
COORDINSPECTOR: a tool for extracting
coordination data from legacy code

Nuno F. Rodrigues
DI-CCTC, Universidade do Minho

4710-057 Braga, Portugal
Email: nfr@di.uminho.pt

Luis S. Barbosa
DI-CCTC, Universidade do Minho

4710-057 Braga, Portugal
Email: lsb@di.uminho.pt

Abstract—More and more current software systems rely on
non trivial coordination logic for combining autonomous services
typically running on different platforms and often owned by
different organizations. Often, however, coordination data is
deeply entangled in the code and, therefore, difficult to isolate
and analyse separately.

COORDINSPECTOR is a software tool which combines slicing
and program analysis techniques to isolate all coordination
elements from the source code of an existing application. Such a
reverse engineering process provides a clear view of the actually
invoked services as well as of the orchestration patterns which
bind them together.

The tool analyses Common Intermediate Language (CIL) code,
the native language of Microsoft .Net Framework. Therefore,
the scope of application of COORDINSPECTOR is quite large:
potentially any piece of code developed in any of the pro-
gramming languages which compiles to the .Net Framework.
The tool generates graphical representations of the coordination
layer together and identifies the underlying business process
orchestrations, rendering them as Orc specifications.

I. MOTIVATION

The ubiquity of software and its exponential growth, both in
size and complexity, is producing an equally growing amount
of legacy code that has to be maintained, improved, replaced,
adapted and accessed for quality every day. Paradoxically, in
a situation in which the only quality certificate of the running
software artifact still is life-cycle endurance, customers and
software producers are little prepared to modify or improve
running code. However, faced with so risky a dependence
on legacy software, managers are more and more prepared
to spend resources to increase confidence - i.e. the level of
understanding of - on their code. Moreover, software quality,
requiring systems to comply to strict and specific quality
standards, and conformance of design specifications with the
actual implementations is impossible to be assessed without
rigorous models of running systems.

Popular expressions, as, for example, program understand-
ing, reverse engineering and model extraction, were coined in
such a context. They refer to a broad range of techniques to
extract specific knowledge from legacy code, represent it in
malleable representations, proceed to their analysis, classifica-
tion and reconstruction.

The research reported in this paper is supported by FCT, under contract
POSC/EIA/56646/2004, in the context of the IVY project.

The tool described here is actually a tool for program under-
standing, but designed to capture the underlying coordination
patterns [1]. Therefore, it addresses the macro level of software
architecture [2] identifying patterns of interactions between
distinct architectural elements.

Several approaches have been proposed for reverse architec-
tural analysis. Among them Class Diagram generators which
extract class diagrams from object oriented source code, Mod-
ule Diagram generators that construct box-line diagrams from
system’s modules, packages or namespaces, Uses Diagram
generators which reflect the import dependencies of the system
and Call Diagram generators which expose the direct calls
between system parts.

However, none of these techniques/tools makes it possible
to answer questions which are about the dynamics of a
software system. For example, how does it interact with its
own components and external services and coordinate them to
achieve its goals? How does the system behave when trying
to access an ilexternal resource unavailable? Can the system
enter in a deadlock situation? and what is the sequence of
actions for such a deadlock to take place?, among others.

The reason why such questions cannot be answered from
most of the models built from code extraction, is that
behavioural analysis requires a level of abstraction which,
for a number of reasons, is not common in such models.
Actually, disentangling coordination data and recovering a
system model able to capture its behaviour with respect to the
interactions with different components, is a complex process,
as it deals with multiple activities and multiple participants
which in turn are influenced by multiple constrains, such as
exceptional situations, interrupts and failures.

II. COORDINSPECTOR: THE TOOL

COORDINSPECTOR1, a snapshot of which is presented in
Fig. , is a prototype of a software analysis, which aims
at providing answers to such questions. By extracting the
coordination model of a system from its source code described
in Microsoft Common Intermediate Language (CIL). Note that
CIL is the language interpreted by the .Net Framework for
which every Microsoft .Net compliant language compiles to.
Therefore, COORDINSPECTOR is able to analyze heterogenous

1The tool is available from http://www.di.uminho.pt/∼nfr



systems implemented in multiple languages within the set of
.Net Framework languages, which by now counts more than 40
languages2, and this number has only but potential to increase.
Such a decision of targeting CIL code was not an arbitrary one.
Indeed we intended the tool to be able to cope with as many
programming languages as possible, because most real world
software systems are developed in more than one language.
Moreover, given the potential of the tool to assist legacy
systems evolution, the ”language agnostic” feature became an
important invariant.

Fig. 1. COORDINSPECTOR

By analyzing a system’s CIL code, COORDINSPECTOR per-
forms the following steps to abstract the system’s coordination
model:

• Constructs the Control Flow Graph (CFG) for each prop-
erty, constructor, method, anonymous delegate or lambda
expression in the CIL

• Based on each CFG, COORDINSPECTOR builds the
Method Dependence Graph (MDG)3 for each of the
previous program entities.

• By inspecting the class where each of the previous entities
are defined, the tool constructs the Class Dependence
Graph, and follows a similar approach in the construc-
tion of the Interface Dependence Graph and Namespace
Dependence Graph.

• Given the Managed System Dependence Graph MSDG
(constructed upon the previous graphs), the tool is
constructs the system Coordination Dependence Graph
(CDG).

• COORDINSPECTOR is also able to visually represent both
the MSDG and CDG of the system as well to navigate
over these graph structures. This graphical presentation
of the graphs provides the user with specific vertex
information, like labeling and the CIL code captured,
by applying a double click on a particular vertex of the
graph.

2Source: http://en.wikipedia.org/wiki/CLI Languages
3See the accompanying paper ”Discovering orchestration patterns in legacy

code”, also submitted to SCAM’08

• Finally the tool generates the Orc coordination of the
system by analyzing the previously calculated CDG.

III. COORDINSPECTOR: THE IMPLEMENTATION

The implementation of COORDINSPECTOR combines a
number of techniques from program analysis and graphical
representation of code, with a particular emphasis on slicing.
This builds on top of the first author previous work on program
slicing [4], the techniques of which were found applicable to
the sort of ’coordination data extraction’ problem addressed
in this tool. The whole approach is described in detail in an
accompanying paper submitted to this Conference.

In order to take advantage of existing CIL analysis tools,
COORDINSPECTOR is developed as a plug-in for the CIL
decompiler .Net Reflector4, from where it just retains the parse
for CIL code, which delivers an object tree representation of
the CIL concrete syntax tree. Such tree is then processed to
build a dependence graph which extends the original definition
in [3] with support for objects and new representations for
concurrent constructs and specific managed code (i.e., code
that executes under the management of the Common Language
Runtime virtual machine) details.

The computation of this graph is parametric on the coor-
dination features one wants to trace back in the code. At the
moment of writing the tool is equipped with sets of rules to
deal with web services communications, distinguish between
synchronous and asynchronous calls as well as between invo-
cation and provisioning of functionality using web services.
Other sets of rules can, however, be easily added.

It is well known that the kind of algorithms in which
tools like COORDINSPECTOR are based lead to highly time-
consuming implementations, given input size and computa-
tional complexity involved. Therefore, we have adopted a
distributed strategy based on multithreading sub-graph calcu-
lation, which reduced the MSDG calculation time to roughly
on third of the original time.

Finally, it should be noted that code generation by CO-
ORDINSPECTOR was not implemented as a syntax-directed
operation, but, instead, by an extension of the same graph
traversal operations that were defined for the labeling process
in the construction of the dependence graph.

IV. CONCLUSIONS AND FUTURE WORK

REFERENCES

[1] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[2] L. Bass, P. Clements, and R. Kazman. Software Architecture in Practice.
Addison Wesley, 1998.

[3] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88: Proceedings of the ACM SIGPLAN
1988 Conf. on Programming Usage, Design and Implementation, pages
35–46. ACM Press, 1988.

[4] N. F. Rodrigues and L. S. Barbosa. Higher-order lazy functional slicing.
Journal of Universal Computer Science, 13(6):854–873, jun 2007.

4http://www.aisto.com/roeder/ dotnet


