
Extracting and verifying coordination models from source
code

Nuno F. Rodrigues1 and Lúıs S. Barbosa1

CCTC, Universidade do Minho 4710-057 Braga, Portugal
{nfr, lsb}@di.uminho.pt

Summary. Current software development relies increasingly on non-trivial coordination logic for com-
bining autonomous services often running on different platforms. As a rule, however, in typical non-trivial
software systems, such a coordination layer is strongly weaved within the application at source code level.
Therefore, its precise identification becomes a major methodological (and technical) problem which cannot
be overestimated along any program understanding or refactoring process.

Open access to source code, as granted in OSS certification, provides an opportunity for the devel-
opment of methods and technologies to extract, from source code, the relevant coordination information.
This paper is a step in this direction, combining a number of program analysis techniques to automatically
recover coordination information from legacy code. Such information is then expressed as a model in Orc,
a general purpose orchestration language.

1 Introduction

The increasing relevance and exponential growth of software systems, both in size and quantity,
is leading to an equally growing amount of legacy code that has to be maintained, improved,
replaced, adapted and accessed for quality every day. Such is the scenario for the emergence of
expressions like program understanding, reverse engineering and model extraction, referring to a
broad range of techniques to extract from legacy code specific and rigorous knowledge, represent
it in malleable representations, proceed to their analysis, classification and reconstruction.

Such techniques find in the whole process of Open-Source Software (OSS) certification a promis-
ing application area, given that

• OSS applications often emerge by composition of multi-source, heterogeneous and previously
unrelated pieces of code, which makes architectural recovery processes both useful and chal-
lenging;

• full access to source code enables the effective application of approaches and tools entirely
based in code analysis.

Several approaches have been proposed for reverse architectural analysis. For example, class
diagram generators which extract class diagrams from object oriented source code, module diagram
generators that construct box-line diagrams from system’s modules, packages or namespaces, uses
diagram generators which reflect the import dependencies of the system and call diagram genera-
tors which expose the direct calls between system parts. However, none of these techniques/tools
make it possible to answer a critical question about the dynamics of a system: how do system’s
components interact, internally and with external services, and orchestrate their behaviours to
achieve common, complex goals? From a call diagram, for example, one may identify which parts
of a system (and, sometimes, even what external systems) are called during the execution of a
particular procedure. No answers are provided, however, to questions like: Will the system try to
communicate indefinitely if an external resource is unavailable? If a particular process is down,
will it cause the entire system to halt? Can the system enter in a deadlock situation? and what is
the sequence of actions for such a deadlock to take place?



65 Nuno F. Rodrigues and Lúıs S. Barbosa

Actually, recovering a coordination model is a complex process. This complexity arises from
the need to deal with multiple activities and multiple participants which in turn are influenced
by multiple constrains, such as exceptions, interrupts and failures. On the other hand, the ever
growing number of systems relying on non-trivial coordination logic for combining autonomous
services, entails the need for methods and tools to support such a process.

Identify, extract and record the coordination layer of running applications is becoming more
and more relevant as an increasing number of software systems rely on non-trivial coordination
logic for combining autonomous services, typically running on different platforms and owned by
different organisations.

This paper is a step towards addressing such a problem. Its main contribution is a technique
which adapts typical program analysis algorithms, namely slicing [22], to recover coordination in-
formation from legacy code. This is based on a notion of coordination dependence graph proposed
here as a specialisation of standard program dependence graphs [5] used in classical program anal-
ysis. The recovered coordination patterns are automatically expressed in Orc, a general purpose
orchestration language developed by J. Misra and W. Cook [15]. Orc scripts can be animated to
simulate such patterns and study alternative coordination policies.

In an OSS development context, the method discussed in the paper can be used both

• to identify, extract and record the coordination layer of running OSS applications;
• to validate the coordination strategies implemented in a OSS program (i.e., a program to which

access to code is granted) against a previous specification of its requirements.

The latter use is illustrated through a small, academic example in section 5.
Finally, it should be stressed that the technique discussed in this paper is generic in the sense

that it does not depend upon the programming language or platform in which the original system
was developed. In fact it can be implemented to target any language with basic communications
and multi-threading capabilities. In the sequel this is illustrated with the C♯ language in order to
keep the presentation self-contained. However, a support tool [21] was developed, as a “proof-of-
concept” for this technique, which analyses any piece of CIL (Common Intermediate Language)
source code.

The paper is organised as follows. Section 2 provides the necessary background with a brief
review of both slicing techniques and the Orc coordination language. Section 3.1 introduces a new
graph based program representation suitable for representing concurrent object oriented programs
and its tuning to what we call a coordination dependence graph. Then, in section 4, the generation
of an Orc script from the system’s graph representations is discussed in details. Section 5 shows
the “method-in-action” through a small example in which a previous specification is checked
against the coordination model recovered from the implementation. Finally, section 6 concludes
and identifies a number of topics for future work.

2 Background

2.1 Program slicing and graph-based representations

Introduced by Weiser [25, 23, 24] in the late 1970s, program slicing is a family of techniques for iso-
lating parts of a program which depend on or are depended upon a specific computational entity
referred to as the slicing criterion. In Weiser’s view, program slicing is an abstraction exercise
that every programmer has gone through, aware of it or not, every time he undertakes source code
analysis. Weiser’s original definition has been since then re-worked and expanded several times,
leading to the emergence of different methods for defining and computing program slices [3, 22].

Weiser’s approach corresponds to what would now be classified as an executable, backward,
static slicing method. A dual concept is that of forward slicing introduced by Horwitz et al. [7].
In forward slicing one is interested on what depends on or is affected by the entity selected as the
slicing criterion. Note that combining the two methods also gives interesting results. In particular



Extracting and verifying coordination models from source code 66

the union of a backward to a forward slice for the same criterion n provides a sort of a selective
window over the code highlighting the region relevant for entity n.

Another duality pops up between static and dynamic slicing. In the first case only static
program information is used, while the second one also considers input values [9, 10] leading
frequently, due to the extra information used, to smaller and easier to analyse slices, although
with a restricted validity.

In this paper we are interested in a static, backward, inter-procedural slicing algorithm which
can isolate the sub-program that potentially affects a particular statement.

Most slicing techniques are based on different Graph-based representations of the programs
being sliced. In particular, the so-called System Dependence Graph (SDG)[7] stands as the base
representation for most inter-procedural slicing techniques. The coordination analysis algorithm
proposed in this paper is also based on SDG’s.

2.2 Program coordination in Orc

Purpose and syntax.

Many traditional concurrency problems, like business workflows, resource sharing and composite
web services built from service level agreements, can be regarded as orchestrations of third party
resources. Orc [15] is a simple, yet powerful task orchestration language. Unlike other concurrency
models, Orc regards the coordination of different activities and participants in a centralised
manner. Thus, in Orc, external services never take the initiative of beginning communication,
there is always a centralised entity that controls the calling of foreign operations.

The language builds upon few simple basic constructs that provide succinct and understandable
coordination specifications of systems. In summary, the language provides a platform for simple
specification of third-party resources invocations with a specific goal to accomplish, while managing
concurrency, failure, time-outs, priorities and other constrains.

A number of formal semantics [8, 1] have been purposed for Orc which provide a solid theo-
retical background upon which one can base equivalence and program transformation.

In Orc, third party services are abstracted as sites which can receive calls from an Orc
specification (orchestration). Included in this definition of sites are user interaction activities and
third party data manipulation. An orchestration consists of a set of auxiliary definitions and a
main goal expression upon which the specification evaluation begins.

e, f, g, h ∈ Expression ∶∶= M(p) ∥ E(p) ∥ f > x > g ∥ f ∣g ∥ f where x ∶∈ g ∥ x
p ∈ Actual ∶∶= x ∥ M ∥ c ∥ f
q ∈ Formal ∶∶= x ∥ M

Definition ∶∶= E(q) ≜ f

Fig. 1. Orc syntax

The syntax of the language is presented in figure 1, where definitions for Orc Expressions,
Actual parameters p, Formal parameters q and Definitions are given.

An Orc expression can be composed by a site call M(p), an expression call E(p), a sequential
execution of expressions f > x > g, a parallel execution of expressions f ∣g, an asymmetric parallel
composition of expressions f where x ∶∈ g, or a variable x.

There are a few fundamental sites in Orc which are essential for effective programming of real
world orchestrations. These fundamental site along with its informal semantics are presented in
Table 1.

Orc also provides means for creating dynamic orchestrations, i.e., orchestrations that are able
to create local sites at runtime. This feature is provided by special sites, called Factory Sites, which
return a local site when invoked. Table 2 describes some useful factory sites, taken from [4], that
will be required ahead for capturing some coordination schemas.



67 Nuno F. Rodrigues and Lúıs S. Barbosa

let(x, y, ...) Returns argument values as a tuple.
if(b) Returns a signal if b is true, and it does not respond if b is false.
Signal Returns a signal. It is same as if(true)
RTimer(t) Returns a signal after exactly t time units

Table 1. Fundamental sites

Site Operations Description
Buffer put, get The Buffer factory site returns a n− buffer local site with two operations,

put and get. The put operation stores its argument value in the buffer and
sends a signal after the storage. The get operation removes an item from the
buffer and returns it. In case the buffer is empty the get operation suspends
until a value is putted in the buffer.

Lock acquire,
release

The Lock factory site returns a lock local site which provides two operations,
acquire and release. When an expression invokes the acquire operation on
a lock, that expression becomes its owner and subsequent calls to acquire
from other expressions will block. Once the lock owner expression releases
it, ownership of the lock will be given to one of the acquire operation
waiting expression, if any.

Table 2. Factory sites

Informal semantics.

A site in Orc is an independent entity with the capacity of publishing values to the calling
expressions. The evaluation of a site call holds indefinitely (possibly forever if the site never
publishes a value) until the called site publishes a value. An expression call simply passes the
control from the current expression being evaluated to the called expression with the associated
parameters. A sequential execution of expressions f > x > g is executed by evaluating expression
f , binding the value published by f to x and then evaluating expression g which may contain
references to x. In case x isn’t used by g, the sequential expression may be written as f >> g.
Parallel composition of expressions is carried out by the concurrent execution of the intervening
expressions. Finally, asymmetric parallel composition f where x ∶∈ g is evaluated by evaluating
f and g in parallel and evaluation of f holds whenever it depends on variable x and g has not
published any value. Once g publishes a value, its evaluation is halted and the value produced is
stored in x, enabling expression f evaluation to continue. For a formal semantics of the language
see [8, 1]. Table 3 presents a number of typical Orc definitions upon which the Orc generation
process of section 4 builds.

XOR(p, f, g) ≜ if(p) ≫ f ∣ if(¬p) ≫ g
IfSignal(p, f) ≜ if(p) ≫ f ∣ if(¬p)
Loop(p, f) ≜ p > b > IfSignal(b, f ≫ Loop(p, f))
Discr(f, g) ≜ Buffer > B > ((f ∣ g) > x > B.put(x) ∣ B.get)

Table 3. Some Orc definitions

The XOR definition takes as arguments a predicate expression p, and two orchestrations f and
g. If p evaluates to true then orchestration f is executed, otherwise g is executed. Regard that, in
spite of the parallel operator the definition only executes one of the expressions f and g and that
one of them is always executed.



Extracting and verifying coordination models from source code 68

The IfSignal definition receives a predicate and an orchestration and executes the orchestra-
tion if the predicates evaluates to true. Again, notice that whether p evaluates to true or false
the definition never blocks, it always publishes a value, thus permitting the calling orchestration
to proceed.

The Loop expression receives a predicate p and an orchestration f . This definition executes f
continuously until predicate p evaluates to false. If predicate p evaluates to false the definition
doesn’t block and returns a signal in order for the calling orchestration to proceed.

Definition Discr makes use of the factory site Buffer in order to capture the signal of the first
of its two parameter orchestrations to respond. Once one of the orchestrations returns a signal,
the signal is forwarded to the calling orchestration, but leaving the other parameter orchestration
executing until it finishes.

3 Two graph representations for program analysis

3.1 Managed system dependence graph

The fundamental information structure underlying the coordination discovery method proposed in
this paper is a comprehensive dependence graph — the MSDG — recording the elementary entities
and relationships that may be inferred from the code by suitable program analysis techniques.

A MSDG is an extension of a system dependence graph to cope with object-oriented features,
as considered in [12, 13, 26]. Our own contribution was the introduction of new representations
for a number of program constructs not addressed before, namely, partial classes and methods,
delegates, events and lambda expressions. In the sequel a brief overview of the structure of a
MSDG is made; the reader is, however, referred to [20] for a formal specification of a MSDG, as
well as for a detailed description of the techniques used in its construction.

A MSDG is defined over three types of nodes representing program entities: spatial nodes
(subdivided into classes Cls, interfaces Intf and name spaces Nsp), method nodes (carrying infor-
mation on methods’ signature MSig, statements MSta and parameters MPar) and structural nodes
which represent implicit control structures (for example, recursive references in a class or a fork
of execution threads). Formally,

Node = SNode +MNode +TNode

SNode = Cls + Intf +Nsp

MNode = MSig +MSta +MPar

TNode = {△,▽, ○}

where + denotes set disjoint union. Nodes of type SNode contain just an identifier for the associated
program entity. Other nodes, however, exhibit further structure a MSta includes the statement
code (or a pointer to it) and a label to discriminate among the possible types of statements in a
method, i.e.,

MSta = SType × SCode

Stype = {mcall, cond,wloop, assgn,⋯}

where, for example, mcall stands for any statement containing a call to a method and cond for
a conditional expression. Similarly, a MSig node, which in the graph acts as the method entry
point node, records information on both the method identifier and its signature, i.e., MSig =
Id × Sig. Method parameters are handled through special nodes, of type MPar, representing input
(respectively, output) actual and formal parameters in a method call or declaration. Formally,

MPar = PaIn + PaOut + PfIn + PfOut

Finally, the structural nodes TNode were introduced to cope with concurrency (case of △ and
▽) and to represent recursively defined classes (case of ○). A brief explanation is in order. A △



69 Nuno F. Rodrigues and Lúıs S. Barbosa

node captures the effect of a spawning thread: it links an incoming control flow edge, from the
vertex that fired the fork, and two outgoing edges, one for the new execution flow and another
for the initial one. Dually, a thread join is represented by a ▽ node with two incoming edges and
an outgoing one to the singular resumed thread. A ○ node represents a recursively defined class,
what seems a better alternative than expanding the object tree to a certain, but fix, depth, used,
for example, in [13].

There are, of course, several types of dependencies represented as edges in a MSDG. A edge is
a tuple of type

Edge = Node ×DepType × (Inf + 1) ×Node

where DepType is the relationship type and the third component represents, optionally, additional
information associated to it. Let us briefly review the main types of dependency relationships.
Data dependencies, of type dd, connect statement nodes with common variables. Formally,

⟨v,dd, x, v′⟩ ∈ Edge⇔ definedIn(x, v) ∧ usedIn(x, v′)

Typical dependencies between statement nodes are control flow, cf, and control, ct, the latter
connecting guarded statements (e.g. loops or conditionals) or method calls to their possible con-
tinuations and method signature nodes (which represent the entry-points on a method invocation)
to each of the statement nodes within the method which is not under the control of another
statement. Formally, these conditions add the following assertions to the invariant of type Edge:

⟨v, ct, g, v′⟩ ∈ Edge⇐ v ∈ {MSta(t,−)∣ t ∈ {mcall, cond,wloop}}

⟨v, ct,−, v′⟩ ∈ Edge⇐ v ∈MSig ∧ v′ ∈MSta

where g is either undefined or the boolean result of evaluating the statement guard.
A method call, on the other hand, is represented by mc dependency from the calling statement

and the method signature node. Formally,

⟨v,mc, vis, v′⟩ ∈ Edge⇔ v ∈MSta(mcall,−) ∧ v ∈MSig

where vis stand for a visibility modifier in set {private,public,protected, internal}. Specific depen-
dencies are also established between nodes representing formal and actual parameters. Moreover,
all of the former are connected to the corresponding method signature node, whereas actual param-
eter nodes are connected to the method call node via control edges. Finally, any data dependence
between formal parameters nodes is mirrored in the corresponding actual parameters. Summing
up, these adds the following assertions to the MSDG invariant:

⟨v,pi,−, v′⟩ ∈ Edge⇔ v ∈ PaIn ∧ v ∈ PfIn

⟨v,po,−, v′⟩ ∈ Edge⇔ v ∈ PaOut ∧ v ∈ PfOut

⟨v, ct,−, v′⟩ ∈ Edge⇐ v ∈MSig ∧ v ∈ (PaIn ∪ PaOut)

⟨v, ct,−, v′⟩ ∈ Edge⇐ v ∈MSta(mcall,−) ∧ v ∈ (PfIn ∪ PfOut)

⟨v,dd,−, v′⟩ ∈ Edge⇐ v ∈ PaIn ∧ v′ ∈ PaOut ∧ ∃⟨u,dd,−,u′⟩ . (u ∈ PfIn ∧ u′ ∈ PfOut)

Class inheritance and the fact the a class owns a particular method is recorded as follows

⟨v, ci,−, v′⟩ ∈ Edge⇔ v, v′ ∈ Cls ∧ v ≠ v

⟨v, cl, vis, v′⟩ ∈ Edge⇔ v ∈ Cls ∧ v′ ∈MSig

and, similarly, for interface and namespace nodes.
Other program entities and properties typically found in modern programming languages are

also captured in a MSDG. They include, namely, properties (a special program construct in C♯)
and other .Net-based languages, intended to encapsulate access to class variables. But also partial
classes and partial methods, the latter entailing the need for a mc dependence edge between the



Extracting and verifying coordination models from source code 70

declaration of the partial method and its implementation, as well as delegates, events and λ-
expressions. A delegate is a sort of a function whose values are objects, thus possibly defining class
member types from the subscribed side, i.e., the class with the delegate definition that invoke the
subscribed method, a method node is added to represent the delegate type, as well as parameter
nodes for its arguments and results. Every call to the delegate inside the subscribed class is
represented by a method call edge to the MSig node introduced by the delegate type. This acts
like a proxy dispatching its calls to objects and methods which subscribed the delegate. In what
concerns to graph representation, the difference between delegates and events is that the latter
can be subscribed by more than one method, whilst delegate subscriptions override each other.
Therefore, their representation in a MSDG is similar to that of delegates, but for the possibility of
co-existence of more than one mc edge between the subscribed and the actual method to be called
in the subscriber. A similar approach is taken for the representation of λ-expressions, which in C♯

are stateful and behave as anonymous methods (see [20] for further details).

3.2 The coordination dependence graph

The second stage in the discovery process is the construction of a coordination dependence graph
(CDG), which basically prunes the MSDG of all information not directly relevant for the recon-
struction of the application coordination layer. This stage is guided by a specification of a set of
rules specifying the interaction primitives used in the source code, which are actually the building
blocks of any coordination scheme. Such rules are specified as

CRule = RExp × (CType × CDisc × CRole)

CType = {webservice, rmi, remoting,⋯}

CDisc = {sync, async}

CRole = {provider, consumer}

where RExp is a regular expressions, CType is the type of communication primitive types (exten-
sible to other classes of communication primitives), CDisc is the calling mode (either synchronous
or asynchronous) and, finally, CRole characterises the code fragment role wrt the direction of
communication. In the C♯, for example, the identification of invocations to web services can be
captured by the following rule, which identifies the primitive synchronous framework method
SoapHttpClientProtocol.Invoke usually used to call web services:

R = ("SoapHttpClientProtocol.Invoke(*);", (webservice, sync, consumer))

Given a set of rules, the CDG calculation, starts by testing all the MSDG vertices against the
regular expressions in the rules. If a node statement matches the regular expression of a rule, it is
labelled with the information in the rule’s second component.

On completion of this labelling stage, the method proceeds to abstract away the parts of the
graph which do not take part in the coordination layer. This is a major abstraction process ac-
complished by removing all non-labelled nodes, but for the ones verifying the following conditions:

1. method call nodes (i.e., nodes n such that n ∈MSta with STypen = mcall) for which there is a
control flow path (i.e., a chain of cf dependency edges) to a labelled node.

2. vertices in the union of the backward slice of the program with respect to each one of the
labelled nodes.

Note that the first condition ensures that the relevant procedure call nesting structure is kept.
This information will be useful to nest, in a similar way, the generated code on completion of
the discovery process. The second condition keeps all the statements in the program that may
potentially affect a previously labelled node. This includes, namely, MSta nodes whose statements
contain predicates (e,g., loops or conditionals) which may affect the parameters for execution of
the communication primitives and, therefore, play a role in the coordination layer.



71 Nuno F. Rodrigues and Lúıs S. Barbosa

This stage requires a slicing procedure over the MSDG, for which we adopt a backward slicing
algorithm similar to the one presented in [7]. It consists of two phases. The first phase marks
the visited nodes by traversing the MSDG backwards, starting on the node matching the slicing
criterion, and following ct, mc, pi, and dd labelled edges. The second phase consists of traversing
the whole graph backwards, starting on every node marked on phase 1 and following ct, po, and
dd labelled edges. By the end of phase 2, the program represented by the set of all marked nodes
constitutes the slice with respect to the initial slicing criterion.

Except for cf labelled edges, every other edge from the original MSDG with a removed node
as source or target, is also removed from the final graph. The same is done for any cf labelled
edge containing a pruned node as a source or a sink. On the other hand, new edges are introduced
to represent by direct control flow dependencies which were, previously to the removal operation,
chains of such dependencies in the original MSDG. This ensures that future traversals of this graph
are performed with the correct control order of statements.

4 Generating Orc scripts

The final phase in the method proposed in this paper is the generation of an Orc specification
from the CDG previously built. This abstracts the entire behaviour of the system in a rigorous
specification.

We believe that a coordination specification that is closer in structure to the original system is
more understandable and, moreover, easier to confront with the original system. Therefore, in order
to keep the original system’s procedure calls nesting structure, an Orc definition is generated for
each procedure in the CDG. The calling structure involving these procedures and recorded in the
graph is also kept. Actually, it is this structure preservation goal that justifies the first exception
in the pruning process mentioned in the previous section.

Note, however, the process does not generate an Orc definition for every procedure in the
system, since during the construction of the CDG most procedures (more specifically, the ones not
contributing to the coordination layer) were dropped. Also notice, it is quite simple to transform the
nested Orc specification into a flat one, whenever this simplifies reasoning about the coordination
specification.

The Orc generation process for a procedure is based on the program captured by the procedure
sub-graph of the entire system CDG. The construction of the program represented by a CDG is
quite straightforward and basically amounts to collecting the statements of the visited vertices by
following the control flow edges.

To keep the presentation as succinct as possible, one formalises the Orc generation process
over the subset1 of C♯ presented in figure 2. The representation of CDG instances in this language
is a straightforward process, since of the constructs defined by the language are common to most
popular language and the ones less so, like LOCALCALL and ASYNCCALL, are easily extracted from
the vertices labelling information of the CDG.

The language is quite self explanatory. We consider that a local procedure call is as a syn-
chronous call to a resource in the same machine not involving any communication primitive.
Every asynchronous procedure call must be performed as if being made to an external resource, in
which case it must specify the resource site uniquely (internal asynchronous procedure calls may
be performed using the ASYNCCALL construct with localhost as resource site). The ≺ ≻ brackets
used in the language definition stand for optional expressions.

As it happens in the complete C♯ language, this subset also provides two possibilities for
performing asynchronous calls. One simply launches the procedure call in a separate thread and
continues execution of the rest of the program. The other executes an expression when and if
the asynchronous call returns. The LOCK statement behaves as expected i.e., it gives a variable
access to a specific statement block execution in a single thread or process. All the remaining
1 Actually, we address all the relevant control flow, concurrency, and communication primitives of the

language.



Extracting and verifying coordination models from source code 72

z ∈ Values
x,x1, xn ∈ Variables

s ∈ Sites
e, e1,2n ∈ Expressions

st, st1, st2 ∈ Statements ∶∶= z
∣ x
∣ x = e
∣ st1 ; st2
∣ LOCK (x) {st}
∣ LOCALCALL f(x)
∣ SYNCCALL s f(x)
∣ ASYNCCALL s f(x) ≺ {st} ≻
∣ IF p THEN {st1} ≺ ELSE {st2} ≻
∣ WHILE p DO {st}

f1, fn ∈ Procedures ∶∶= f(x){st}
c1, cn ∈ Classes ∶∶= c {x1 = e1 ... xn = en f1 ... fn}

ns1, nsn ∈ Namespaces ∶∶= ns {c1 ... cn}

Fig. 2. Modified C♯ language subset

details concerning the syntax and the semantics of the language are borrowed from the complete
C♯ language.

Although the input of the Orc generation process is the CDG of the program, for practical
reasons one has opted to formalise the functions that specify this process over the subset of the
C♯ language.

The Orc generation is composed of two distinct phases. The first one is performed by function
ψ which identifies all the variables in the language for which an access control may be required, and
sets up an environment for controlling the access to such variables. Basically, function ψ introduces
a Lock site for each variable in a LOCK statement, while keeping track of all visited variables for
avoiding site duplication. In the following definitions one uses product projections π1 ∶ A ×B → A
and π2 ∶ A×B → B as well as their dual co-product embeddings ι1 ∶ A→ A+B and ι2 ∶ B → A+B.

ψ (LOCK (x) {st}, V ) ≡
⎧⎪⎪
⎨
⎪⎪⎩

(ι2(Lock > xLock > Signal),{x} ∪ V ) if x ∉ V ,
(ι1(), V ) otherwise

ψ (ASYNCCALL s f(x) {st}, V ) ≡(ψ1 st, ψ2 st ∪ V )

ψ (IF p THEN {st}, V ) ≡(ψ1 st, ψ2 st ∪ V )

ψ (IF p THEN {st1} ELSE {st2}, V ) ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(ψ1 st1, ψ2 st1 ∪ V ) if ψ1 st1 ≠ ι1() ∧ ψ1 st2 = ι1(),

(ψ1 st2, ψ2 st2 ∪ V ) if ψ1 st1 = ι1() ∧ ψ1 st2 ≠ ι1(),

(ι2(ψ′1 st1 ≫ ψ′1 st2),

ψ1 st1 ∪ ψ1 st2 ∪ V ) if ψ1 st1 ≠ ι1() ∧ ψ1 st2 ≠ ι1(),

(ι1(), V ) otherwise

ψ (WHILE p DO {st}, V ) ≡(ψ1 st, ψ2 st ∪ V )

ψ (st1 ; st2, V ) ≡((ι2(ψ
′
1 st1 ≫ ψ′1 st2), ψ1 st1 ∪ ψ1 st2 ∪ V )

ψ (st, V ) ≡(ι1(), V )

where

ψ1 = π1 . ψ

ψ2 = π2 . ψ

ρ2(ι2 x) = x

ψ′1 = ρ2 . π2 . ψ



73 Nuno F. Rodrigues and Lúıs S. Barbosa

The second phase of this process is performed by function ϕ which, for every procedure body,
generates the corresponding Orc definition. Note that function ϕ assumes the existence of a
previously created environment of sites, more specifically an environment with a Lock controlling
the access to each critical variable.

ϕ z ≡ let(z)
ϕ x ≡ x
ϕ x = e ≡ let(e) > x > Signal
ϕ x = e ; st2 ≡ let(e) > x > ϕ(st)
ϕ LOCK (x) {st} ≡ xLock.acquire≫ ϕ(st)≫ xLock.release
ϕ LOCALCALL f(x) ≡ F (x)
ϕ SYNCCALL s f(x) ≡ s.F (x)
ϕ ASYNCCALL s f(x) ≡ Discr(s.F (x),Signal)
ϕ ASYNCCALL s f(x) {st} ≡ Discr(s.F (x) > result > ϕ(st),Signal)
ϕ IF p THEN {st} ≡ IfSignal(let(p), ϕ(st))
ϕ IF p THEN {st1} ELSE {st2} ≡ XOR(let(p), ϕ(st1), ϕ(st2))
ϕ WHILE p DO {st} ≡ Loop(let(p), ϕ(st))
ϕ st1 ; st2 ≡ ϕ(st1)≫ ϕ(st2)

Function ϕ converts a value or a variable from the language to the correspondent variable or
constant in Orc. A synchronous procedure invocation is translated to a site call in Orc.

The asynchronous procedure call case is not as straightforward as the previous cases. Here, one
must specify in Orc the behaviour of performing a request to a site without blocking for an answer
and leaving the rest of the specification to carry on executing. This behaviour can be captured
in Orc by using the previously presented Discr pattern and the fundamental site Signal. The
Discr pattern executes both arguments in parallel and waits for a signal from any of the sites.
Since Signal publishes a signal immediately, the behaviour of the Discr with a Signal argument
is to return immediately leaving the other argument to execute in parallel.

Given the blocking behaviour of the fundamental site if when faced with a false value, one
cannot perform a direct translation of the IF THEN statement to the if Orc fundamental site.
Such a direct translation would make the entire specification block upon a false value over an if
site. Thus one uses the IfSignal pattern that never blocks and executes the second expression if
the predicate evaluates to true.

The behaviour specification of the IF THEN ELSE statement is easier to capture because one
of the branches of the statement is always executed. Therefore, a direct translation to the XOR
pattern captures the intended behaviour. Similarly to the previous case the WHILE DO statement
is captured by the Loop coordination pattern which does not block upon evaluation of false pred-
icates.

Given functions ψ and ϕ, specifying the two main phases of the Orc generation process, the
overall generation algorithm is obtained as follows:

β (f(x) {st}) =
⎧⎪⎪
⎨
⎪⎪⎩

F (x) ≜ ψ′1(L,∅)≫ ϕ(L) if ψ1(L,∅) ≠ ι1()

F (x) ≜ ϕ(L) otherwise

5 An example

To illustrate the method introduced in this paper, consider the development of a client application
to be part of a meteorological network. Instances of this application are to be installed in a number
of geographically separated stations. Each station has at its disposal a set of sensors which provide
some meteorological data relative to current weather conditions. The objective of the application
to be developed is, among other functionalities, to communicate the data read from its sensors to
a central server whose purpose is to predict the weather forecast for the next 5 days.



Extracting and verifying coordination models from source code 74

Since the production of weather forecasts is a demanding computational operation, the central
server will be most of the time devoted to internal activity and only sporadically will interact
with the client stations. Therefore, such communication is required to be asynchronous, to free
the station application for other tasks while not interacting with the server. Another requisite of
the application to be developed is that since client stations are aware of current weather condi-
tions, they must compare the generated forecast with the verified weather conditions and, if great
discrepancies are found, ask the central server to check and correct its forecast.

Although this coordination scenario is not unfeasible to be implemented directly, it has still
enough details to justify the previous development of a specification of the communication protocol.
Such specification, written in Orc is presented in Fig. 3.

Station()) ≜ Server.CalculateForecast() > fid >
GetResult(fid)

GetResult(fid) ≜ GetWeatherConditions() > x >
Server.GetForecast(x) > fc >
XOR(let(fc == null)

,
RT imer(1000) ≫
GetResult(fid)
,
V erifyResult(fc)

VerifyResult(res)) ≜ XOR(¬ ConfirmForecast(res)
,
Server.VerifyForecast(res) > vfcid >
GetV erification(vfcid))
,
let(res))

GetVerification(vfid)) ≜ Server.GetV erifiedForecast(vfid) > vf >
XOR(vf == null

,
RT imer(1000) ≫
GetVerification(vfid)
,
let(vf))

Fig. 3. The Orc specification

Note that in this specification Server is used as the central weather forecast sever. Operation
GetWeatherConditions is intentionally undefined (its purpose is to gather local meteorological
data). Finally, ConfirmForecast denotes another undefined internal operation intended to deal
with the verification of the generated weather forecast with respect to the current weather condi-
tions.

The next step in the development of the station application is to implement the above spec-
ification in a programming language. Suppose this task is given to a programmers team which
produce the following C ♯ code:

1 class Example {
2 private void GetWeatherForecast() {
3 Console.WriteLine("Calculating forecast.");
4 WeatherServer cs = new WeatherServer();
5 int taskId = RequestServerTask(cs);
6 Result res = GetResult(cs, taskId);
7 if(res != null)
8 Console.WriteLine("Forecast: " + res.ToString());
9 else

10 Console.WriteLine("Operation failed");



75 Nuno F. Rodrigues and Lúıs S. Barbosa

11 }
12

13 private int RequestServerTask(WeatherServer cs) {
14 Console.WriteLine("Requesting forecast.");
15 Operation op = ...current weather conditions gathering code...
16 int opId = cs.CalculateForecast(op);
17 return opId;
18 }
19

20 private Result GetResult(WeatherServer cs, int opId) {
21 Result res = null;
22

23 while(res == null) {
24 Console.WriteLine("Querying server for forecast.");
25 res = cs.GetForecast(opId);
26 Thread.Sleep(1000);
27 }
28 // Check if the result still needs further calculation
29 if(!ConfirmForecast(res)) {
30 Console.WriteLine("Querying server to confirm forecast.");
31 Operation op2 = ...confirm forecast parameter construction...
32 int op2Id = cs.VerifyForecast(op2);
33 res = GetVerification(cs, op2Id);
34 }
35 return res;
36 }
37

38 private Result GetVerification(WeatherServer cs, int opId) {
39 Console.WriteLine("Querying server for verification result.");
40 Result res = cs.GetVerifiedForecast(opId);
41 if(res == null) {
42 Thread.Sleep(2000);
43 return GetVerification(cs, opId);
44 } else {
45 return res;
46 }
47 }
48 }

This is the point where our method may come to scene: a new Orc specification can be
extracted from the source code and compared with the original one. Fig. 4 shows the generated
MSDG. The corresponding CDG, obtained through application of rules

(“CalculateForecast(*);”, (WebService, Sync,Consumer))
(“GetForecast(*);”, (WebService, Sync,Consumer))
(“VerifyForecast(*);”, (WebService, Sync,Consumer))

(“GetVerifiedForecast(*);”, (WebService, Sync,Consumer))

is represented by the same graph once all dashed vertices have been removed.
From this CDG a new Orc specification is derived resorting to the Orc generation strategy

presented in section 4. The result is shown in Fig. 5.
Apart some minor differences concerning a few internal names, it is easy to conclude that both

specifications (Fig. 3 and 5) represent the same behaviour in what respects to the invocation of the
foreign services (CalculateForecast, GetForecast, V erifyForecast, and GetV erifiedForecast).
This conclusion, which is quite trivial for this example, may, in practice require a bit of Orc rewrit-
ing to eventually transform both designs into a canonical form, therefore showing (or refuting)
their (observational) equivalence.



Extracting and verifying coordination models from source code 76

Fig. 4. Example code MSDG

6 Conclusion

This paper introduced a method that combines a number of program analysis techniques (namely,
dependence graphs, program slicing, and graph pattern analysis) to extract the coordination layer
of a system from its source code. The whole process is parametric on the type of coordination it
abstracts. This feature enables the process, when instantiated with the suitable rules, to extract, for
instance, the web service coordination structure of a system or its distributed object calling model,
or even its multithread coordination layer. Further, it is possible to analyse more than one of these



77 Nuno F. Rodrigues and Lúıs S. Barbosa

GetWeatherForecast() ≜ new WeatherServer() > cs >
RequestServerTask(cs) > taskId >
GetResult(cs, taskId)

RequestServerTask(cs) ≜ GetWeatherConditions() > op >
cs.GetForecast(op) > opId
let(opId)

GetResult(cs, opId) ≜ Null() > res >
Loop(let(res == null),

cs.GetForecast(opId) > res >
RTimer(1000)) ≫

IfSignal(let(¬ ConfirmForecast(res))
,
cs.V erifyForecast(op2) > op2id >
GetV erification(cs, op2id) > res >
Signal) ≫

let(res)
GetVerification(cs, opId) ≜ cs.GetV erifiedForecast(opId) > res >

XOR(let(res == null)
,
RT imer(2000) ≫
GetV erification(cs, opId)
,
res)

Fig. 5. Orc script extracted from the example code

types of coordination layers, given that the appropriate parametrisation of the communication
primitives is taken into consideration during to the labelling phase.

Technically our contribution has been to extend previous work (namely [11, 16]) on program
graph representation and devise a strategy for the identification and extraction of coordination
information from applications. Related work include [19, 18, 17]. We believe this research is relevant
for the analysis and (formal) certification of OSS, a topic that has been attracting some interest
recently.

In this paper (as well as in its accompanying tool), Orc is used as the specification language
for the abstracted coordination layers. Note that the Orc generation phase in this method is quite
straightforward, resorting to a small set of Orc behavioural patterns. This can sometimes lead
to big and repetitive specifications that demand further simplification to easier understanding of
some of the aspects of the specified coordination. The whole method can, however, be adapted to
other specification languages like CSP [6] or CCS [14]. Moreover, given the stateless behaviour of
Orc site calls, the possibility of resorting to exogenous coordination models like Reo [2] arises as
an interesting topic of future work.

Although Orc provides a powerful calculational framework, it would be interesting to tune
the Orc generation process in order to look for more and more complex coordination patterns
from the outset. Such search, should be based not only on the coordination scripts extracted from
the Coordination Dependence Graph (CDG), but also on the entire CDG itself, as well as on the
original Managed System Dependence Graph (MSDG) which captures other information that may
be relevant to the discovery of more complex patterns. Such is exactly the topic of our current
research.

References

1. M. AlTurki and J. Meseguer. Real-time rewriting semantics of orc. In PPDP ’07: Proceedings of the
9th ACM SIGPLAN international symposium on Principles and practice of declarative programming,
pages 131–142, New York, NY, USA, 2007. ACM.



Extracting and verifying coordination models from source code 78

2. F. Arbab. Reo: a channel–based coordination model for component composition. Mathematical Struc-
tures in Comp. Sci., 14(3):329–366, 2004.

3. D. Binkley and M. Harman. A survey of empirical results on program slicing.
4. W. R. Cook, S. Patwardhan, and J. Misra. Workflow patterns in orc. In P. Ciancarini and H. Wiklicky,

editors, COORDINATION, volume 4038 of Lecture Notes in Computer Science, pages 82–96. Springer,
2006.

5. J. Ferrante, K. J. Ottenstein, and J. D. Warren. The program dependence graph and its use in
optimization. ACM Trans. Program. Lang. Syst., 9(3):319–349, 1987.

6. C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science. Prentice-Hall
International, 1985.

7. S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. In PLDI ’88:
Proceedings of the ACM SIGPLAN 1988 Conf. on Programming Usage, Design and Implementation,
pages 35–46. ACM Press, 1988.

8. D. Kitchin, W. R. Cook, and J. Misra. A language for task orchestration and its semantic properties.
In CONCUR, pages 477–491, 2006.

9. B. Korel and J. Laski. Dynamic program slicing. Inf. Process. Lett., 29(3):155–163, 1988.
10. B. Korel and J. Laski. Dynamic slicing of computer programs. J. Syst. Softw., 13(3):187–195, 1990.
11. J. Krinke. Context-sensitive slicing of concurrent programs. SIGSOFT Softw. Eng. Notes, 28(5):178–

187, 2003.
12. L. Larsen and M. J. Harrold. Slicing object-oriented software. In ICSE ’96: Proceedings of the 18th

international conference on Software engineering, pages 495–505, Washington, DC, USA, 1996. IEEE
Computer Society.

13. D. Liang and M. J. Harrold. Slicing objects using system dependence graphs. In ICSM ’98: Proceedings
of the International Conference on Software Maintenance, page 358, Washington, DC, USA, 1998.
IEEE Computer Society.

14. R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-Hall International,
1989.

15. J. Misra and W. R. Cook. Computation orchestration: A basis for wide-area computing. Journal of
Software and Systems Modeling, May 2006.

16. M. G. Nanda and S. Ramesh. Slicing concurrent programs. In ISSTA ’00: Proceedings of the 2000
ACM SIGSOFT international symposium on Software testing and analysis, pages 180–190, New York,
NY, USA, 2000. ACM.

17. M. G. Nanda and S. Ramesh. Interprocedural slicing of multithreaded programs with applications to
java. ACM Trans. Program. Lang. Syst., 28(6):1088–1144, 2006.

18. V. P. Ranganath, T. Amtoft, A. Banerjee, J. Hatcliff, and M. B. Dwyer. A new foundation for control
dependence and slicing for modern program structures. ACM Trans. Program. Lang. Syst., 29(5):27,
2007.

19. V. P. Ranganath and J. Hatcliff. Slicing concurrent java programs using indus and kaveri. Int. J.
Softw. Tools Technol. Transf., 9(5):489–504, 2007.

20. N. F. Rodrigues. Generic software slicing applied to architectural analysis of legacy systems. PhD
thesis, Dep. Informática, Universidade do Minho, 2008. (forthcoming PhD thesis).

21. N. F. Rodrigues and L. S. Barbosa. Coordinspector: a tool for extracting coordination data from
legacy code. In SCAM ’08: Proc. of the Eighth IEEE International Working Conference on Source
Code Analysis and Manipulation. IEEE Computer Society, 2008. to appear.

22. F. Tip. A survey of program slicing techniques. Journal of programming languages, 3:121–189, 1995.
23. M. Weiser. Program Slices: Formal, Psychological and Practical Investigations of an Automatic Pro-

gram Abstraction Methods. PhD thesis, University of Michigan, An Arbor, 1979.
24. M. Weiser. Programmers use slices when debugging. Commun. ACM, 25(7):446–452, 1982.
25. M. Weiser. Program slicing. IEEE Trans. Software Eng., 10(4):352–357, 1984.
26. J. Zhao. Applying program dependence analysis to java software. In Proceedings of Workshop on

Software Engineering and Database Systems, 1998 International Computer Symposium, pages 162–
169, December 1998.


