
On The Discovery of Business Processes
Orchestration Patterns

Nuno F. Rodrigues
DI-CCTC, Universidade do Minho

4710-057 Braga, Portugal
Email: nfr@di.uminho.pt

Luis S. Barbosa
DI-CCTC, Universidade do Minho

4710-057 Braga, Portugal
Email: lsb@di.uminho.pt

Abstract—COORDINSPECTOR is a Software Tool aiming at
extracting the coordination layer of a software system. Such a
reverse engineering process provides a clear view of the actually
invoked services as well as the logic behind such invocations.
The analysis process is based on program slicing techniques and
the generation of, System Dependence Graphs and Coordination
Dependence Graphs. The tool analyzes Common Intermediate
Language (CIL), the native language of the Microsoft .Net Frame-
work, thus making suitable for processing systems developed in
any .Net Framework compilable language. COORDINSPECTOR
generates graphical representations of the coordination layer
together with business process orchestrations specified in WS-
BPEL 2.0.

I. INTRODUCTION

Our dependency on software systems’ allied to their expo-
nential growth, both in size and complexity, is pushing the
adoption of service oriented architectures. One of the main
reasons for such a scenario to take place is that it has become
impossible to manually coordinate the growing amount of
software systems one as to deal with in order to accomplish
a single task.

Take for instance the example of purchasing an airplane
ticket and booking a hotel from a travel agency. In a pre service
oriented environment, the travel agency attendant would have
to consult every airline company with flights between the
requested locations, and then she would have to perform a
similar iterative task to book an hotel. Even more, she would
have to pay attention to many particular details like special
fares and promotions involving both hotels and flights or deal
with flights with intermediate connections from a unique or
several airline companies. To cope with the orchestration of
these kind of different systems, companies start developing
computational services that can be invoked by third party
applications, enabling the previously described task to be
automated by an application invoking a series of external
services.

Software development industry soon understood the poten-
tial of software as a service, and began to implement service
oriented solutions everywhere, sometimes even taking wrong
approaches by transforming everything into a service. De-
spite the flavours and approaches taken to implement service
oriented systems, the reality is that the world is becoming

The research reported in this paper is supported by FCT, under contract
POSC/EIA/56646/2004, in the context of the IVY project.

crowded with computational services ready to fulfill almost
every software system needs on demand, and the amount of
available services is growing every day. Again, developers
understood this higher availability of services and started to
implement software systems from alloys of external services,
as it would be the case of a possible implementation of the
above mentioned travel agency attendant task.

Although it may sound trivial at the beginning, to implement
and maintain a service oriented system, there are some practi-
cal details which can make it a quite complex task, specially
if one is demanding for a rigorous and flexible solution. So
the idea that a real service oriented system is just a series of
instructions invoking services which perform all the complex
work, is usually one that will lead to useless systems.

Problems arise when such systems have to deal with mul-
tiple service-based activities and multiple participants at the
same time, which in turn are influenced by multiple and differ-
ent constrains which may also be enforced by other services.
Even more, professional service oriented systems often have to
work in multithreaded environments, because users have to be
informed while the system is performing some time consuming
task, or because the latency introduced by relying on external
services instead of local components requires the developer to
perform asynchronous calls to external services and proceed
execution only, and if, the service returns an answer.

So, correct, responsive and high-available service-oriented
systems have to be highly multithreaded and filled of specific
details able to orchestrate the myriad of external services the
system may depend upon. In order to develop such kind of
systems, developers must be supported by new programming
analysis tools to help in solving the specific problems that
may arise. In particular it would be of outmost interest to
have analysis tools capable of extracting the external services
coordination schema of a system and to represent it in suitable
visual ways to the developer. Such a model, exposing services
calls and the programming logic that directly (or indirectly)
influences (or is influenced by) such calls, would much facil-
itate the evolution of legacy systems to the service oriented
paradigm, the development of new service oriented systems
and also the understandability and maintenance of such a kind
of solutions.

Even more, this tool should be able to capture multithreaded
information and to confront it with the services calling model.



Such a tool would then be able to assist the developer in
answering questions like: What services are actually being
invoked in the implementation of a particular functionality?
How are these services being combined to achieve the desired
functionality? If one of these services fails, how does the
system behaves? What is the logic, in terms of internal and
external services invocations, behind the system provision of
services?

COORDINSPECTOR is a software analysis tool developed to
address such problems. In particular to extract a coordination
model from source code, it resorts to a number of techniques
to analyze and transform a system’s implementation in order to
expose its service coordination logic. In particular our method
is based on dependence graphs, program slicing [8], graph and
programming languages transformation techniques.

The tool analyzes Common Intermediate Language (CIL),
the language interpreted by the .Net Framework for which
every .Net language compiles to. By targeting the CIL,
COORDINSPECTOR is able to analyze heterogenous systems
implemented with multiple languages within the set of .Net
Framework languages, which by now counts more than 40
languages. We believe that such is a very important feature for
an analysis tool of this kind, since it is known that most mid to
large size systems are implemented with several programming
languages.

The remainder of the paper is organized as follows. Section
II and IV introduces program representations structures as well
as the specifications of algorithms for coordination analysis
in COORDINSPECTOR. Further implementation details are
discussed in section V. Finally we present an example of usage
of the tool in action followed by some conclusions and topics
for future work.

a) Contributions.: We present a generic reverse engineer-
ing technique for abstracting the service orchestration layer
of running systems. This technique is based on two novel
program representations: the MSDG and the CDG, which are
described in section II and III, respectively. As a proof-of-
concept of the ideas introduced, we present what we believe
to be the first software tool aiming at the disentanglement
and identification of service orchestration models from source
code.

II. THE MSDG

Our approach to abstract a system’s service architecture
is based on an extended version of the System Dependence
Graph (SDG) [2], which we call the Managed System Depen-
dence Graph (MSDG). The MSDG includes many features
from other object oriented SDG’s extensions (namely [5],
[6], [9]) and introduces new representations for concurrent
constructs and specific managed code1 details.

We assume a basic abstraction of CIL stack based control
instructions to equivalent higher-order control expressions like
IF THEN ELSE and WHILE2 clauses.

1Code that executes under the management of the Common Language
Runtime virtual machine

2There are a number of CIL analysis tools that provide this functionality.

A MSDG is actually the combination of 4 other graphs,
namely the Method Dependence Graph, the Class Dependence
Graph the Interface Dependence Graph and the Namespace
Dependence Graph. In each of these graphs, vertices rep-
resent program statements or specific programmatic entities
like methods, classes, interfaces or namespaces. We proceed
by giving a brief description of each of these graphs that
constitute the MSDG.

A. Method Dependence Graph

Most program graph representations, like SDG’s and
MDG’s, are calculated from a graph representation of the flow
of control in the program, often referred to as Control Flow
Graph (CFG) of the program.

The Method Dependence Graph (MDG) is a multigraph
resorting to different kinds of edges and vertices to represent
a single method in a program. The vertices of a MDG are
composed by the vertices representing the method statements
and a special vertex called the method entry vertex
which contains the signature of the method. The edges of a
MDG represent control, data, parameter-in and parameter-out
dependencies.

There are several kinds of data dependencies [7] that can
be represented in a MDG. However for the purpose of our
work one is only interested in data flow dependencies which
we shall call just data dependencies.

The second kind of dependencies that a MDG captures
are control dependencies, which represent the dependencies
between control predicate statements (like IF THEN ELSE
or WHILE statements) and assignment or method call state-
ments. Edges representing control dependencies can be labeled
with boolean values, indicating the flow of control upon the
result value of a boolean expression eventually present in the
source vertex. A MDG also uses control edges to connect
the method entry vertex to each of the vertices representing
method statements.

Although MDG’s target the representation of single meth-
ods, there are extensions to cope with method calls. Actually
such extensions are closely related to some details of single
method MDG’s. Thus, in a MDG, method calls and their
parameters are recorded through the introduction of temporary
auxiliary variables that mediate value passing between call-
ing and called procedures. The definition of such temporary
variables is captured in new sorts of vertices, called actual-in
(vertices 2 and 3 in figure 1) and actual-out (vertex 4) vertices
(for the calling methods), and formal-in (vertices 6 and 7) and
formal-out (vertex 9) vertices (for the called methods).

Because one is targeting CIL, a stack based object oriented
language, one has to capture the possibility that a method,
may not only modify its parameter variables, but also some
class or instance variables. To cover such situations, a MDG
introduces formal vertices for each of these class or instance
variables that are modified within the method, and, from the
calling function side, it introduces the corresponding actual
vertices. In what respects to edges, a method call is represented
by method call edges between vertices containing method calls



and the method entry vertex of the called method, parameter-in
edges between actual-in and formal-in vertices, parameter-out
edges between formal-out and actual-out vertices. All formal
vertices are connected to the method entry vertex and all actual
vertices are connected to the calling vertex via control edges.

Fig. 1. Method Dependence Graph

In order to cope with concurrency, whenever there is a
spawning thread or process (a fork in operating systems
terminology) we introduce a new triangular vertex in the
graph, with one incoming control flow edge, from the vertex
that fired the fork, and two outgoing edges, one for the newly
created control flow (asynchronous flow edge) and another
representing the continuation of the initial control flow.

z ∈ Values
x ∈ Variables
s ∈ Sites
e ∈ Expressions
st ∈ Statements ::= z

| x
| x = e
| st1 ; st2
| LOCK {st}
| LOCALCALL f(x)
| SYNCCALL s f(x)
| ASYNCCALL s f(x) ≺ {st} �
| IF p THEN {st1} ≺ ELSE {st2} �
| WHILE p DO {st}

f ∈ Procedures ::= ≺ CM, CT � f(x){st}
c ∈ Classes ::= c {x1 = e1 ... xn = en f1 f2 ... fn}

Fig. 2. Statement Language

Φ (c {x1 = e1 ... xn = en f1 ... fn}) ≡
Ψ ([x1 = e1, ..., xn = en] + π1 a+ π1 b)
Υ (π2 b)
<flow> π2a </flow>
(π3 b)

Where
a = foldr g ([], []) (map Φh [f1, ..., fn])
g (u, v) (t, k) = (u : t, v : k) b = map Φb [f1, ..., fn]

Fig. 3. BPEL Generation

B. Class and Interface Dependence Graphs

The Class Dependence Graph (ClDG) serves to represent
a class and aggregate all its members i.e., variables and
methods. A ClDG contains a class entry vertex, which contains

Φh (CM f(x){st}) ≡
(Ψ(x), <receive partnerLink=##opaque>

operation= f variable = (f+ Request ) >
<sources><source name= f /></sources> )

Φh ≡⊥

Fig. 4. Function Header BPEL Generation

the name of the class. There are class membership edges
between the class entry vertex and the vertices representing
the class variables and the method entry vertex of each of
the class methods. Class membership edges are labeled with
the visibility modifier (private, public, static, etc) of the target
vertex [4].

Inheritance between classes is represented by class inheri-
tance edges between the class entry vertices of the involved
classes.

Abstract classes and Interfaces are represented like normal
classes, except for methods which do not provide an imple-
mentation. The latter are solely represented by a method entry
vertex.

C. Objects and Polymorphism

As in [6], we represent references to objects individually
i.e., each reference to an object in a statement is represented
by a tree depicting all the object variables. A difference
in our representation of objects from the approach taken in
[6] concerns the representation of recursive defined classes.
Instead of using a k-limiting solution (only expanding the
object tree to a level k) we use a special vertex called fixed
point vertex defining recursive references in classes.

For dynamically typed references to objects, we build the
object trees for every possible object type the reference may
hold. Each of these trees root vertices are then connected to
the corresponding object reference vertex.

D. Namespace Dependence Graph

The Namespace Dependence Graph (NDG) serves to rep-
resent the namespace division of classes and interfaces in
a system. For these we follow a similar approach taken to
represent Package Dependence Graphs in [4] and [9]. A
namespace is represent in NDG by a namespace entry vertex,
which contains namespace membership edges targeting every
class or interface (entry vertex) declared under the defining
namespace.

III. THE CDG

The building blocks of any service oriented system are
the primitive communication calls that such systems use to
invoke foreign services. It is based on these communication
primitives, together with specific internal logic, that systems
are able to construct elaborated orchestrations of foreign
resources to deliver new functionalities to users in easy-to-use
applications or services.

But what are such communication primitives? In theory they
can be any mechanism by which an application may access
a foreign resource. In practice they are instances of different
technologies, namely web services, CORBA, RMI and .Net



Φb v l z ≡
(v, l, <literal> z </literal> )

Φb v l x ≡
((Ψ x) : v, l, ⊥)

Φb v l (x = e) ≡
((Ψ (x =e)) : v, l, ⊥)

Φb v l (st1 ; st2) ≡
((π1 a) + (π2 b) + v, (π2 a) + (π1 b) + l, (π3 a) + (π3 b))

Where
a = Φb v l st1
b = Φb v l st2

Φb v l (LOCK {st}) ≡
((π1 a) + v, (π2 a) + l,

<scope isolated=yes> (π3 a) </scope> )
Where
a = Φb v l st

Φb v l (LOCALCALL f(x)) ≡
(v, l, <invoke partnerLink=localhost operation= f />)

Φb v l (SYNCCALL s f(x)) ≡
(Ψ(x) + v, l, <invoke partnerLink= s operation= f />)

Φb v l (ASYNCCALL s f(x)) ≡
(Ψ(x) + v, l, <flow>

<invoke partnerLink= s operation= f /></flow>

Φb v l (ASYNCCALL s f(x) {st}) ≡
(Ψ(x) + (π1 a) + v, (linkId : l) + (π2 a),
<flow>
<invoke partnerLink= s operation= f />
<sources><source linkName = linkId /></sources>

</flow>
<scope name= fCompleted>
<targets><target linkName = linkId /></targets>
π3 a

</scope> )
Where
linkId = f + getUToken()
a = Φb v l st

Φb v l (IF p THEN {st1} ≺ ELSE {st2} �) ≡
((π1 a) + (π1 b) + v, (π2 a) + (π2 b) + l,

<if><condition> β(p) </condition>
π3 b
≺ <else>π3 b</else> �

</if>
Where
a = Φb v l st1
b = Φb v l st2

Φb v l (WHILE p DO {st}) ≡
((π1 a) + v, (π2 a) + l,
<while><condition> β(p) </condition>
π3 a

</while>
Where
a = Φb v l st1

Fig. 5. Function Body BPEL Generation

Remoting, among others. The specific communication needs
of a system will determine which of the remote procedure
calls technologies to use. For instance if one is interested in
maintaining the communication state between systems, usually
a distributed object approach like CORBA or RMI is preferred.
Otherwise, in cases where one is targeting a wide number of

service consumers platforms, a web service approach is usually
a better choice.

Since the coordination analysis of a system is based on
tracing the use of communication primitives, and because
the latter may change from system to system, our approach
is parametric on the kind of communication primitives one
is interested in. This parametrization is accomplished by a
set of rules where a rule is a tuple composed of a regular
expression and a set of attributes. The set of attributes serves to
characterize what the regular expression identifies, in terms of
communication primitive type (p.e. Web Service Call, COM,
CORBA), calling mode (asynchronous or synchronous) and
communication direction (communication provider or con-
sumer).

Given a MSDG and a set of rules, the calculation of
the CDG, with respect to the MSDG, starts with a vertex
labeling process that processes the entire graph and checks for
conformance of each statement in the vertices to the regular
expressions in the set of rules. If a vertex respects a particular
regular expression of a rule than it inherits the attributes of the
rule. By the end of this labeling process, one obtains a graph
whose vertices hold attributes which characterize the vertex in
terms of communication primitive, if any, it represents (web
service call, web service provider, COM call, etc) and the
calling mode used (synchronous or asynchronous).

Given the MSDG with all the communication primitives
and their calling modes identified, the second step is to
abstract away the parts of the graph which do not take part
in the coordination layer. The abstraction is accomplished by
removing all the vertices that were not labeled except the ones
in the following conditions:

1) procedure call vertices for which there is a control flow
path to an annotated vertex,

2) vertices in the union of the backward slice of the
program with respect to each annotated vertex.

The first exception above maintains the relevant procedure
call nesting. This information will be useful to nest, in a similar
way, the generated BPEL orchestration script, thus leading to
more understandable coordination specifications.

The second exception covers all the statements in the
program that may potentially affect the previously identified
communication primitive vertices. In this set of vertices one
finds predicate vertices3 which are controlling and defining
the parameters for execution of the communication primitives
and, therefore, play a role in the coordination specification.

The slicing operation mentioned in the second exception
is of outmost importance in terms of the overall abstraction
process discussed in this paper. Even more, it is this program
analysis technique that justifies the complex structure of the
MSDG presented in section II and allows for the implemen-
tation of the slicing algorithm which follows.

We adopt a backward slicing algorithm very similar to the
one presented in [2]. It consists of two phases. The first

3I.e., vertices containing predicate statements, like WHILE, IF THEN
ELSE, FOR.



phase resorts to marking the visited vertices by traversing
the MSDG backwards, starting on the vertex capturing the
slicing criterion, and following control, method call, parameter
in and data dependence edges. The second phase consists
of traversing the graph backwards, starting on every vertex
marked on phase 1 and following control, parameter out and
data dependence edges. By the end of phase 2, the program
represented by the set of all marked vertices constitute the
slice with respect to the initial slicing criterion.

Except for control flow edges, every other edge from the
original MSDG which contains a removed vertex as a source
or target, is also removed from the final graph. Control flow
edges containing a pruned vertex as a source or a sink are
also dropped. On the other hand, new edges are introduced for
representing direct control flow relations marking what were
transitive control flow relations before the vertices removal.
This ensures that future traversals of this graph, namely the
one required for BPEL generation, are performed with the
correct control order of statements.

Finally one ends up with a graph containing only the
coordination relevant entities of the system. We call this
structure, the Coordination Dependence Graph.

IV. ORCHESTRATION PATTERNS DISCOVERY

In contrast with the MSDG, which is usually a large and
complex structure not suitable for direct human understanding,
the CDG of a typical system is much smaller, since all logic
details not concerned with coordination have bee removed.
Even though, there are systems which contain great amounts of
inter systems communications and originate large and complex
CDGs. For these cases, one can take a step further and derive
algorithms to automatize the search for orchestration patterns
in CDG instances.

In this section we introduce an algorithm for representing in
WS-BPEL the information captured by the CDG of a system.

It should be stressed that this algorithm is generic (”lan-
guage agnostic”). To make things concrete, however, and the
exposition easier to follow we present the BPEL generation
algorithm over the simple statement language presented in
Fig. 2. Note that this is not the language in which systems
to be analyzed should be expressed, but rather the language
used to represent CDG instances that facilitate the presentation
of our orchestration discovery algorithm. In any case this
could be eliminated by specifying the orchestration discovery
algorithms directly over the CDG structure.

The representation of CDG instances in this language is
a straightforward process, since of the constructs defined by
the language are common to most popular language and the
ones not so common, like LOCALCALL and ASYNCCALL, are
easily extracted from the vertices labeling information of the
CDG.

The language is quite self explanatory. We consider that a
local procedure call is as a synchronous call to a resource in
the same machine not involving any communication primitive.
Every asynchronous procedure call must be performed as
if being made to an external resource, in which case it

must specify the resource site uniquely (internal asynchronous
procedure calls may be performed using the ASYNCCALL
construct with localhost as resource site).

The ≺ � brackets used in the language definition stand for
optional expressions and the functions prefix symbols CM and
CT serve to identify a procedure as a communication primitive
exposure (p.e. a method implementing a web service exposure
logic) and a constructor respectively.

Like most programming languages with multi-threading
capabilities, this language also provides two possibilities for
performing asynchronous calls. One simply launches the pro-
cedure call in a separate thread and continues execution of
the rest of the program. The other executes an expression
when and if the asynchronous call returns. In the later case the
callback expression may reference a special variable result
which holds the value returned by the call.

The LOCK statement behaves as expected i.e., it gives access
of a specific statement execution in a single thread or process.

The generation of the abstract BPEL orchestration is ac-
complished by functions Φ, Φh, Φb presented in Fig. 3, Fig.
4 and Fig. 5 respectively. In order to being able to present
here the BPEL generation algorithm, some details have to be
dropped and a less verbose functional specification form was
used to present the algorithm.

The specification of the BPEL generation borrows some
Haskell [3] constructs, namely the list representation syntax
(by the use of square brackets), the map function which
applies a given functions to every element of a given list,
the : function which appends an element to the head of a list
and the foldr function which applies a given binary function
between all the elements of a list. Further more, we denote
the first, second and third tuple projections by functions π1,
π2 and π3 respectively.

To avoid declaring every string concatenation used to gener-
ate the BPEL XML code, one has chosen to represent constant
strings values in courier font. This way, whenever there is a
functional expression followed or preceded by a sting constant
in courier font, it should be interpreted as the concatenation
of the value represented by the functional expression with the
string constant. We also denote the empty string by ⊥ and
string concatenation operation by +.

Function Φ receives as input a class and returns the BPEL
orchestration capturing all the services coordination contained
inside the diverse class entities. This function depends upon
four other auxiliary functions, namely Ψ which is responsible
for converting a list of Statement Language variables to their
equivalent BPEL forms, Υ which generates the BPEL links
declarations that are used in the orchestration definition, Φh

(presented in Fig. 4) that derives BPEL code specifying the
provided services, and function Φb (presented in Fig. 5)
responsible for calculating the BPEL logic defined inside each
function body.

Note that the generated BPEL is in an abstract form as
a consequence of using some ##opaque attribute values.
Function Φh receives a list of Statement Language functions
and for each function with attribute CM it computes a pair



containing a list of the variables found (which are converted
to BPEL by function Φ using function Ψ) and a receive
BPEL activity specifying the provision of a service that was
preformed by some specific logic in the original system.

Function Φb receives a Statement Language function body
and returns a tuple containing a list of variables to be initial-
ized, a list of links to be initialized and the given functions
body business logic translated to BPEL.

V. IMPLEMENTING COORDINSPECTOR

COORDINSPECTOR4 is a software analysis tool developed
as a proof-of-concept of the ideas presented in this paper.

The tool, a snapshot of which is presented in Fig. targets
CIL code, the native language of the Microsoft .Net Frame-
work, to which every .Net compilable language ultimately
gets translated to before being executed by the framework.
This decision to target CIL code was not an arbitrary one.
Indeed we intended the tool to be able to cope with as many
programming languages as possible, because most real world
software systems are developed in more than one language.
Moreover, given the potential of the tool to assist legacy
systems evolution, the ”language agnostic” feature became
an important invariant. Thus, by choosing CIL, the tool is
presently able to analyse more than 40 programming lan-
guages5, and this number has only but potential to increase.

Fig. 6. COORDINSPECTOR

In order to take advantage of existing CIL analysis tools,
COORDINSPECTOR is developed as a plug-in for the CIL de-
compiler .Net Reflector6. The only, and important component
COORDINSPECTOR takes from .Net Reflector is the parse for
CIL code which delivers an object tree representation of the
CIL concrete syntax tree.

Such tree is then processed to build the corresponding
MSDG instance. Given the intrinsic modularity of this process,
it is executed by different components that are responsible
for the calculation of each of the MSDG sub-graphs i.e., the
MDG, ClDG, IDG and the NDG, as detailed in section II. Each

4The tool is available from http://www.di.uminho.pt/∼nfr
5Source: http://en.wikipedia.org/wiki/CLI Languages
6http://www.aisto.com/roeder/dotnet

import System.Web.Services.Protocols.SoapHttpClientProtocol;
import System.Web.Services.Protocols;
public Class TimesheetSubmission {

[WebMethod]
public void SubmitTimesheet(TimeSheet t,

Consultant c, Client clt) {
Decimal total = Invoke("GetTimesheetWithCost",

new object[] { c });
if(total > 2000)

this.InvokeAsync("AnalyzeSheet",
new object[] { t, c},
this.OnAnlyzeResponse, null);

else {
Invoke("CommunicateClientExpense",

new object[] { expense, total });
Invoke("NotiffyApprovedExpense",

new object[] { expense, total });
}

}

private void OnAnalyseResponse(object arg) {
InvokeCompletedEventArgs invokeArgs =

((InvokeCompletedEventArgs)(arg));
if (invokeArgs.Approved) {

Invoke("CommunicateClientExpense",
new object[] { invokeArgs.Expense,

invokeArgs.Total });
Invoke("NotiffyApprovedExpense",

new object[] { invokeArgs.Expense,
invokeArgs.Total });

} else {
Invoke("ResubmitSheet",

new object[] { invokeArgs.TimeSheet });
}

}

Fig. 7. C] Example Program

component traverses the concrete syntax tree, using the object
oriented proxy pattern, and collects the relevant information
for the construction of a particular graph.

When applied to real world systems, and if executed se-
quentially, the MSDG calculation process can be a time con-
suming task because of the size and computational complexity
involved. In order to cope with this situation one has improved
the MSDG calculation performance by multithreading the
tasks which build each MSDG sub-graph. This improvement
reduced the MSDG calculation time to roughly on third of the
original time.

The CDG calculation implemented by COORDINSPECTOR
follows the approach presented in the previous section, thus
starting by labeling the vertices based on rules identifying
communication primitives. At the moment of writing, CO-
ORDINSPECTOR is only instantiated with rules identifying web
services communications, distinguishing between synchronous
and asynchronous calls as well as between invocation and
provisioning of functionality using web services. Other sets
of rules can, however, be easily added.

The graph pruning and slicing operations were once again
implemented by following the specifications presented in
the previous section and implemented by a series of graph
traversal algorithms and transformation functions.

COORDINSPECTOR is also able to depict and navigate
through both the calculated MSDG and CDG graphs, by
resorting to the Microsoft Research GLEE graph library. The
graphs provide different colors for the vertices, based on



<process>
<variables>
<variable name="SubmitTimeSheetRequest" />
<variable name="GetTimesheetWithCostResponse" />
<variable name="AnalyzeSheetResponse" />

</variables>
<flow>
<receive partnerLink="##opaque"

operation="SubmitTimesheet"
variable="GetTimesheetWithCostResponse">

<sources><source linkName="SubmitTimesheet" />
</sources>

</receive>
</flow>
<scope name="SubmitTimesheet">
<targets><target linkName="SubmitTimesheet" />
</targets>
<sequence>
<invoke partnerLink="##opaque"

operation="GetTimesheetWithCost"
input="SubmitTimeSheetRequest"
output="GetTimesheetWithCostResponse" />

<if>
<condition>

getVariableProperty(GetTotalCostResponse,
total) > 2000

</condition>
<flow>

<invoke partnerLink="##opaque"
operation="AnalyzeSheet"
input="SubmitTimeSheetRequest"
output="AnalyzeSheetResponse" >
<sources>
<source linkName="OnAnalyseResponse" />

</sources>
</invoke>

</flow>
<scope name="OnAnalyseResponse">

<sequence>
<targets>

<target linkName="OnAnalyseResponse" />
</targets>
<if>

<condition>
getVariableProperty(AnalyzeSheetResponse,

Approved)
</condition>
<invoke partnerLink="##opaque"

operation="CommunicateClientExpense"
input="GetTimesheetWithCostResponse" />

<invoke partnerLink="##opaque"
operation="NotiffyApprovedExpense"
input="GetTimesheetWithCostResponse" />

<else>
<invoke partnerLink="##opaque"

operation="ResubmitSheet"
input="GetTimesheetWithCostResponse" />

</else>
</if>

<sequence>
</scope>
<else>

<invoke partnerLink="##opaque"
operation="CommunicateClientExpense"
input="GetTotalCostResponse" />

<invoke partnerLink="##opaque"
operation="NotiffyApprovedExpense"
input="GetTotalCostResponse" />

</else>
</if></sequence></scope></process>

Fig. 8. Abstract BPEL of the Example Business Process

the labels the vertices hold, which facilitates direct manual
reasonings over the graphs.

The graphical presentation of the graphs is also able to
supply the user with specific vertex information, like labeling
and the CIL code captured, by applying a double click on a
particular vertex of the graphs.

Code generation in COORDINSPECTOR though based on
function ϕ defined above, was not implemented as a syntax
oriented operation. Instead, this functionality is implemented
by using and extending the same graph traversal operations
that were defined for the labeling process of the MSDG.

VI. EXPERIENCE

For a brief example of the technique presented, consider
the following C] code implementing a company’s time sheet
submission business process. The program provides a method
(SubmitTimesheet) bound to a web service that is respon-
sible for receiving consultants time sheets.

Once a time sheet arrives, the total cost of the
time sheet is calculated by the foreign web service
GetTimesheetWithCost according to the time
sheet’s consultant fees. If the total cost retrieved by
GetTimesheetWithCost is above 2000 then the
business proceeds by asynchronously invoking the
AnalyzeSheet web service with callback function
OnAnalyseResponse. On completion of function
AnalyzeSheet, the business process proceeds by evaluating
function OnAnalyseResponse which based on the time
sheet cost approval, communicates the response to client and
consultant in case of a positive approval, or requests the
resubmission of the time sheet to the consultant in case of a
negative response.

If the total cost of the time sheet is bellow or
equal to 2000, the business process communicates the
cost both to the consultant and client through invocation
of the web services NotiffyApprovedExpense and
CommunicateClientExpense.

Because of space limitations this example may seem like
a trivial case upon which to apply the process presented,
nevertheless we would like to point out out that if this same
business process was not isolated (like presented) but mixed
with other program statements for controlling user interface or
other resources at diverse levels in the system, the same (or
an equivalent) BPEL orchestration would have been lifted.

By applying the overall process presented to the program
of Fig. 7, one would obtain the BPEL orchestration depicted
in Fig. 8.

VII. CONCLUSIONS AND FUTURE WORK

We have presented an algorithm and tool for abstracting
the coordination layer of software legacy systems. Such layer
is often spread among various parts of a system and, even
more problematic, it is usually mixed with code devoted to
implement this internal computations.

Although not being a complete abstraction process, in the
sense that the generated WS-BPEL orchestration are abstract
and need manual adaptation to become executable, the work
presented here is a relevant step towards automatic business
process discovery (if it will ever be possible to become
completely automatic).

On of its main features is its parametrization by rules
identifying the communication primitives one is interested in,



thus making it adaptable to diverse kinds of coordination
analysis anf programming frameworks. Given the language
heterogeneity that most real world systems present, the lan-
guage agnosticism of the technique stands as another very
important feature.

Although the most direct application of this algorithm and
tool is to assists on the coordination analysis of legacy systems,
it can also be used to assess the correctness of systems
implementations with respect to its design specifications or
even with respect to the growing software quality regulations.
Even more, with the provision of rules for COM or RMI com-
munication discovery, it can be used to assist the conversion
of distributed object systems towards web-service oriented
systems (or vice versa).

Overall, we regard this work as part of the broad area
of software architecture analysis, where the ultimate goal
is the discovery of the business process orchestration logic
laying beneath a software system implementation. Techniques,
like the one presented here, to assist the correct discovery
of business processes (or even to perform it automatically),
contribute to the evolution of such systems towards the (web)
service oriented world.

As a proof-of-concept of the ideas presented in this paper
we also introduced a tool, called COORDINSPECTOR, which
applies the algorithm to perform the discovery process on
systems targeting the Microsoft .Net framework.

An interesting topic for future work is the classification of
orchestration patterns, as in [1], and their use in guiding the
discovery and extraction process.

Another interesting improvement would be to allow changes
to be made in the BPEL generated orchestrations and, based
on such changes, regenerate equivalent transformations to be
applied to the original source code. Translation of system’s
business process exception logic to their equivalent BPEL
elements would also be interesting.

REFERENCES

[1] W. M. P. V. D. Aalst, A. H. M. T. Hofstede, B. Kiepuszewski, and A. P.
Barros. Workflow patterns. Distrib. Parallel Databases, 14(1):5–51, 2003.

[2] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using
dependence graphs. In PLDI ’88: Proceedings of the ACM SIGPLAN
1988 Conf. on Programming Usage, Design and Implementation, pages
35–46. ACM Press, 1988.

[3] P. Hudak, S. L. Peyton Jones, and P. Wadler. Report on the programming
language Haskell, a non-strict purely-functional programming language,
version 1.2. SIGPLAN Notices, 27(5), May 1992.

[4] G. Kovcs, F. Magyar, and T. Gyimthy. Static slicing of java programs.
[5] L. Larsen and M. J. Harrold. Slicing object-oriented software. In ICSE

’96: Proceedings of the 18th international conference on Software engi-
neering, pages 495–505, Washington, DC, USA, 1996. IEEE Computer
Society.

[6] D. Liang and M. J. Harrold. Slicing objects using system dependence
graphs. In ICSM ’98: Proceedings of the International Conference on
Software Maintenance, page 358, Washington, DC, USA, 1998. IEEE
Computer Society.

[7] K. J. Ottenstein and L. M. Ottenstein. The program dependence graph
in a software development environment. In SDE 1: Proceedings of the
first ACM SIGSOFT/SIGPLAN software engineering posium on Practical
software development environments, pages 177–184. ACM Press, 1984.

[8] F. Tip. A survey of program slicing techniques. Journal of programming
languages, 3:121–189, 1995.

[9] J. Zhao. Applying program dependence analysis to java software. In Pro-
ceedings of Workshop on Software Engineering and Database Systems,
1998 International Computer Symposium, pages 162–169, December
1998.


