Towards the Introduction of QoS Information in a
Component Model

Sun Meng
Centrum Wiskunde & Informatica (CWI)
P.O. Box 94079
Amsterdam, The Netherlands

M.Sun@cwi.nl

ABSTRACT

Assuring Quality of Service (QoS) properties is critical in the de-
velopment of component-based distributed systems. This paper
presents an approach to introduce QoS constraints into a coalge-
braic model of software components. Such constraints are formally
captured through the concept of a Q-algebra which, in its turn, can
be smoothly integrated in the definition of component combina-
tors.

Categories and Subject Descriptors

D.2 [Software Engineering]: Requirements/Specifications

Keywords

Component-based design, coalgebra, QoS properties

1. INTRODUCTION

Often software services execute on the hardware of their respec-
tive providers, in different containers, separated by firewalls and
other trust barriers. Actually, the design of loosely-coupled, highly
distributed software systems places new requirements on service
and components’ composition. To build applications, one often
needs to select them from a set of functionally equivalent candi-
dates, i.e., components that implement the same functionality but
differ in their non-functional characteristics, i.e., Quality of Service
(QoS) properties [6, 8]. QoS properties of individual components,
such as response time, availability, bandwidth requirement, mem-
ory usage, etc., cannot be ignored and become decisive in the se-
lection procedure. Moreover, often adaptation mechanisms have
to take them into account, going far behind simple functionality
wrapping to bridge between published interfaces.

Dealing with QoS aspects in a coherent and systematic way be-
came a main issue in component composition, which cannot be
swept under the carpet in any formal account of the problem.

This paper suggests how a formal calculus for component com-
position [2, 3] can be extended in order to take into account, in an
explicit way, QoS information. The calculus is based on a coal-
gebraic model used to capture components’ observable behavior

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’10 March 22-26, 2010, Sierre, Switzerland.

Copyright 2010 ACM 978-1-60558-638-0/10/03 ...$10.00.

Luis S. Barbosa
Department of Informatics
Minho University
Braga, Portugal

Isb@di.uminho.pt

and persistence over transitions. Furthermore, it is parametric on
a notion of behavior, encoded in a strong monad, which allows
to reason in a uniform way about total or partial, non determinis-
tic or stochastic components. It has already been argued by others
(e.g., [5, 7]) that coalgebra theory nicely captures the "black-box"
characterization of software components, which favors an observa-
tional semantics: the essence of a component specification lies in
the collection of possible observations and any two internal config-
urations should be identified wherever indistinguishable by obser-
vation.

The notion of Q-algebra proposed in [4] is adopted to express
QoS properties. In brief, a Q-algebra amounts to two semirings
over a common carrier, representing some form of cost domain,
which allows different ways of combining and choosing between
quality values. The resulting calculus provides a compositional ap-
proach which offers potential for complex components to be con-
structed systematically while satisfying QoS constraints.

2. COMPONENTS AS COALGEBRAS

Software components can be characterized as dynamic systems
with a public interface and a private, encapsulated state. The rele-
vance of state information precludes a ‘process-like’ (purely behav-
ioral) view of components. Components are rather concrete coalge-
bras [7, 1, 5]). For a given value of the state space — referred to as a
seed in the sequel — a corresponding ‘process’, or behavior, arises
by computing its coinductive extension. Such a coalgebraic model
provides an observational semantics for software components and
a generic assembly calculus where the behavior pattern of a com-
ponent is abstracted to a strong monad B. For example, B = Id
retrieves the simple deterministic behavior, whereas B = P or
B = Id + 1 would model non deterministic or partial behavior,
respectively.

Assume a collection of sets I, O, ..., acting as component inter-
faces. Then a component taking input in I and producing output in
O is specified by a pointed coalgebra

(up € Up,ap : Uy — B(U, x O)") 1)

for functor T® = B(ld x O)”, where u, is the initial state, often
referred to as the seed, and the coalgebra dynamics is captured by
currying a state-transition function a,, : U, x I — B (U, x O).
This definition means that the computation of an action in a compo-
nent will not simply produce an output and a continuation state, but
a B-structure of such pairs. The monadic structure provides tools
to handle such computations.

Having defined generic components as (pointed) coalgebras, one
may wonder how do they get composed and what kind of calcu-
lus emerges from this framework. In this framework, interfaces are
sets representing the input and output range of a component. Con-

2045

sequently, components are arrows between interfaces and so arrows
between components are arrows between arrows. Thus, three no-
tions have to be taken into account: interfaces, components and
component morphisms. A component morphism h : (up, @p) —
(ugq, @q) is just a function connecting the state spaces of p and ¢
and satisfying the following morphism and seed preservation con-
ditions:

Qq * =

h

h up

T® h-a,

Uq

@)
3

Components with compatible interfaces (as in the case p : I —
K and q : K — O) can be composed sequentially as

p;q = {(up,uq) € Up X Uq, Tpyq)

where ap;q : Up x Uy X I — B(U, x Uy x O) is detailed as
follows

ap Xid

Upsq = Uy x Uy x I —2— U, x I x U, —2——

B(U, x K) x U, —=— B(U, x K x U,) =&
B(idxag)
5

B(Up, x (Uy X K))

Br;
—

B(U, x B(Uy x 0))
BBa®

BB(Up x (Ug x O)) ———
BB(U, x U, x 0) —*— B(U, x U, x O)

There are a collection of component combinators cater compo-
nent aggregation. For example, external choice B and parallel X
composition. When interacting with pH ¢ : I +J — O + R,
the environment chooses either to input a value of type I or one
of type J, which triggers the corresponding component (p or g,
respectively), producing the relevant output. In its turn, parallel
composition corresponds to a synchronous product: both compo-
nents are executed simultaneously when triggered by a pair of legal
input values. Note, however, that the behavioral effect, captured
by monad B, propagates. For example, if B expresses component
failure and one of the arguments fails, the product will fail as well.

3. INTRODUCING QOS IN THE

COMPOENT MODEL

QoS is introduced in the component calculus through the notion
of a Q-algebra due to [4]. In brief, a Q-algebra is an algebraic
structure R = (C, ®, ®, 0, 0,1) such that Rg = (C, ®,®,0,1)
and Ry = (C,®, D, 0,1) are both c-semirings. Intuitively, C' is
a QoS domain (e.g., a measure of resource usage or availability)
whereas @ represents a choice between QoS values and ® and O,
respectively, compose QoS values sequentially or concurrently.

As an example, we consider (R4 U {oo}, min, +, maz, oo, 0),
where the QoS values are non-negative real numbers together with
infinity, which can be used to specify the (shortest) time for com-
ponent behavior performance. The additive operation is men, the
sequential combininator is sum, and the concurrent combininator
is max over the domain.

QoS information is included in the component model as an ad-
ditional attribute: its execution generates a QoS value which is ob-
servable (i.e., measurable). Formally, definition (1) changes to

(uo € Up,@p : Up — B(Up x C x 0)") @)
where C'is the domain of some Q-algebra R = (C, ®, ®,D,0,1).

The definition of all component combinators change accordingly
to take into account the need for equally combining the observed

2046

QoS levels of their parameters. For example, the dynamics of se-
quential composition becomes

Ap;q :UpXUqXILUpXIXUq
B(Up x C x K) x Ug
— B(U, x C x K x Uy)

ap xid
R —

S, B((Uy x €) X B(U, x € x 0))
—2 . BB(U, x C x (Uy x C x 0))
2% BB((Uy x € x (Uy x C)) x 0)
—— B((Up x C x (Uy x C)) x O)
S B((Up x Uy x (€ x) x 0)

BEXEXD, B, x Uy x C x O)

4. CONCLUSIONS

This paper is a preliminary step in order to extend the component
calculus documented in [2, 3] to deal, in a systematic way, with
QoS constraints expressed through Q-algebras. It is expected that
such an extension will enable formal reasoning about QoS-aware
components on top of a precise coalgebraic semantics. The full
development of the extended calculus is ithe topic of our current
research.

5. REFERENCES

[1] J. Adamek. An introduction to coalgebra. Theory and
Applications of Categories, 14(8):157-199, 2005.

L. S. Barbosa. Towards a Calculus of State-based Software
Components. Journal of Universal Computer Science,
9(8):891-909, August 2003.

L. S. Barbosa and J. N. Oliveira. State-based components
made generic. In H. P. Gumm, editor, Elect. Notes in Theor.
Comp. Sci. (CMCS’03 - Workshop on Coalgebraic Methods in
Computer Science), volume 82.1, Warsaw, April 2003.

T. Chothia and J. Kleijn. Q-automata: Modelling the resource
usage of concurrent components. Electronic Notes in
Theoretical Computer Science, 175(2):153-167, 2007.

B. Jacobs. Exercises in coalgebraic specification. In

R. Backhouse, R. Crole, and J. Gibbons, editors, Algebraic
and Coalgebraic Methods in the Mathematics of Program
Construction, volume 2297 of LNCS, pages 237-280.
Springer, 2002.

D. A. Menascé. Composing Web Services: A QoS View.
IEEE Internet Computing, 8(6):88-90, 2004.

J. Rutten. Universal coalgebra: a theory of systems.
Theoretical Computer Science, 249:3-80, 2000.

L. Zeng, B. Benatallah, A. H. Ngu, M. Dumas,

J. Kalagnanam, and H. Chang. QoS-Aware Middleware for
Web Services Composition. IEEE Transactions on Software
Engineering, 30(5):311-327, 2004.

(2]

(3]

[4

—

[5

—_

(6]
(7]
(8]

