Slicing for Architectural Analysis

Nuno F. Rodrigues, Luis S. Barbosa

DI-CCTC, Universidade do Minho
Braga, Portugal
{nfr,lsb}edi.uminko.pt

Abstract

Current software development often relies on non trivial coordination logic for
combining autonomous services, eventually running on different platforms.
As a rule, however, such a coordination layer is strongly weaved within the
application at source code level. Therefore, its precise identification becomes
a major methodological (and technical) problem and a challenge to any pro-
gram understanding or refactoring process.

The approach introduced in this paper resorts to slicing techniques to
extract coordination data from source code. Such data is captured in a
specific dependency graph structure from which a coordination model can
be recovered either in the form of an ORC specification or as a collection
of code fragments corresponding to the identification of typical coordination
patterns in the system. Tool support is also discussed.

Key words: Program analysis, architectural recovery, coordination.

1. Introduction

1.1. Context and motivation

By the end of the last century program understanding and reverse en-
gineering had emerged as key concerns in software engineering, attracting
an ever-increasing attention both in industry and academia. Actually, the
increasing relevance and exponential growth of software systems, both in size
and quantity, lead to an equally growing amount of legacy code that has to be
maintained, improved, replaced, adapted and assessed for quality regularly.

The high dependence of modern societies on such legacy systems and the
incredibly fast rate of evolution which characterises software industry, make
companies and managers willing to spend resources to increase confidence

Preprint submitted to Science of Computer Programming September 11, 2009

on — i.e., the level of understanding of — their running code. Actually,
the technological and economical relevance of legacy software, as well as the
complexity of its re-engineering and the (often exponential) costs involved,
justify the increased attention the problem has been receiving recently.

The approach introduced in this paper is part of this research effort on
techniques to extract, from source code, specific knowledge, to be suitably
represented and visualised, and to provide a basis for systems analysis and
reconstruction. More specifically,

e On the technical side, it targets program understanding at a macro, ar-
chitectural level. L.e., the identification and analysis of the underlying
coordination model, as an abstraction of the behavioural interplay be-
tween the various services, components, and the (more or less explicit)
independent loci of computation from which a system is composed of.

e On the methodological side, it resorts to slicing — a decomposition
technique to extract from a program, information relevant to a given
computation, originally proposed by M. Weiser, 30 years ago [32].

Several approaches have been proposed for reverse architectural analysis.
For example, in the context of model-driven engineering [29], generators for
UML diagrams became rather popular. A Class Diagram generator, for in-
stance, extracts classes from object oriented source code, whereas a Module
Diagram generator builds box-line diagrams from system’s modules, packages
or namespaces. On the other hand, Uses Diagram generators reconstruct the
import dependencies of the system, and Call Diagram generators expose the
direct calls between system parts. All of them are relevant at the architec-
tural level, understood, according to norm ANSI/IEEE Std 1471-2000, as
the fundamental organisation of a system, embodied in its components, their
relationships to each other and the environment, and the principles governing
its design and evolution.

However, none of these techniques/tools makes it possible to answer a
critical question about the dynamics of a system: how does it interact with
its own components and external services and coordinate them to achieve its
goals? From a Call Diagram, for example, one may identify which parts of a
system are called during the execution of a particular procedure. However, no
answers are provided to questions like: Will the system try to communicate
indefinitely if an external resource is unavailable? If a particular process is

down, will it cause the entire system to halt? Can the system come to a
deadlock situation, and what is the sequence of actions leading to it?

This sort of questions belongs to what can be called the coordination layer,
which captures system’s behaviour with respect to its network of interactions.
The qualifier is borrowed from research on coordination models and languages
[17, 4], which emerged a decade ago to exploit the full potential of parallelism,
concurrency and cooperation of heterogeneous, loosely-coupled components.
At present, the need for methods and tools to identify, extract and record
the coordination layer of running applications is becoming more and more
relevant as an increasing number of software systems rely on non trivial
coordination logic for combining autonomous services, typically running on
different platforms and owned by different organisations.

We claim that, if coordination policies can be extracted from code and
made explicit, it becomes easier to understand the system’s emergent be-
haviour (which, by definition, is the behaviour which cannot be inferred
directly from the individual components) as well as to verify the adequacy of
the software architecture (as implemented) with respect to its expected in-
teraction patterns and constraints. The approach proposed here, as detailed
in the sequel, is a step in that direction.

1.2. Owverview of contribution

The paper’s main contribution is a slicing-based technique to recover
coordination information from legacy code. Actually, what can be achieved
by slicing, i.e. the isolation of a particular sub-computation of interest inside
an entire program, goes far beyond its initial purpose of error detection.
Program slicing techniques became relevant to a large number of areas, such
as, reverse engineering [7, 30], program understanding [10, 12], debugging
2], software integration [5, 15], software maintenance [6, 8], testing and test
planning [13], among others.

The approach introduced in this paper is based on first building an
extended system dependence graph, to provide a structural and easy-to-
manipulate representation of program data, and then resorting to slicing
techniques over such a graph to extract the relevant coordination policies.

Two alternatives are considered to address the problem of discovering and
extracting coordination data from code, once a specific dependence graph
structure — to be referred to as the coordination dependence graph, CDG, in
the sequel — has been built.

e The first one, proceeds by systematically translating the data recorded
in the CDG into a specific software orchestration language. The out-
come is, therefore, a high-level specification of the recovered coordina-
tion policies. We resort to ORC, a recent general purpose orchestration
language proposed by J. Misra and W. Cook [23] for this task. ORcC
scripts can be animated to simulate such specifications and study al-
ternative coordination policies.

e An alternative approach inspects the entire CDG for the identification
of graph patterns which are known to encode particular coordination
schemes. For each instance of one of these patterns, discovered in the
graph, the corresponding fragment of the source code is identified and
returned.

The second alternative scales better to systems with complex coordination
policies, where a set of coordination patterns identified in (typically huge)
CDGs, provides more insight than a long, flat ORC specification.

The construction of the CDG, proposed here as a specialisation of stan-
dard program dependence graphs [11] used in classical program analysis, is
fundamental to both approaches. In the first one, ORC specifications are
directly generated from it. In the second, the discovery of coordination pat-
terns in the source code is achieved by a process of (sub-)graph identification
in the corresponding CDG. The overall strategy is illustrated in Fig. 1.

The process starts by the extraction of a comprehensive dependence
graph, denoted in the sequel by the acronym MSDG (after Managed System
Dependence Graph), from source code. This is the fundamental structure
underlying our approach, and extends, in several respects, previous work on
such sort of program representations. This is briefly explained in section
2; a complete formalisation appears in [27]. The CDG mentioned above is,
then, computed from this structure in a two stage process, presented in sec-
tion 3. First nodes matching rules encoding the use of specific interaction
or control primitives are suitably labelled. Such rules are the first param-
eter of the method.Then, by backwards slicing, the MSDG is pruned of all
sub-graphs found irrelevant for the reconstruction of the program coordina-
tion layer. Once the CDG has been generated, it can be “translated” into
a ORC specification, as explained in section 4. Alternatively, the discov-
ery of coordination patterns proceeds by the identification of corresponding
graph patterns. Such patterns, which constitute a second parameter in the

- -
> | Code Analysis > > | Code Analysis 2
Source Code

)
Spec1f|cat!ons
Generation

Orc

Specification - - \ Graph
— - -« Prunning & | ——
A Pattern / Slicing
€| Identification A
1

1
Discovered A 1

Code Communication
Primitive Rules

Pattern
Representations

Figure 1: The overall strategy

method, and the associated discovery algorithm are discussed in section 5.
From each coordination pattern discovered in the CDG, the corresponding
chunk of source code is identified and returned.

Both approaches are generic in the sense that they do not depend upon
the programming language or platform in which the original system was
developed. Moreover, the construction of the CDG is parametric on a set of
rules which captures the sort of interaction mechanisms used in the program
under analysis.

COORDINSPECTOR, a support tool developed as a “proof-of-concept” for
the proposed method, is described in section 6. Able to analyse Common
Intermediate Language (CIL) source code, the intermediate language for the
.Net Framework to which every Microsoft .Net compliant language compiles,
COORDINSPECTOR supports systems developed in more than 40 different
programming languages and combinations thereof. In section 7 the method
is illustrated with a (toy) example in CH.

2. The managed system dependence graph

The fundamental information structure underlying the coordination dis-
covery method proposed in this paper is a comprehensive dependence graph
— the MSDG — recording the elementary entities and relationships that
may be inferred from code by suitable program analysis techniques.

A MSDG is an extension of a classical system dependence graph to cope
with object-oriented features, as considered in [20, 21, 34]. Our own contri-
bution was the introduction of new representations for a number of program
constructs not addressed before, namely, partial classes and methods, dele-
gates, events and lambda expressions. For a formal specification of a MSDG,
as well as for a detailed description of the techniques used in its construc-
tion, the reader is referred to [27]. In this section, however, we provide a
brief overview of the structure of a MSDG, as detailed as necessary for the
presentation of the pattern discovery algorithm in section 5.

To prepare the grounds for computing a MSDG, the system under analysis
needs to be pre-processed, calculating the used and defined variables in each
statement as well as the control dependencies between statements. Used
and defined variables of a statement can be easily calculated with suitable
expression analysis. Control dependencies can also be trivially calculated for
well structured languages, so we assume that such analysis is performed in
this stage. Furthermore, we also assume that all object reference aliases are
handled in this pre-processing phase. Although the resolution of objected
reference aliases is not trivial , we rely on the several research works [31, 33|
addressing this issue, and assume that all object aliases have been properly
resolved.

A MSDG is defined over three types of nodes representing program en-
tities: spatial nodes (subdivided into classes Cls, interfaces Intf and name
spaces Nsp), method nodes (carrying information on the method’s signature
MSig, statements MSta and parameters MPar) and structural nodes which
represent implicit control structures (for example, recursive references in a
class or a fork of execution threads). Formally,

Node = SNode + MNode + TNode SNode = Cls + Intf + Nsp
MNode = MSig + MSta + MPar TNode = {4, v,0}
where + denotes set disjoint union. Nodes of type SNode contain just an
identifier for the associated program entity. Other nodes, however, exhibit
further structure. For example, a MSta node includes the statement code

(or a pointer to it) and a label to discriminate among the possible types of
statements in a method, i.e.,

MSta = SType x SCode SType = {mcall, cond, wloop, assgn, ---}

where, for instance, mcall stands for any statement containing a call to a
method and cond for a conditional expression. Similarly, a MSig node, which

6

in the graph acts as the method entry point node, records information on
both the method identifier and its signature, i.e., MSig = Id x Sig. Method
parameters are handled through special nodes, of type MPar, representing
input (respectively, output), actual (respectively, formal) parameters in a
method call or declaration. Formally,

MPar = Paln + PaOut + Pfln + PfOut

Finally, structural nodes TNode were introduced to cope with concurrency
(case of A and v) and to represent recursively defined classes (case of o).
A brief explanation is in order. A A node captures the effect of a spawning
thread: it links an incoming control flow edge, from the vertex that fires a
fork, and two outgoing edges, one for the new execution flow and another for
the initial one. Dually, a thread join is represented by a v node with two
incoming edges and an outgoing one to the singular resumed thread. A node
labelled with o represents a recursively defined class. The introduction of such
a node is required as our representation of a class is done by unfolding all
of its class variables. Since such variables may introduce direct and indirect
recursion, a way is needed to stop unfolding their definitions. This mechanism
provides an alternative to expanding the object tree to a certain, but fix,
depth, used, for example, in [21].

There are, of course, several types of program dependencies represented
as edges in a MSDG. Formally, an edge is a tuple of type

Edge = Node x DepType x (Inf + 1) x Node

where DepType is the relationship type and the third component represents,
optionally, additional information associated with. Let us briefly review the
main types of dependency relationships. Notation 1 stands for the (isomor-
phism class of) the singleton set whose (unique) value is, by convention in
this paper, denoted by —. Data dependencies, of type dd, connect statement
nodes with common variables. Formally,

(v,dd, z,v") € Edge <> definedIn(x, v) A usedIn(x,v")

where x is a program variable and notation definedIn(z,v) (respectively,
usedIn(z,v)) stands for x is defined (respectively, used) in node v. Typi-
cal dependencies between statement nodes are of types control flow, cf, and
control, ct, the latter connecting guarded statements (e.g. loops or condi-
tionals) or method calls to their possible continuations and method signature

7

nodes (which represent the entry-points for method invocation) to each of
the statement nodes, within the method, that are not under the control of
another statement. Formally, these conditions add the following assertions
to the invariant of type Edge!:

(v,ct,g,v") € Edge < v e {MSta(t,-)| ¢t € {mcall,cond, wloop}} A v’ € MSta
(v,ct,—,v") € Edge < v e MSig A v’ € MSta

where ¢ is either undefined or the result of the evaluation of the statement
guard. Note that control flow edges (cf) correspond to the most basic type
of dependencies identified in most graph-based program analysis. Actually,
they interfere in the computation of almost all other dependency edges. This
justifies their inclusion in the formalisation of the graph structure, even if no
explicit use of them is made in the specific coordination analysis discussed
in this paper.

A method call, on the other hand, is represented by a mc dependence
from the calling statement wrt the method signature node. Formally,

(v,mc,vis,v') € Edge <> v € MSta A STypewv = mcall Av" € MSig

where vis stand for a visibility modifier in set {private, public, protected, internal}.
Specific dependencies are also established between nodes representing formal
and actual parameters. Moreover, all of the former are connected to the
corresponding method signature node, whereas actual parameter nodes are
connected to the method call node via control edges. Finally, any data de-
pendence between formal parameters nodes is mirrored at the level of the
corresponding actual parameters. Summing up, these adds the following
assertions to the MSDG invariant:

/

{v,pi,—,v') € Edge <> v € Paln Av" € Pfln

(v, po,—,v') € Edge < v e PaOut A v’ € PfOut

v
(v,ct,—,v") € Edge <= v € MSta A STypev = mcall A v” € (Pfln U PfOut)
v

)
)
(v,ct,—,v") € Edge < v € MSig A v" € (Paln uPaOut)
)
(v,dd, —,v') € Edge <= v € Paln Av" € PaOut A 3, dq -) - (u € Pfln A’ € PfOut)

LAll conditions constraining types Node and Edge are formally recorded in two data
type invariants associated to these types in the specification of the MSDG given in [27];
such invariants are only partially stated in this paper.

8

Class inheritance and the fact that a class owns a particular method are
recorded as follows

(v,ci,—,v') e Edge < v,v" € Clsanv v/

(v,cl,vis,v’) € Edge < v e Cls Av’ € MSig

and, similarly, for interface and namespace nodes.

Other program entities and properties typically found in modern pro-
gramming languages are also captured in a MSDG. They include, for exam-
ple, properties (a special program construct in some .Net-based languages),
intended to encapsulate access to class variables. But also partial classes
and partial methods, the latter entailing the need for a mc dependence edge
between the declaration of the partial method and its implementation, as
well as delegates, events and A-expressions. A delegate is a sort of a function
whose values are objects, thus possibly defining class member types. From
the subscribed side, i.e., the class with the delegate definition that invokes
the subscribed method, a method node is added to represent the delegate
type, as well as the necessary parameter nodes for its arguments and results.
Every call to the delegate inside the subscribed class is represented by a
method call edge to the MSig node introduced by the delegate type. This
acts like a proxy dispatching its calls to objects and methods which subscribe
the delegate. The difference between delegates and events is that the latter
can be subscribed by more than one method, whilst delegate subscriptions
override each other. Therefore, their representation in a MSDG is similar to
that of delegates, but for the possibility of co-existence of more than one mc
edge between the subscribed and the actual method to be called in the sub-
scriber. A similar approach is taken for the representation of A-expressions
and anonymous methods (see [27] for further details).

3. The coordination dependency graph

The second stage in the discovery process is the construction of a CDG,
by pruning the MSDG of all information not directly relevant for the re-
construction of the application coordination layer. This stage is guided by
a specification of a set of rules specifying the interaction primitives used in
the source code, which are actually the building blocks of any coordination

scheme. Such rules are specified as values of the following type:

CRule = RExp x (CType x CDisc x CRole) CRole

CType = {webservice, rmi, remoting,---} CDisc = {sync,async}

{provider, consumer}

where RExp is a regular expression, CType is the type of communication
primitive involved, CDisc represents the calling mode (either synchronous or
asynchronous) and, finally, CRole characterises the code fragment role wrt the
communication flow. The role of the RExp component is to direct the search
of specific communication primitives inside program statements, which con-
stitute the atoms in the regular expression. Which communication primitives
to look for depends, obviously, on the code under analysis: both the method
and the tool described in section 6 are parametric on such primitives, the
'building blocks’ of interaction. As an example consider the following rule
intended to identify, in C* code, a call to a web service:

R = (rex,(webservice, sync, consumer))

rex = “System.Web.Services.Protocols.SoapHttpClient Protocol . Invoke\(\w\);”

Given a set of rules, CDG construction starts by testing all the MSDG
vertices against the regular expressions in the rules. If a node of type MSta
or MSig matches one of the regular expressions, it becomes labelled with the
information in the rule’s second component. The types of the resulting nodes
are, therefore,

CMSta
CMSig

MSta x (CType x CDisc x CRole)
MSig x (CType x CDisc x CRole)

Note that, because of this labelling process, the type of a CDG node is
CNode = Node + CMSta + CMSig

On completion of this labelling stage, the method proceeds by abstracting
away the parts of the graph which do not take part in the coordination layer.
This is a major abstraction process accomplished by removing all non-labelled
nodes, but for the ones verifying the following conditions:

1. method call nodes (i.e., nodes v such that v € MSta with SType v = mcall)
for which there is a control flow path (i.e., a chain of cf dependence edges)
to a labelled node.

10

2. vertices in the union of the backward slice of the program with respect
to each one of the labelled nodes.

Note that the first condition ensures that the relevant procedure call nesting
structure is kept. This information will be useful to nest, in a similar way, the
generated code on completion of the discovery process. The second condition
keeps all the statements in the program that may potentially affect a pre-
viously labelled node. This includes, namely, MSta nodes whose statements
contain predicates (e,g., loops or conditionals) that may affect the parame-
ters for execution of the communication primitives and, therefore, play a role
in the coordination layer.

The slicing stage involved in the construction of a CDG uses a backward
slicing algorithm similar to the one presented in [16]. It consists of two
phases. The first phase marks the visited nodes by traversing the MSDG
backwards, starting on the node matching the slicing criterion, and following
ct, mc, pi, and dd labelled edges. The slicing criterion is, as expected, the
set of vertices marked by the matching with the regular expressions in the
rules considered. The second phase consists of traversing the whole graph
backwards, starting on every node marked on phase 1 and following ct, po,
and dd labelled edges. By the end of phase 2, the program represented by
the set of all marked nodes constitutes the slice with respect to the initial
slicing criterion.

Except for cf labelled edges, every other edge from the original MSDG
with a removed node as source or target, is also removed from the final
graph. The same is done for any cf labelled edge containing a pruned node
as a source or a sink. On the other hand, new ct edges are introduced
to represent what were chains of such dependencies in the original MSDG,
i.e. before the pruning stage. Actually, along the process some vertices are
pruned from the graph, in particular vertices which were intermediaries, with
respect to ct dependencies. Later such dependencies have to be rebuilt. This
procedure may seem weird, but it ensures that future traversals of the graph
are performed with the correct control order of statements.

A comment is now in order with respect to the effective reduction of size
on detaching a CDG from a MSDG. Actually this can not be accurately
predicted as it depends on the amount of coordination logic present on the
specific code under analysis, i.e., the volume of interaction measured by
the number of statements with calls to communication primitives and their
cohesion in the entire system. The higher the latter the less significative the

11

graph reduction will be. However, in most cases, only a small portion of code
is dedicated to coordination, which makes the generated CDG considerably
smaller than the original MSDG.

4. Generation of coordination scripts

Once a CDG is built, the recovery of the system’s coordination model
can be achieved in two different ways, as explained in section 1. This section
discusses one of those methods: the direct generation of coordination script
in ORC, therefore abstracting the whole relevant behaviour into a single
specification.

The ORC coordination language is briefly described in the sequel, whereas
subsection 4.2 introduces the script generation process.

4.1. Specifying coordination in ORC

Purpose and syntaz.. ORC [23] is a simple, executable, yet powerful language
designed for task orchestration. In brief, it introduces a platform for spec-
ification of protocols involving the access to external resources and services
to accomplish specific goals, while managing concurrency, failure, time-outs,
priorities and other constrains. The language builds upon a few basic com-
binators for expressing such coordination logic of applications. A number of
formal semantics have been proposed for ORc [14, 18, 3], providing a solid
theoretical background upon which one can base equivalence and program
transformation.

External services and components are abstracted as sites which can re-
ceive calls from a coordination script written in ORC. Such a script, called
an orchestration, consists of a set of auxiliary definitions and a main goal
expression. The syntax is presented in figure 2.Notation p refers to a list of
p elements separated by commas.

e, f,9,h € Expression == M(p) | EQ) | f>z>g] flg |
f where z:€g || =
p € Actual = x| M| el f
q € Formal = x| M
Definition == E(q)=f

Figure 2: ORC syntax

12

An ORC expression can consist of a site call M(p), an expression call
E(p), a sequential execution of expressions f > x > g, a parallel execution of
expressions f|g, an asymmetric parallel composition of expressions f where
x :€ g, or a variable x. The language includes a number of pre-defined sites
which are essential for effective programming of real world orchestrations.
Their informal semantics is presented in Table 1.

let(x,y,...) Returns argument values as a tuple.

if(b) Returns a signal if b is true, and it does
not respond if b is false.
Signal Returns a signal. It is same as if(true)

RTimer(t) Returns a signal after exactly ¢ time units

Table 1: Fundamental Sites

ORC scripts can also represent dynamic orchestrations, i.e., orchestrations
that are able to create local sites at runtime. This feature is provided by the
so-called factory sites, which return a local site when invoked [9]. Table
2 describes some of those sites which will be used in the sequel to express
the coordination logic recovered from legacy code. The Buffer site returns
a n-buffer local site with two operations, put and get. The put operation
stores its argument value in the buffer and sends a signal after the storage.
The get operation removes an item from the buffer and returns it. In case
the buffer is empty the get operation suspends until a value is putted in the
buffer. The Lock factory site, on the other hand, returns a lock local site
providing two operations, acquire and release. When an orchestration calls
acquire on a lock it becomes its owner and subsequent calls to acquire from
other expressions will block. Once the lock is released ownership is given to
a waiting orchestration if any.

Site Ports
Buffer put and get
Lock acquire and release

Table 2: Factory sites

13

Informal semantics.. A site in ORC is an autonomous entity with the capac-
ity of publishing values to the calling expressions. The evaluation of a site
call holds indefinitely (possibly forever if the the site never publishes a value)
until the called site publishes a value. An expression call simply passes the
control from the current expression being evaluated to the called expression
with the associated parameters. A sequential composition of ORC expres-
sions f > x > ¢ is executed by evaluating expression f, binding the value
published by f to x and then evaluating expression g, which eventually con-
tains references to x. In case x is not used by g, sequential composition
abbreviated to f >> g. Parallel composition amounts to concurrent execu-
tion of its parameters. Finally, asymmetric parallel composition f where
x :€ g forces the evaluation of both f and ¢ in parallel; the evaluation of f,
however, holds whenever it depends on x and this variable is not instantiated
by a values published by g. Once g publishes a value, its evaluation is halted
and the value produced is stored in x, enabling expression f evaluation to
continue. For a formal semantics of the language see [14, 18, 3].

Table 3 presents a number of elementary coordination scripts upon which
the ORC generation process to be described in next subsection builds up.

XOR(p. f,9) = if(p)> f|if(-p)>g

IfSignal(p, f) = if(p)> f|if(=p)

Loop(p, f) 2 p>b> IfSignal(b, f > Loop(g, [))
Discr(f,g) 2 Buffer > B> ((f | g) >z > B.put(zx) | B.get)

Table 3: ORC Definitions

A brief explanation is in order. The XOR orchestration takes as argu-
ments a predicate expression p, and two orchestrations f and g. Orchestra-
tions f or g are executed depending on to which value p evaluates. Note
that, in spite of the parallel combinator, the definition only executes one of
the expressions, one of them being always, effectively executed.

Orchestration I fSignal receives a predicate and an orchestration and
executes the orchestration if the predicates evaluates to true. Again, notice
that whether p evaluates to true or false the definition never blocks, but
always publishes a value, thus permitting the calling orchestration to proceed.

Loop also receives a predicate p and an orchestration f. It executes f
continuously until p evaluates to false. Even in this case the orchestration
does not block, returning instead a signal to allow the calling orchestration

14

to proceed.

Finally, orchestration Discr makes use of the factory site Buf fer in
order to capture the signal of the first of its two parameter orchestrations to
respond. Once one of the orchestrations returns a signal, this is forwarded to
the calling orchestration, while leaving the other parameter executing until
it terminates.

4.2. ORC generation process

A main concern in generating ORC coordination scripts is to assure their
structure, in particular, the nested structure of calls, is close enough to that
of the original system, therefore making easy further comparisons. Therefore
an ORC definition is generated for each procedure in the CDG, even though
some of these procedures have no other objective than calling other services,
and may therefore be replaced by direct calls. The calling structure involving
these calls recorded in the graph is also kept in the generated script. Actually,
it is this structure preservation goal that justifies the first exception in the
pruning process mentioned in the previous section.

Note, however, that the process does not generate an ORC definition for
every procedure in the original system, since during the construction of the
CDG all procedures not contributing to the coordination layer, were dropped.
Also notice, that it is simple to transform the nested script into a flat one,
whenever this simplifies formal analysis. Such a transformation resorts to an
algebra of ORC orchestrations well documented in the literature [9].

The generation of an ORC script for a procedure is based on the program
captured by the procedure sub-graph of the entire system CDG. The con-
struction of the overall coordination script represented by a CDG basically
amounts to collecting the statements of the vertices visited by following the
control flow edges. The result is expressed in the language summarised in
figure 3 (see [27] for a detailed presentation of both the language and the
translation process).

This language, actually a subset of C* is self explanatory. Notice the use
of < > brackets for optional expressions.We consider that a local procedure call
behaves like a synchronous call to a local resource, therefore not involving
any form of communication. Every asynchronous procedure call, on the
other hand, is be performed as if directed to an external resource. Thus,
it must specify the resource site uniquely (internal asynchronous procedure
calls may be performed using the ASYNCCALL construct with localhost as
resource site). Two possibilities are provided for dealing with asynchronous

15

z € Values
x,x1,xn € Variables
s € Sites
e,e1,2, € Ezxpressions
st,sti,sty € Statements u= z

T
r = €
Stl H Stg

LOCK (z) {st}

LOCALCALL f(Z)

SYNCCALL s f(Z)

ASYNCCALL s f(T) < {st}>

IF p THEN {st;} <ELSE {sty} >
WHILE p DO {st}

fi,fn € Procedures = f@{st}
ci1,¢, € Classes 2= c{x1=e€1 .. xp=€n f1 - fn}
nsy,ms, € Namespaces == ns{ci ... cp}

Figure 3: The CDG representation language

calls. One of them simply launches the procedure call in a separate thread
and continues execution of the rest of the program. The other executes an
expression when and if the asynchronous call returns. The LOCK statement
behaves as expected i.e., it gives a variable access to a specific statement

block execution in a single thread or process.

The generation of an ORC script proceeds in two phases. The first one
is performed by function ¢ which identifies all the variables in the language
for which an access control may be required, and sets up an environment
for controlling the access to such variables. Basically, function v, typed as
:CxPV - (1+0rc)xP V introduces a Lock site (see tables 4.1) for each
variable in a LOCK statement, while keeping track of all visited variables for
avoiding site duplication. In its definition projections of product datatypes
are represented by m : Ax B - A and my : Ax B - B. dually, the notation for
embeddings in sum datatypesis ¢ : A > A+ B and 15 : B - A+ B. Formally,
mi(x,y) = x and 11 (x) = (1,x), where 1 is a label which identifies the origin
of z in the sum.

(t2(Lock > xLock > Signal),

{z}uV) ifzxé¢V,

¥ (LOCK (z) {st}, V)

(t10),V) otherwise
1 (ASYNCCALL s f(T) {st}, V) (1 st, P stuUV)
¢ (IF p THEN {st}, V) = (¢ st, g stUV)

16

if 1y sty # 0 (A
(Y1 st1, Yo st1UV) wi st; = Li(),
if Y1 st1 =01()A

(Y1 stz, 2 stauV) Y1 sty # 11()

¥ (IF p THEN {st;}
ELSE {st2}, V)

1
N

(LQ('Z/){ st1 > wi Stg), if ’L[)l sty # Ll()/\
Y1 sty Uty stau V) Y1 sty # 11(),

(t10),V) otherwise
¢ (WHILE p DO {st}, V) = (1 st, g stUV)
P (stl ; sta, V) = ((2(9] sty >] sta), g sty Uy stauV)
¥ (st, V) = (u(), V)

where) =y ., Py = . Y, pote) = x and Y] = ps . Ty . . Note that
the type of the result of my . 1 is a sum, which makes the whole expression
po . T . Y well-typed; function ps simply removes the sum label. The
second phase in the method is performed by function ¢ : C' - Orc which,
for every procedure body, generates the corresponding ORC definition. Note
that function ¢ assumes the existence of a previously created environment
of sites, more specifically an environment with a Lock controlling the access
to each critical variable.

z let(z)
x x

x =

x

e let(e) > x > Signal
= e ; sty let(e) > x > p(st)
LOCK (z) {st} xLock.acquire > p(st) » xLock.release
LOCALCALL f(Z) F(z)
SYNCCALL s f(Z) s.F(T)

ASYNCCALL s f(T)
ASYNCCALL s f(Z) {st}

IF p THEN {st}

IF p THEN {st;} ELSE {sta2}
WHILE p DO {st}

stl ; sto

Discr(s.F(x), Signal)

Discr(s.F(T) > result > ¢(st), Signal)
IfSignal(let(p), p(st))

XOR(let(p), ¢(st1), ¢(stz))
Loop(let(p), ¢(st))

p(st1) > o(sta)

ST S ST SR ST ST S ST S ST ST SHIR Y

Notice the difference between variables x and z in the definition of function
¢: the former is a meta-variable (storing itself a variable from the CDG
representation language) whereas the second is a value.

17

Function ¢ converts a value or a variable from the language to the corre-
spondent variable or constant in ORC. A synchronous procedure invocation
is translated to a site call in ORC.

The asynchronous procedure call case is not as straightforward as the
previous ones. The envisaged behaviour involves a non-blocking request to
a site to return an answer. This behaviour can be captured in ORC by
the Discr orchestration pattern, described in the previous sub-section, and
the fundamental site Signal. Recall that Discr executes both arguments in
parallel and waits for a signal from any of the sites. Since Signal publishes
a signal immediately, the behaviour of the Discr with a Signal argument is
to return immediately leaving the other argument to execute in parallel.

Given the blocking behaviour of the fundamental site ¢ f when faced with a
false value, one cannot perform a direct translation of the IF THEN statement
to the ¢f ORC fundamental site. Such a direct translation would make the
entire specification to block upon a false value over an i f site. We resort
instead to the I fSignal pattern that never blocks and executes the second
expression if the predicate evaluates to true.

The behaviour specification of the IF THEN ELSE statement is easier to
capture because one of the branches of the statement is always executed.
Therefore, a direct translation to the XOR orchestration pattern is enough.
Similarly, the WHILE DO statement is captured by the Loop coordination pat-
tern which does not block upon evaluation of false predicates.

Given functions ¢ and ¢, specifying the two main phases of the ORC
generation process, the overall generation algorithm is obtained as follows:

F(T) 2 i (st,@) > @(st) if P1(st,@) #1()
F(T) £ p(st) otherwise

B (f @) {st}) ={

5. Discovering coordination patterns

5.1. Describing Coordination Patterns

In contrast to the MSDG, which is usually a large and complex structure,
the CDG extracted from a typical system is much smaller, since all code alien
to the coordination layer has already been removed. Nevertheless, recovering
a specification of such a layer is, usually, far from trivial. The ORC script
extracted by the process just described is often too long and unstructured,

18

as its generation follows strictly the CDG strucutre. An alternative method
is described in this section. It is driven by a series of predefined coordination
patterns encoded as sub-graph instances whose presence is systematically
investigated in the CDG under analysis. Formally, these coordination pat-
terns are defined as pairs grouping together a matching condition (of type
PCondition) and a graph pattern. Formally,

Pattern = PCondition x (Nodeld x Threadld x Nodeld x PathPattern)*
PCondition = Nodeld — 26Node

Nodeld = N
PathPattern = Nu {+}

The first component is a matching condition defined as a mapping which
associates to each pattern node (of type Nodeld) a predicate over CDG nodes
(of type GNode). In practice, a common definition of such a predicate resorts
to a regular expression intended to be tested over the statement collected on
CDG nodes. Symbol tt is used to abbreviate the everywhere true predicate.
Examples of pattern conditions are shown later in this section.

The second component of a pattern is a sequence of edges labelled by a
thread identifier (Threadld), which is used to specify the intervening threads
in a pattern, and a qualifier (of type PathPattern) which specifies the num-
ber of edges in the CDG that may mediate between the node matching the
source and the target node in the pattern. Notice that PathPattern is either
a positive natural number or the annotation +, standing, as usual, for one or
more. it is also assumed that all nodes in the sequence of edges of a pattern
which do not belong to the domain of the respective condition, are implicitly
labelled by the everywhere true predicate.

Based on the data specifications above, we have defined a small language
to express coordination patterns. Such notation, referred to as the Coordi-
nation Dependence Graph Pattern Language (CDGPL) was specifically de-
signed to describe CDG graph patterns and to facilitate the automatic dis-
covery of such patterns — see [27] for a complete specification. The discovery
process, in particular, is guided by a search pattern, i.e. an expression de-
fined simply as a pattern (of type Pattern) or either as a conjunctive (&&) or
disjunctive (|) aggregation of patterns. For illustration purposes, however,
we resort in this paper to a graphical notation to present a number of most
typically found coordination patterns, depicted in Fig. 4.

The coordination patterns were selected based on empirical data gathered

19

from a number of case studies in which the method, and accompanying tool,
has been applied. In each pattern, edges are labeled with the amount of
actual edges to be found in the CDG and a variable to be bound to the
corresponding thread id. Vertices contain regular expressions to be matched
with the statements inside each CGD vertex.

5.1.1. Synchronous Sequential Pattern

This is one of the most simple patterns in which external services in a
row are invoked one after the other. The pattern is usually found in presence
of a chain of service dependencies, i.e., when a service call depends on the
response to a previous one.

This pattern is specified as in Fig. 4(a), where each node corresponds to
a service call of the series of services to be invoked in sequence. If the origi-
nal source code implements coordination through access to web-services, the
condition for each of these vertices can be defined by the following predicate
template:

pe(z) = x == (MSta(t, s),cp, cm, cd) =
match(s, “ServiceCall(*)”) A ¢p == webservice

A cm == sync A cd == consumer

where “ServiceCall” is to be replaced by the name of the invoked web
service method.

5.1.2. Cyclic Query Pattern

This pattern is characterized by a point in which a new thread is spawned,
becoming responsible for invoking an external web service cyclically (which
explains loop in vertex 1). This is often used in applications which have to
monitor the state of a foreign resource or must be constantly updating an
internal resource which depends upon an external service.

In practice, this pattern appears in several variations. For instance, it may
include a time delay between each cyclic service call or use different strategies
to implement the service invocation cycle, e.g. recursion or iteration. The
version presented in Fig. 4(b) captures its most generic version. It basically
states that a new thread y must be spawned and that, under the execution
of such a new thread, a service must be called repeatedly. Again, vertex 1 is
instantiated with a predicate, as in the previous patterns, constraining the
kind of services that can be invoked.

20

(a) Synchronous Sequential Pat- (b) Cyclic Query Pattern
tern

(¢) Asynchronous Query Pattern (d) Asynchronous Query Pattern
with Client Multithreading

(e) Asynchronous Sequential (f) Joined Asynchronous Sequen-
Query Pattern tial Pattern

Figure 4: CDGPL Patterns

21

Note the pattern does not define when the loop ends, but simply states
that the right thread is responsible for a recurring invocation of an external
service. It does not specify either if the cyclic behaviour, represented by a
loop in the pattern, is due to recursion or iteration. Actually, the way such
a behaviour is implemented is not relevant: it is enough to record its effects.

5.1.3. Asynchronous Query Pattern

The Asynchronous Query Pattern is usually employed when time con-
suming services and to be called, and calling threads can not suspend until a
response is returned. Typically, in such cases, the server component provides
two methods, one for requesting of an operation on the server and another
for retrieving a reply (if available) from a previous request. Both these meth-
ods return very quickly, since they are not involved in the execution of any
complex operation but rather in the control of the execution of complex op-
erations and results retrieval. From the client side this pattern is specified in
Fig. 4(c), which encodes the invocation of a service to request the execution
of some operation (node 1) and a cyclic invocation of another service (node
2) to retrieve the result. Once more, in practice, both vertices 1 and 2 may
be further characterised by predicates that specify the precise operation one
is looking for.

5.1.4. Asynchronous Query Pattern (with client multithreading)

This often used pattern is actually a variation of the previous one, where
the client orders the execution of an operation in one thread and then
launches a second thread to retrieve the result. Note that this pattern, pre-
sented in Fig. 4(d), is also quite similar to the cyclic pattern, but for an
extra node, marked with %, to represent the program statement controling
the need to perform more invocations to retrieve the result of an operation.

5.1.5. Asynchronous Sequential Pattern

This is similar to the Synchronous Sequential Pattern except that it in-
vokes each service in a new thread specifically created for the effect. This
pattern is often used when a system has to invoke a series of services, the order
of invocation as well as the responses returned being irrelevant. Note that,
under this premises, this pattern is substantially faster than the Synchronous
Sequential Pattern in the invocation of the series of services. Thepattern is
specified in Fig. 4(e) where each of the service calling nodes (1 and 2) is
invoked in a different thread (y and w respectively).

22

conds :: PCondition

conds 1 = \x -> x == fork
conds 2 = \x -> x == fork
conds 3 = \x -> condl x
conds 4 = \x -> cond2 x
conds 5 = \x -> x == join
conds 6 = \x -> x == join

edges :: [(NodeId, ThreadIld, NodeId, PathPattern)]

edges = [(1’ an, 2’ ||+n)’(1, nyn’ 3, n+||),(2, "W", 4, ||+ll),
(2’ an’ 5’ u+n)’(3’ nyn’ 5, n+||)’(4, "W", 6, ||+u)’
(5’ an, 6, ||+n)]

Figure 5: Textual representation of the Joined Asynchronous Sequential Pattern

5.1.6. Joined Asynchronous Sequential Pattern

In this pattern services are also invoked asynchronously. But now there is
an explicit interest in controlling the point where each of the services called
finishes execution and, possibly, returns a value. The specification is given
in Fig. 4(f) where each thread that was spawned to invoke a service, joins
later at a point where the execution may proceed with the guarantee that
the execution of all service calls has already finished.

Fig. 5 represents this same pattern in the textual version of the pattern
language. This is expected to give a flavour of the concrete syntax, with a
strong Haskell flavour, used in the tool described in section 6. Notice that
annotation A is represented by fork, v by join, whereas generic conditions
from vertices 1 and 2, with type 26Nede are presented by condl and cond?2
respectively.

5.2. The Pattern Discovery Algorithm

The algorithm presented in this sub-section discovers and retrieves any
sub-graph of a CDG conforming to a given graph pattern. The notation used
is self-explanatory. However, let us point out the use of dot . as a field selector
in a record as well as the adoption of the HASKELL syntax for lists (including
functional map and operators : for appending and ++ for concatenation). An
assignment is denoted by the < operator; note that it can be prefixed by an
expression declaring the type of the variable being bound.

23

The algorithm resorts to the data types in Fig. 6, also expressed in the
HASKELL syntax for data type declarations. Note that both the CDG and
the graph representing the pattern to be discovered are made available to
the algorithm through embedding in Graph and GraphPattern: in both cases
a node is selected as ‘root’; i.e. as a starting point for searching.

Graph = G { root: GNode x G:CDG }

GraphPattern =GP { root: Nodeld x G : VertexPattern }
VertexPattern = VP {id:Int x cdts: [GNode] x visited: B }
Attribution = AT { vp: VertexPattern x v:GNode }
Extension = E { g:Graph x att: [Attribution] }

Figure 6: Data types for the graph pattern discovery algorithm

The overall strategy used by the pattern discovery algorithm? consists
of traversing the graph pattern, starting from its root, and incrementally
building a list of candidate graphs with nodes of type Attribution. This type
is used by the algorithm in order to maintain a mapping between the graph
pattern nodes and the CDG matching nodes. If the graph pattern vertex
is found for which a candidate graph cannot be extended to conform with,
then the graph in question is removed from the candidate graphs list. On
the other hand, if the candidate graph can be extended with one of the CDG
candidate nodes, it originates a series of new candidate graphs (one for each
CDG candidate node) and the original (incomplete) candidate is removed
from the candidate list.

The purpose of most auxiliary functions in the algorithm is easy to grasp,
with the possible exception of function GETSUCCCOMBINATIONS which cal-
culates a list of lists of Attributions, i.e., a list for each possible set of possible
attributions for a given node pattern. Note that, whenever there are vertices
in the pattern graph which are not reachable from the root vertex, one must
re-iterate the discovery process (line 26) based on the first not visited vertex.

By using the graph pattern discovery algorithm we are now able to iden-
tify coordination patterns in legacy code. Moreover, if each pattern is as-
sociated to a pattern ‘implementation’ in one of the several coordination
languages available in the literature, one will be able to reconstruct a speci-

2The complete algorithm implementation in C} is available at http://alfa.di.
uminho.pt/~nfr/PhDThesis/SubGraphIsomorphismAlgorithm.zip

24

Algorithm 1 Pattern Discovery

13:

1
2
3
4:
5:
6:
7
8

9:
10:
11:
12:

: function DISCOVERPATTERN(Graph cdg, GraphPattern cdgp)

cdgp < FILLCANDIDATEVERTICES(cdg, cdgp)
cdgp < FILLCANDIDATEEDGES(cdg, cdgp)

Graph baseGraph D> Initial empty graph to base the discovery process
[Attribution] rootAtts < get Attributions(cdgp) [Attributions list for the root vertex pattern
[Extension] gel « [(baseGraph,rootAtis)] > Initial graph and attributions
repeat

B b« False

for all Extension ge in gel do
for all Attribution datt in ge.att do
datt.vp.visited < True
c1 < HASSUCCESSORS(cdgp, datt.vp) D> Check if edgp has successors for vertex datt.vp
Check if the discovered graph ge.g
co < HASSUCCESSORS(ge.g, datt.vp) > has any already successors
for the vertex pattern datt.vp
If the graph pattern has successors for attribution datt and the
if c1A lcg then > discovered graph doesn’t have any, then the discovered graph
must be extended
[Extension] dgel < EXTENDBASEGRAPH(ge.g, datt)
[Extension] r < ge:r
[Extension] a < dgel + + a
b« bv LENGTH(dgel) >0

end if

end for
end for
gel «— REMOVE(gel, r) > Remove the initial (incomplete) discovered graphs from gel
gel < gel ++ a > Add all the recently extended graphs to gel
r[]
a<]
nv « NOTVISITED(cdgp) > Get first not visited Vertex Pattern
if b Anv # null then

b« True

vpa < map (Az - (nv,x)) nv.cdts > Initialize attributions for the non visited vertex

map (A\x - (z.g,vpa)) gel > Extend the discovered graphs with the vpa attributions
end if

until b == True
return gel

. end function

: function EXTENDBASEGRAPH(Graph bg, Attribution att)

tcs <« GETSUCCCOMBINATIONS(cdgp, vp)
for all tc in tcs do
ng < bg
gel < (ge, [])
for all cv in tc do
if b Anv # null then
ADDEDGE(ng, att, cv)
ge.DiscoveredAttributions. Add(cv)
else
gel.Remove(ge)
break
end if
end for
end for
return gel

: end function

25

fication of the system whose code has been analysed.

6. CoordInspector

In practice recovering a model of the coordination layer of an application
is not a trivial task. Actually, this has to cope, simultaneously, with the
size of the source code to be analysed, the heterogeneity of languages and
technologies employed and the specific level of coordination (inter-thread
coordination, component coordination, services coordination, etc) relevant to
each particular case. Moreover, the result of the recovery process should be
expressed, as much as possible, in terms of well-known coordination patterns,
and clear specifications of the coordination policies, in order to make easier
their analysis, re-engineering and reuse. This entails the need for suitable
tool support.

Such is the purpose of COORDINSPECTOR, a prototype tool developed
as “proof-of-concept” for the techniques discussed above. The tool, a snap-
shot of which is presented in appendix A, is available from http://alfa.
di.uminho.pt/~nfr/Tools/CoordInspector.zip. A preliminary version is
reported in [28].

6.1. Architecture and implementation

A basic choice in COORDINSPECTOR design was to make it as generic
as possible. Therefore, it targets Common Intermediate Language (CIL)[22]
code, the native language of Microsoft .Net Framework, to which every .Net
compilable language ultimately gets translated to before being executed in
the framework. The decision to target CIL code was not arbitrary: the design
aim was to cope with as many programming languages as possible, as most
systems resort to several different programming languages. Moreover, given
the potential of the tool to assist legacy systems evolution, this sort of “lan-
guage agnosticism” becomes even more important. Thus, by choosing CIL,
the tool is presently able to analyse more than 40 programming languages,
and this number has only but potential to increase.

In order to take advantage of existing CIL analysis tools, COORDINSPEC-
TOR is developed as a plug-in to the CIL decompiler .NET REFLECTOR?. In
particular, the implementation takes advantage of the parser for CIL code,

Shttp://www.aisto.com/roeder/dotnet

26

which delivers an object tree representation of the CIL abstract syntax tree,
and the code representation plug-ins, which transform CIL code into higher-
level languages, like Ct and C++.

Such a tree is then processed to build the corresponding MSDG instance.
Given the intrinsic modularity of this process, it is executed by different
components that are responsible for the calculation of each of the MSDG
constituents, i.e., the nodes representing statements and all sorts of depen-
dencies between them, as detailed in section 2. Each component traverses
the concrete syntax tree and collects the relevant information for the con-
struction of a particular graph. By multithreading the independent tasks
which build each of the MSDG set of dependencies, the overall performance
of the tool improved significantly.

The CDG calculation implemented by COORDINSPECTOR closely follows
the approach presented in section 3, starting with labelling the vertices based
on rules identifying communication primitives and, then, pruning the vertices
according to the strategy presented in the same section. Specific instances
of the rule set to identify Web-Services communications, distinguish between
synchronous and asynchronous calls as well as between invocation and pro-
visioning of functionality using Web-Services, are available in the accompa-
nying library.

The graph pruning and slicing operations were implemented according to
the specifications presented in section 3, based on a number of graph traversal
and transformation algorithms.

The tool is currently able to generate ORC specifications, corresponding
to the discovered coordination logic. For this, it closely follows the algorithm
presented in section 4. The tool is also able to re-construct the analysed code,
i.e., the code represented by the calculated CDG instance, which focuses
the specific aspects determined by the set of rules used. For this feature,
COORDINSPECTOR uses the code representation plug-ins, available for .Net
Rotor. This includes C'§, Visual Basic, MC++, Chrome, Delphi and, of
course, CIL itself.

COORDINSPECTOR is also able to depict and navigate through both the
calculated MSDG and CDG graphs. For this, the tool resorts to the Microsoft
Research Graph Layout Ezecution Engine (MSR GLEE) graph library. The
generated graphs provide different colours for the vertices, based on the labels
the vertices hold, which facilitates direct manipulation of such structures.
Double clicking on a particular vertex displays all the associated information,
for example, the corresponding labelling and the CIL code it abstracts.

27

The architecture of COORDINSPECTOR is depicted in Figure 7 as a typical
box component diagram, representing the main components into which the
implementation is divided.

.Net Reflector

Var Def Ref Specification
Populator Generators

Graph Slicing

CFG
Render Algorithms

Coordination Pattern Graph
Patterns Finder Algorithms

Rules

Database
Figure 7. COORDINSPECTOR architecture

Reading the diagram from top to bottom, the first component block rep-
resents .NET REFLECTOR, exposing the CIL parser and the Multilanguage
Generator sub-components. The MSR GLEE component is used for the
graphic layout of all graphs calculated during the analysis process. This
component is completely isolated from the others and uses a graph represen-
tation that is different from the ones used internally by COORDINSPECTOR
for instance, to capture MSDG’s and CDG’s. Therefore, whenever a com-
ponent has to display graphically a CDG or MSDG, it resorts to the Graph
Render component, which is responsible for translating the COORDINSPEC-
TOR internal graph representations to the representation used by the MSR
GLEFE component.

Apart from .NET REFLECTOR and MSR GLEE, all the remaining com-
ponents were developed specifically for COORDINSPECTOR. The CFG com-

28

ponent interprets the abstract syntax tree retrieved by the .Net Rotor CIL
Parser and extracts the control flow graph by translating the base language
control flow statement semantics into a graph representation. The Var Def
Ref Populator component, navigates back and forth along the CFG (resort-
ing to the Graph Algorithms component) in order to calculate, for each CFG
vertex, the set of variables defined and used in each programming construct
contained in the vertex. This information is vital for the MSDG component
which is responsible for the calculation of the MSDG, following closely the
process explained in section 2.

The calculation of the CDG is, of course, the responsibility of the com-
ponent C'DG which makes use of the rules stored in the rule management
component Rules, together with the slicing component, in order to prune
the MSDG according to the strategy defined in section 3. As expected, the
Rules component is responsible for the CRUD (i.e., create, read, update and
delete) operations for rules, using a XML database for this matter.

The Specification Generators component contains a set of sub-components
for generating specifications in different coordination formalisms. Each of
them contains an abstract representation of a particular specification lan-
guage, and often resorts to the Graph Algorithms component for traversing
and consuming the CDG. For now, the Specification Generators component
is populated by a single sub-component, responsible for the generation of
ORC specifications.

Besides consuming the CDG in order to generate coordination specifica-
tions, the tool is also able to discover previously defined coordination pat-
terns. For this matter, COORDINSPECTOR uses the Pattern Finder compo-
nent, which implements the coordination pattern discovery algorithm pre-
sented in section 5. The coordination patterns used in this task are managed
by the Coordination Patterns component, which implements the correspond-
ing CRUD operations and uses an XML database for permanent storage of
patterns.

6.2. Using COORDINSPECTOR

After populating the tool with the system under consideration, analysis
is launched by calling option Tools - Coordination Analysis. The display
is similar to the one shown in Appendix A.

For performing analysis, one has to select the programming entity upon
which the process will begin, by choosing a node in the programming entities
tree (area 7 in in Appendix A.). Once selected, its details appear in area 8,

29

and the user may click the button in area 4 to start the MSDG calculation.
During the MSDG calculation, area 6 will provide information about progress
and details on the calculation process. Once COORDINSPECTOR finishes
calculating and rendering the MSDG, the graph is displayed in area 5, which
can be inspected by the graphical operations provided in area 3. The user
may perform this same operation over other program entities displayed in
the tree, which allow him to inspect the different MSDG’s of the application
under consideration.

Once the MSDG has been calculated, the user may proceed to the CDG
calculation, by clicking on a button similar to the one presented in area
4, but this time in the tab CDG displayed in area 2. Again, area 6 will
provide information and report progress of the calculation process. At any
time during the analysis process, the user may change the rules upon which
the CDG is calculated, by using the rules management interface provided in
Rules tab.

Finally, the user may generate an ORC specification based on the calcu-
lated CDG, first by accessing the Orc tab in area 2, and then by clicking on
the Generate Orc button. The ORC specification is provided in the central
area of the Orc tab. The discovery of coordination patterns follows a similar
interface.

7. An example

This section illustrates the application of the method proposed in the
paper, in the pattern identification variant discussed in section 5. For this
consider the C¥ code fragment in appendix C.

This code is supposed to run on a client that calls a server to predict
the weather for the next couple of days based on the current weather condi-
tions. Because weather prediction is a complex and time consuming task it
is unfeasible for the client execution thread to be held until a response from
the server is returned. Thus, the client submits the prediction operation to
the server, the server returns immediately yielding an operation identifier
for the client request and then the responsibility to request for an answer
is passed to the client which has to perform multiple queries to the server
until a weather prediction answer is returned. Once the client receives the
prediction from the server it inspects the result and, if not satisfied (method
CheckPrediction), submits a new request to reevaluate the prediction. Note

30

that the class WeatherServer is the web-service proxy class, automatically
generated by the tool Microsoft. VSDesigner.

By the description of the client behaviour, the analyst may suspect this
client probably implements one or more instances of the Asynchronous Query
Pattern mentioned above. Another issue is to identify exactly which state-
ments in the source code are responsible for such an implementation. This is
often non trivial because often the same coordination pattern admits several
different implementations, eventually with minor deviations. Moreover, in
real cases, such implementations are found interleaved with other code and
spread among different components of the system.

Due to space limitations we omit some code details, which are clearly
identified by underlined comments. Two such omissions are concerned with
the construction of the parameters being passed to the server operations (lines
15 and 31), which amounts to gathering of the current weather conditions.
The third omission (line 52) concerns the code to setup the web service proxy
class, which contains the code to control all SOAP communications as well
as all object marshalling operations.

The process of discovering instances of the Asynchronous Query Pattern
starts by the construction of the MSDG for the code under analysis. The
result is shown in Appendix B. To maintain the readability of the graph,
only control, method call, control flow, and formal-in and out dependencies
are shown.

The following phase computes the CDG out of the MSDG. In this example
we are interested in identifying synchronous calls to web services. Such identi-
fication is performed by the rule (“Invoke (%) ;”, (webservice, sync, Consumer)),
which identifies web-services calls made by the Microsoft. VSDesigner tool.

The computation of the CDG, as explained in section 3, leads to the
elimination of code lines 3, 7, 8, 9, 10, 14, 24, 26, 30, 39 and 42 or, in
graphical terms, to the elimination of the dashed vertices in the figure in
Appendix B. Note that the removed statements are exactly the ones not
directly involved in the invocation of web-services, which, in this toy example,
almost entirely corresponds to IO statements. Nevertheless, in a real system,
the percentage of program statements sliced out, with respect to the entire
system, is certainly much higher.

The following phase is to define in CDGPL an expression that charac-
terises the coordination pattern one is looking for. For this example, we
resort to the definition presented in section 5.1, with the following pc pattern

31

condition:

pe(1) = AM(MSta(t, s), ep, em, ed) - (match(s, “GetForecast(*)”) v

match(s, “ConfirmForecast(*)”)) A

cp == webservice A cm == sync A cd == consumer
pe(2) = AM(MSta(t, s), ep, em, ed) — match(s, “GetOperationResult(*)”) A

cp == webservice A ¢cm == sync A

cd == consumer

The graph pattern discovery algorithm clearly identifies two instances of the
Asynchronous Query Pattern in the code. They are highlighted by the two
mappings fi, fo between the vertex pattern identifiers and the example code
line statements.

(1) =16 Ja(1) = 32
fi(2)=23 f2(2) =38
f1(3) =25 f2(3) =40

Note that, although they have been discovered as instances of the same coor-
dination pattern, their implementations are quite different, resorting, in the
first case, to a while loop, and, in the second, to a recursive call of method
GetForecastConfirmationResult.

8. Conclusions and future work

This paper introduced a method that combines a number of program
analysis techniques to extract system’s coordination layer from legacy source
code. The process is driven by a series of pre-defined coordination patterns
and captured by a special purpose graph structure from which coordination
specifications can be generated in a number of different formalisms.

The use of dependence graphs to represent different sorts of program
entities and the ways they depend on each other has already a long history
in the program analysis community — see, e.g. [25] for an early reference.
Our contribution was to extend previous work (namely [19, 24]) to collect all
the information that may be necessary to extract the (often deeply hidden)
coordination layer of an application. Note that most of the work and tools
developed for reverse engineering have limited scope, typically intended to
obtain module, class diagrams and method call dependencies from legacy

32

code. A distinguished characteristic of this approach is its parametrisation by
rules identifying specific communication primitives, thus making it adaptable
to diverse kinds of coordination analysis and programming frameworks.

It should be mentioned that slicing of concurrent code is still a topic of
active research. Reference [26] discusses challenges in finding the right slicing
technique for reactive, concurrent systems, especially for liveness analysis. In
designing COORDINSPECTOR we adapted object slicing techniques to handle
concurrency through multithreading (which explains the use of fork and join
vertices, as well as interference edges, in the coordination patterns). This
proved enough for the method purposes, although failing, for example, in
computing minimal slices.

Even though a full complexity analysis falls beyond the objectives of this
paper, experience gathered in conducting a number of case studies allows a
few comments on the scalability of the whole approach. In particular, the per-
formance of the method’s first stage, dealing with the construction of different
graph structures, can be largely improved by multithreading the computation
of the different kinds of dependencies involved. Plain sequential computation
of these graphs, as used in the current version of COORDINSPECTOR, takes
about 5 minutes to analyse a system with 20 KLOC in a PC with a core
2 duo 2,20GHz cpu and 2 GB of memory?. The scalability of this stage is
linear with the size of the program under analysis. The pattern discovery
algorithm performs reasonably well, always retrieving answers in less than 1
minute. The reason for such good response times is due to the vertex con-
ditions (specified by regular expressions) and edge conditions (given by the
number and threads associated to the edges), which in real world examples
are often quite restrictive, leading to substantially reduced amounts of candi-
date vertices for each pattern vertex. Of course should the vertex conditions
be relaxed (a situation rarely found in real systems analysis) the algorithm
performance will be dramatically affected.

Although the most direct application of this approach is to assist the
coordination analysis of legacy systems, it can also be used to assess the
correctness of systems implementations with respect to their design specifi-
cations or even with respect to the independent software quality regulations.
Furthermore, with the provision of rules capturing COM or RMI communi-
cation primitives, it can be used to assist the conversion of distributed object

4Time measured excludes visual rendering of the graphs in COORDINSPECTOR.

33

systems towards web-service oriented systems (or vice versa).

Systematic comparison of COORDINSPECTOR with tools pursuing similar
goals is now in order. The Fujaba Tool Suite RE, in particular its Pattern-
Specification and InferenceFEngine plug-ins, shares a similar objective and
has a powerful inference mechanism. It it tunned, however, to the discovery
of UML sub-diagrams, in particular sub-class diagrams. Our approach, on
the other hand, is clearly oriented towards the discovery of patterns in de-
pendency graphs directly built from code inspection. Therefore, they have
to keep track of details such as thread identifiers and complex regular ex-
pressions in the nodes.

Another interesting topic for future work is the classification of coordina-
tion patterns, as in [1], in terms of their graph representation expressed in
CDGPL. Such a taxonomy could be taken as a basis for a repository of coor-
dination patterns, relevant not only for reverse, but also for forward systems
engineering.

References

[1] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and
A. P. Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5~
51, 2003.

[2] H. Agrawal, R. A. Demillo, and E. H. Spafford. Debugging with dynamic
slicing and backtracking. Softw. Pract. Ezper., 23(6):589-616, 1993.

[3] M. AlTurki and J. Meseguer. Real-time rewriting semantics of orc. In
PPDP °07: Proceedings of the 9th ACM SIGPLAN international sym-
posium on Principles and practice of declarative programming, pages
131-142, New York, NY, USA, 2007. ACM.

[4] F. Arbab. What do you mean, coordination. In Bulletin of the Dutch
Association for Theoretical Computer Science (NVTI, 1998.

[5] D. Binkley, S. Horwitz, and T. Reps. Program integration for languages
with procedure calls. ACM Trans. Softw. Eng. Methodol., 4(1):3-35,
1995.

[6] G. Canfora, A. Cimitile, A. D. Lucia, and G. A. D. Lucca. Software
salvaging based on conditions. In ICSM °94: Proceedings of the Interna-

34

[10]

[11]

[12]

tional Conference on Software Maintenance, pages 424-433, Washing-
ton, DC, USA, 1994. IEEE Computer Society.

G. Canfora, A. Cimitile, and M. Munro. Re?: Reverse engineering and
reuse re-engineering. Journal of Software Maintenance: Research and
Practice, 6(2):53-72, 1994.

A. Cimitile, A. D. Lucia, and M. Munro. A specification driven slicing
process for identifying reusable functions. Journal of Software Mainte-
nance, 8(3):145-178, 1996.

W. R. Cook, S. Patwardhan, and J. Misra. Workflow patterns in orc. In
P. Ciancarini and H. Wiklicky, editors, COORDINATION, volume 4038
of Lecture Notes in Computer Science, pages 82-96. Springer, 2006.

A. de Lucia, A. R. Fasolino, and M. Munro. Understanding function
behaviors through program slicing. In WPC' ’96: Proceedings of the 4th
International Workshop on Program Comprehension (WPC "96), page 9,
Washington, DC, USA, 1996. IEEE Computer Society.

J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program depen-
dence graph and its use in optimization. ACM Trans. Program. Lang.
Syst., 9(3):319-349, 1987.

M. Harman, R. Hierons, S. Danicic, J. Howroyd, and C. Fox. Pre/post
conditioned slicing. In ICSM ’01: Proceedings of the IEEE International
Conference on Software Maintenance (ICSM’01), page 138, Washington,
DC, USA, 2001. IEEE Computer Society.

R. Hierons and M. Harman. Using program slicing to assist in the
detection of equivalent mutants. Software Testing, Verification and Re-
liability, 9:233-262, 1999.

T. Hoare, G. Menzel, and J. Misra. A tree semantics of an orchestration
language, August 2004.

S. Horwitz, J. Prins, and T. Reps. Integrating noninterfering versions
of programs. ACM Trans. Program. Lang. Syst., 11(3):345-387, 1989.

S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using de-
pendence graphs. In PLDI ’88: Proc of the ACM SIGPLAN Conf. on

35

[18]

[19]

[20]

[21]

Programming Usage, Design and Implementation, pages 35-46. ACM
Press, 1988.

D. L. M. Jean-Marc Andreoli, Chris Hankin. Coordination Program-
ming: Mechanisms, Models, and Semantics. Imperial College Press,
1996.

D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration
and its semantic properties. In CONCUR, pages 477-491, 2006.

J. Krinke. Context-sensitive slicing of concurrent programs. SIGSOFT
Softw. Eng. Notes, 28(5):178-187, 2003.

L. Larsen and M. J. Harrold. Slicing object-oriented software. In ICSE
’96: Proceedings of the 18th international conference on Software engi-
neering, pages 495-505, Washington, DC, USA, 1996. IEEE Computer
Society.

D. Liang and M. J. Harrold. Slicing objects using system dependence
graphs. In ICSM °98: Proceedings of the International Conference on
Software Maintenance, page 358, Washington, DC, USA, 1998. IEEE

Computer Society.

J. S. Miller and S. Ragsdale. The Common Language Infrastructure An-
notated Standard. Microsoft .NET Development. Addison-Wesley Pro-
fessional, 1 edition, November 2003.

J. Misra and W. R. Cook. Computation orchestration: A basis for
wide-area computing. Jour. of Software and Systems Modeling, 2006.

M. G. Nanda and S. Ramesh. Slicing concurrent programs. In ISSTA
00: Proc.of the 2000 ACM SIGSOFT international symposium on Soft-
ware testing and analysis, pages 180-190. ACM, 2000.

K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in a software development environment. In Proc. of the first ACM SIG-
SOFT/SIGPLAN software engineering posium on Practical software de-
velopment environments, pages 177-184. ACM Press, 1984.

V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B. Dwyer.
A new foundation for control dependence and slicing for modern pro-
gram structures. ACM Trans. Program. Lang. Syst., 29(5), 2007.

36

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

N. F. Rodrigues. Slicing techniques applied to architectural analysis of
legacy software. PhD thesis, DI, Universidade do Minho, 2009.

N. F. Rodrigues and L. S. Barbosa. Coordinspector a tool for extract-
ing coordination data from legacy code. In SCAM °08: Proc. Eighth
IEEFE International Working Conference on Source Code Analysis and
Manipulation. IEEE Computer Society, 2008.

D. Schmidt. Model-driven engineering. IEEE Computer, 39(2):25-31,
2006.

D. Simpson, S. Valentine, R. Mitchell, L. Liu, and R. Ellis. Recoup—
maintaining fortran. SIGPLAN Fortran Forum, 12(3):26-32, 1993.

P. Tonella, G. Antoniol, R. Fiutem, and E. Merlo. Flow insensitive
¢+ pointers and polymorphism analysis and its application to slicing.

In International Conference on Software Engineering, pages 433-443,
1997.

M. Weiser. Program Slices: Formal, Psychological and Practical Inves-
tigations of an Automatic Program Abstraction Methods. PhD thesis,
University of Michigan, An Arbor, 1979.

J. Woo, J.-L.. Gaudiot, and A. L. Wendelborn. Alias analysis in java
with reference-set representation for high-performance computing. Int.
J. Parallel Program., 32(1):39-76, 2004.

J. Zhao. Applying program dependence analysis to java software. In
Proc. of Workshop on Software Engineering and Database Systems,
pages 162-169, 1998.

37

w200 BuneRuRg < To0E < TTL
fjryssanans pajesau

NCLEER YLD

safip3 ey s []

[susned [=iy [30| 903] oasw

-~

000 T=uoIsIR), IBuue|qdu | Kquu
Tuwuoqauue|qdu] :adk) buuepag

[0

TDpdassiybii AR
ploj : (cdoigsiybiy %
ploj : (zdeigsiybiy %
pioj : (Tdaissbi oF
ploj, ¢ (uezjoogjesodsig %m
piof: (pdaispuysdatsuaamiagiey o_.J
pigh : Oscagpuyzdaisusampgie) gf
pip ¢ D7daispuyTdatsuaamiagiey Oﬂ
Ploj ¢ (js301nag] e oﬂ
sbiiuaag ‘oalgoply Tuesng o
(103" &
s3df] panuaq k) ®
sadf] aseg (»
Tuuod L. B
Buuggdu) {} B
@

SIU3RRY

amuauue|qdu]

wijejuasald o [
ISEPSMOPUIAY, £ [

ze D) EEALEITY

S —
L dpy sjop walp o 3y

S opayRy 1N s pay B

A. CoordInspector snapshot

38

B. MSDG (example section 7)

Control Method Call Control Flow Parameter-in, Parameter-out
— < - - — -
Dependencies Depedencies Depedencies Dependencies

= 3

_in op2ld

o L L3 L LR L L)
Lo L L) 0000 00 L2 LD G

39

10

11

12

14

15

16

17

18

19

20

21

22

23

24

26

27

28

29

30

31

32

33

34

35

36

C. Code fragment (example section 7)

class Example {
private void GetWeatherForecast() {

}

Console.WriteLine("Calculating forecast.");
WeatherServer cs = new WeatherServer();
int taskId = RequestServerTask(cs);
Result res = GetTaskResult(cs, taskId);
if(res != null)

Console.WriteLine("Forecast: " + res.ToString());
else

Console.WriteLine("Operation failed");

private int RequestServerTask(WeatherServer cs) {

Console.WriteLine("Requesting forecast.");

Operation op = ...current weather conditions gathering code...
int operationId = cs.GetForecast (op);

return operationId;

private Result GetTaskResult(WeatherServer cs, int opId) {

Result res = null;
int i = 0O;
while(res == null &8 i++ < 10) {

Console.WriteLine("Querying server for forecast.");

res = cs.GetOperationResult (opId);

Thread.Sleep(1000);
}
// Check if the result still needs further calculation
if (!CheckPrediction(res)) {

Console.WriteLine("Querying server to confirm forecast.");

Operation op2 = ...confirm forecast parameter construction...

int op2Id = cs.ConfirmForecast (op2);
res = GetForecastConfirmationResult(cs, op2Id);

}

return res;

40

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

private Result GetForecastConfirmationResult (WeatherServer cs, int opId) {
Console.WriteLine("Querying server for simplification result.");
Result res = cs.GetOperationResult (opId);
if(res == null) {
Thread.Sleep(2000) ;
return GetForecastConfirmationResult(cs, opId);
} else {
return res;
}

class WeatherServer : System.Web.Services.Protocols.SoapHttpClientProtocol {

...proxy class setup code...

public int GetForecast(Operation op) {
object[] results =
this.Invoke ("PerformComplexOperation",
new object[] { op });
return ((int) (results([0]));

}

public int ConfirmForecast(Operation op) {
object[] results =
this.Invoke("ConfirmForecast",
new object[] { op });
return ((int) (results[0]));

}

public Result GetOperationResult(int opId) {
object[] results =
this.Invoke ("GetOperationResult",
new object[] { opId });
return ((Result) (results[0]));

41

