEEE international
conference on automated software engineering (ASE 2002), 23–27 September 2002, Edinburgh, Scotland, UK; 2002. p. 271–4.

[34] Canal C, Cámara J, Salaün G. Structural reconfiguration of systems under behavioral adaptation. Sci Comput Program 2012;78(1):46–64.

http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref8
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref8
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref9
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref11
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref12
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref14
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref15
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref17
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref21
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref21
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref22
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref23
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref23
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref24
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref27
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref27
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref28
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref28
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref29
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref31
http://refhub.elsevier.com/S1477-8424(15)00041-X/sbref34

	On the verification of architectural reconfigurations
	Introduction
	A blood transfusion process: avoiding misidentification
	The Archerylanguage
	Architectures
	Reconfigurations
	Constraints
	Two-layer generic formulas
	Structural constraints
	Specifying reconfiguration constraints

	A two-layer graded hybrid logic
	Syntax
	Semantics
	Bisimulation and invariance
	Refinement

	Verifying hierarchical constraints
	Related work
	Conclusions and future work
	Future and ongoing work

	Acknowledgements
	Deriving models for structural constraints
	Translating constraints
	References

