
International Conference on Innovative Views of the .Net Technology

81

Prototyping Concurrent Systems in Cw

Nuno F. Rodrigues, Luís S. Barbosa

Departamento de Informática, Universidade do Minho
4710-057 Braga, Portugal

{nfr, lsb}@di.uminho.pt

Abstract. Software architecture is currently recognized as one of the most criti-
cal design steps in Software Engineering. The specification of the overall sys-
tem structure, on the one hand, and of the interactions patterns between its
components, on the other, became a major concern for the working developer.
Although a number of formalisms to express behaviour and supply the indis-
pensable calculational power to reason about designs, are available, the task of
deriving architectural designs on top of popular component platforms has re-
mained largely informal. This paper introduces a systematic approach to derive,
from behavioural specifications written in Cw, the corresponding architectural
skeletons in the Microsoft .NET framework in the form of executable code.

1 Introduction2

1.1 Motivation: Behaviours for Architectures

This paper introduces a systematic approach to derive [10] prototype implementa-
tions from behavioural systems specifications written in the [11] process algebra. This
complements and extends previous research by the authors in architectural prototyping
in [6] documented in [14]. Before jumping in technicalities, however, let us first mo-
tivate the envisaged approach.

Over the last decade the specification of software architectures [5, 4] has been rec-
ognized as a critical design step in software engineering. Its role is to make explicit
the underlying structure of a software system, identifying its components and the in-
teraction dynamics among them, i.e., the behavioural patterns which characterize their
interactions.

Classical process algebras (like, , [11] or [7]) on the other hand, emerged over the
last thirty years as calculi to understand and reason about systems where interaction
and concurrency play a significant, even dominant, role. It is not surprising that such

2The research reported in this paper is supported by FCT, under contract

POSI/ICHS/44304/2002, in the context of the PURe project.

International Conference on Innovative Views of the .Net Technology

82

calculi, which embodied precise notions of behaviour and observational equivalence,
as well as specific proof techniques, were often integrated in the design of generic
architectural description languages (ADL). Typical examples are WRIGHT [1], based
on , and DARWIN [9] or PICCOLA [8], which integrate a number of constructions bor-
rowed from the -calculus [13, 12].

It is not the purpose of this paper to introduce a new description language for soft-
ware architectures, not even to suggest additional features to existing languages. Our
motivation is essentially pragmatic: suppose behavioural requirements for a given
system are supplied as a collection of process algebra expressions; how can such re-
quirements be incorporated on the design of a particular system? In other words, how
can such requirements be animated and, which is even more important, how can they
guide the overall design of the application architecture?

Our implementation target is the Cw programming language developed for the .NET
framework [6] for component-based, distributed application design. Behavioural
specifications, on the other hand, are written in the CCS [11] notation. The paper
contribution is basically a strategy to implement such CCS specifications on top of Cw
.NET. Rather than relying in a specific ADL, we resort to behavioural specifications in
a particular process algebra to extract the overall structure of the system, identifying
its active components with the declared processes, the interaction vocabulary, as re-
corded in the specification actions, and the, eventually, distributed, execution control,
from the specification body.

The prototyping strategy proposed in this paper is described in section 2 and its ap-
plication to a small example — the specification of the dinning philosophers problem
— discussed in section 3. For quick reference, the next subsection provides a (rather
terse) introduction to CCS and Cw.

1.2 : An Overview

The CCS notation [11] describes labelled transition structures interacting via a par-
ticular synchronization discipline imposed on the labels. Such synchronization disci-
pline assumes the existence of actions of dual polarity (called complementary and
represented as, , and), whose simultaneous occurrence is understood as a synchro-
nous handshaking, externally represented by a non observable action .

Sequential, non deterministic behaviours are built by what in are called dynamic
combinators: prefix, represented by a.P, where a denotes an action, for action sequenc-
ing, and sum, P+Q for non deterministic choice. The inert behaviour is represented by
0. Their formal semantics is given operationally by the following transition rules:

International Conference on Innovative Views of the .Net Technology

83

 As shown by the rules above, dynamic combinators are sensible to transitions and
disappear upon completion. Differently, static combinators persist along transitions,
therefore establishing the system’s architecture. This group includes the parallel com-
position, P|Q, and restriction new K P, where K is a set of actions declared internal to
process P, i.e., not accessible from the process environment. Their operational seman-
tics is as follows:

 On top of process terms a number of notions of observational equivalence are de-

fined based on the capacity of processes to simulate each other behaviour (or an ob-
servable subset thereof). This entails a number of equational laws which form the
basis of a rich calculus to reason and transform behavioural specifications. Such laws
range, for example, from asserting the fact that both sum and parallel are abelian
monoids, idempotent in the first case, to the powerfull expansion law which enables
the unfolding of a process as a sum of all of its derivatives computed by the transition
relation.

Typically, the architecture of a system composed of several processes running in
parallel and interacting with each other is described by what is known in CCS as a
concurrent normal form

where K is the subset of local (i.e., internal) actions (or communication ports) and

each process has the shape of a non empty non deterministic choice between alterna-
tive execution threads.

Such a specification format seems to match reasonably well with the informal de-
scription of a software architecture as a collection of computational components (rep-
resented by processes P1 to Pn) together with a description of the interactions between
them (represented by actions whose scope is constrained by the scope of the new op-
erator. While this abstraction ignores some other fundamental aspects of architectural
descriptions (namely non functional features such as performance measures or re-
source allocation), it provides a usefull starting point for the software engineer.

In such a context, the following sections discuss how such behaviour expressions
can be prototyped in Cw to set the overall architectural structure of a software system.

International Conference on Innovative Views of the .Net Technology

84

Interestingly enough, as such description is based on a notation which supports a well-
studied calculus, one becomes equipped with the right tools to transform architectural
designs at very early phases of the design process.

1.3 Cw

 Cw[10] is an extension to the language at two different levels: data type support
for XML and table manipulation, on the one hand, and new asynchronous concurrency
abstractions, based on the join calculus [3], on the other. The language brings to life a
model of concurrency rich enough to be applicable both to multithreaded applications
running on a single machine and to the orchestration of asynchronous, event-based
components interacting over a (wide area) network.

The major contribution of Cw to concurrent programming, which constitutes our
main interest in Cw, is the introduction of chords and a new mechanism for asynchro-
nous method calls.

Chords contrast with normal methods where for each method declaration corre-
sponds a body containing the code of its implementation. Thus, in a chord a method
implementation can be associated to a set of methods. The code corresponding to a
chord only executes when all the methods in the head of the chord have been previ-
ously called. Since chords may have return values, a problem pops up: which caller
method should take the return value. The answer lies on a restriction in the definition
of chords, where chords bearing return values can have at most one synchronous
method in their head. Note however that this restriction to chords does not prohibit a
chord to be composed of only asynchronous methods, which constitutes a useful con-
struction for some behaviour implementations. Chords in this last case, cannot have
any return values and their declarations must be preceded with the Cw keyword when.

 Cw supplies C# with a new mechanism for asynchronous method calls that di-
verges from the one already present in C#. In C#, asynchronous method calls are de-
cided by the calling method, therefore if one wants to call a method asynchronously it
is him who decides to do so, by encapsulating the call with extra code, making use of
C# threading capabilities. adds a new method call mechanism where it is the called
method who decides how the call will behave, synchronously or asynchronously, and
without the need for any extra threading code. Such methods which can decide that
they can be called asynchronously have their own declarations preceded by the
async keyword, and as explained above, they cannot have any return values.

The next section reports on the use of Cw as a target language for prototyping be-
havioural specifications. Experience shows that translations become closer to the
corresponding CCS specification and smaller (in terms of the amount of code written).
The details of this approach are outlined below.

International Conference on Innovative Views of the .Net Technology

85

2 From CCS to Cw

The process of prototyping CCS specifications in Cw is similar to the correspond-
ing translation to C# [14]. In this case, however, implementations become more con-
cise and faithful to their corresponding specifications.

This section focus on the prototyping process, starting from arbitrary CCS specifi-
cations of a system behaviour to derive its skeleton architecture in Cw. The qualifica-
tion skeleton is a keyword here. Actually, we do not aim at deriving the whole system,
but just resorting to the behavioural requirements, as expressed by the CCS specifica-
tions, to automatically derive the bare structures of implementations, i.e., their build-
ing blocks and corresponding interaction and synchronization restrictions.

Thus, one is not particularly concerned with the flow of actual values as arguments
of methods or constructors, nor with how some eventually critical algorithms, specific
to individual components, will perform. At this level, one is rather interested in issues
like the way all processes communicate, what kind of messages do they pass to each
others, what are their internal states at some point, how control flow is performed,
how processes evolve in time and the implications of such evolutions in the other
processes that also compose the system.

2.1 Processes

CCS Processes are implemented as Cw classes, with the same name as the corre-
sponding CCS process identifier. It is inside this public class that all other process
constructions are implemented. Bearing this in mind, the prototyping process is de-
scribed in the sequel.

2.2 Actions

CCS actions are implemented either by methods, as before, or by chords to reflect
cases of dependence on other ports or to maintain strict sequencing control in process
execution. The distinction between the use of chords and methods and when to use
one or the other will be made clear below.

The implementation of CCS actions in Cw falls in three different generic cases, de-
pending on the nature of the ports inside the overall CCS system. Thus, one finds
different implementation approaches for output ports with complementary input ports,
input ports with complementary output ports and ports without any correspondent
complementary port. These three cases will be discussed in detail in the following
paragraphs.

2.2.1 Ports Without Complementary Ports
This is the simpler implementation case where a port without any complementary

ports is implemented as a normal Cw method. For input ports, the Cw derived method
bears the same name of the equivalent port in CCS .For output ports, the Cw method
is preceded by a c_ for output ports. Following is an example of an implementation of

International Conference on Innovative Views of the .Net Technology

86

a port p under these circumstances. The red italic parts of this example, as well as in
subsequent examples, refers to code that changes according to the needs of the imple-
menting system or of the context in which the method appears. In both cases, the text
is self explanatory.

public void c_p() {

p code
}

2.2.2 Input Ports With Complementary Output Ports
Input ports without complementary ports are implemented as chords of two meth-

ods, a synchronous and an asynchronous one. The asynchronous method is responsible
for signaling that the complementary output port, of the one being implemented, is
available for simultaneous execution. This asynchronous method has the name of the
correspondent port in CCS preceded by obs_. The synchronous method is the one
that truly implements the CCS port and is defined in a chord which depends on of the
previous asynchronous method. The synchronous method has the exact name of the
port being identified. The following example illustrates the implementation of a port p
under these conditions.

public async obs_p();
public void p() & obs_p() {
 p code
}

2.2.3 Output Ports with Complementary Input Ports
Methods implementing output ports, with corresponding complementary ports that

need to be executed simultaneously, wait to be called from the latter. A problem aris-
ing from the fact that this methods are being called is that if they are not allowed to
execute (because of the sequential order imposed by the CCS specification to the
process), they cannot make the current thread to stop. Otherwise the process in which
the output port is implemented will never evolve making the parts of system that de-
pend on it stopping too.

In order to overcome this undesirable effect associated to the requests from com-
plementary input ports to their respective output ports, one introduces a new asyn-
chronous method that captures the execution requests for these ports. Since asynchro-
nous methods do not cause the calling thread to stop, systems evolution is no longer
dependable on the requests for output ports. Even more, these asynchronous methods
act like a request queue, where all the requests are stored and delivered as soon as
some chord consumes them. The requests listener methods have the name of the out-
put port, for which they receive requests, preceded by allow_c_. The next example
presents the implementation of a generic port p under these conditions.

public async request_obs_p(object obj) {
 c_p(obj);
}

International Conference on Innovative Views of the .Net Technology

87

public void c_p(object obj) {
 c_p code

 if(obj is CallerType1) {
 (CallerType1 obj).obs_p();
 }
 .
 other possible requesters
 .
 if(obj is CallerTypeN) {
 (CallerTypeN obj).obs_p();
 }
}

The sequence of if’s statements in the example to test the type of the requesting

object, is due to the inexistente of dynamic casts in . This way, at implementation
time, one as to know which type of objects may perform requests to a certain port.

How requests for a specific output port arriving to a process are treated, i.e.
whether they will be attended or not, is another issue which depends on the sequential
execution of a process. This topic is discussed in the next section.

2.3 Sequential Behaviour

In CCS sequential behaviour is achieved through the prefix operator. Consider, for
example, the specification of an elementary vending machine which receives a coin,
retrieves a coffee and finally returns to the initial state:

Note that the . operator of the above example is responsible for the fact that in

process one can only perform action after action has been done. Even more, in proc-
ess M the execution of action is immediately followed by a single execution of action
.

It is imperative that such behaviours be strictly translated to the implementation of
such a system. To guarantee the correct sequential execution of processes, two differ-
ent cases must be addressed, namely input ports and output ports.

Methods implementing input ports are always called by their immediate preceding
ports. This simple implementation rule guarantees by itself the correct sequential exe-
cution of input ports.

For methods implementing output ports the problem is a bit harder because these
methods are not called by the ones which sequently precede them, but by any method
which requires their use synchronization. They must therefore be guarded by a sema-
phore insuring the sequential evolution of the process. This semaphore is implemented
by an asynchronous method (mentioned as allow_c_p() in the example) which is
then bounded to the port resulting in a chord. This is illustrated in the following ex-
ample for a generic port p with complementary port .

public async allow_c_p();

public void c_p(object obj) & allow_c_p() {
 c_p code

International Conference on Innovative Views of the .Net Technology

88

 if(obj is CallerType1) {
 ((CallerType1) obj).obs_p();
 }
 .
 other possible requesters
 .
 if(obj is CallerTypeN) {
 ((CallerTypeN) obj).obs_p();
 }
}

2.4 Reactions

The way reactions are implemented has already been partially revealed in the pre-
vious section. As mentioned above output ports with corresponding complementary
ports in the specification wait to be called by the latter. Input ports, on the other hand,
are always called by their predecessors and, therefore, are not required to be bounded
to semaphores to ensure their correct sequential execution.

Nevertheless, input ports with corresponding complementary ports, which need to
be executed simultaneously, are also implemented as chords to force simultaneity of
action occurrence9 . Such a port must perform a previous call to the asynchronous
method request_obs_Port() in the process(es) holding its corresponding output
port. This call acts like a request activation, signalising the beginning of an active
waiting state.

2.5 Alternative Reactions

Alternative reactions are implemented by defining their initial ports as chords
bounded to a semaphore (alternative()). This is a private asynchronous method
which becomes available whenever the choice for the alternative reaction is also
available.

With the introduction of alternative reactions, one is also opening space for none
determinism to arise. However, it can be prototyped by performing random choices in
the actions previous to the alternative reaction. Note, however, that one only needs to
make random choices whenever the first execution port after an alternative choice is
an input port, because output ports execution initiative is not determined by the proc-
ess in which they are specified.

2.6 The Parallel Architecture

Every process prototype is equipped with an asynchronous start() method
which wakes up the process and starts its execution. The parallel composition in the

9 understood here as atomicity in the sense that both actions occur in an atomic

way, that is, without being interleaved by other events.

International Conference on Innovative Views of the .Net Technology

89

CCS specification is then implemented by calling the start() method of each proc-
ess composed in a parallel context.

3 Dining Philosophers Example

To illustrate the prototyping of systems in , a solution to the dining philosophers
problem [2] was developed.

The dinning philosophers problem is a classical resource sharing problem. It con-
sists of five philosophers sitting at a table with five forks and five dishes of food. Each
philosopher can be in three different states. A first one where he is thinking, situation
in which he is not handling any fork, a second one where he is trying to grab two forks
in order to eat, and a third one where the philosopher is eating by holding two forks.
Since each philosopher needs two forks to eat, there can be at most two philosophers
eating at the same time. The deadlock situation in which each philosopher is grabbing
one fork must be excluded from the solution.

Following the methodology presented in this paper, one starts from a CCS specifi-
cation of the problem, which is hopefully self-explanatory.

Because of its size and details, it is not possible to present the entire Cw implemen-

tation here, but a representative implementation of each class of processes follows10 .

10The complete implementation is available at

http://wiki.di.uminho.pt/wiki/bin/view/Nuno

International Conference on Innovative Views of the .Net Technology

90

public class P12 {

 public Fork1 pfork1;
 public Fork2 pfork2;

 public async start() {
 c_think();
 }

 public void c_think() {
 Console.WriteLine("Phil_12 is thinking...");
 Random ran = new Random();
 System.Threading.Thread.Sleep(ran.Next(5000));

 double d = ran.NextDouble();
 if(d >= 0.5) {
 c_think();
 } else {
 pfork1.request_obs_fork1(this);
 fork1();
 }
 }

 public async obs_fork1();
 public void fork1() & obs_fork1() {
 Console.WriteLine("Phil_12 takes fork 1");
 pfork2.request_obs_fork2(this);
 fork2();
 }

 public async obs_fork2();
 public void fork2() & obs_fork2() {
 Console.WriteLine("Phil_12 takes fork 2");
 c_eat();
 }

 public void c_eat() {
 Console.WriteLine("Phil_12 is eating...");
 Random ran = new Random();
 System.Threading.Thread.Sleep(ran.Next(5000));
 allow_c_fork1();
 }

 public async request_obs_fork1(object obj) {
 c_fork1(obj);
 }

 public async allow_c_fork1();
 public void c_fork1(object obj) & allow_c_fork1() {
 Console.WriteLine("Phil_12 releases fork 1");
 if(obj is Fork1) {
 ((Fork1) obj).obs_fork1();
 }
 allow_c_fork2();
 }

 public async request_obs_fork2(object obj) {
 c_fork2(obj);
 }

 public async allow_c_fork2();
 public void c_fork2(object obj) & allow_c_fork2() {
 Console.WriteLine("Phil_12 releases fork 2");
 if(obj is Fork2) {
 ((Fork2) obj).obs_fork2();
 }

International Conference on Innovative Views of the .Net Technology

91

 Random ran = new Random();
 double d = ran.NextDouble();
 if(d >= 0.5) {
 c_think();
 } else {
 pfork1.request_obs_fork1(this);
 fork1();
 }
 }
}

public class Fork1 {

 public async start() {
 allow_c_fork1();
 }

 public async request_obs_fork1(object obj) {
 c_fork1(obj);
 }

 public async allow_c_fork1();
 public void c_fork1(object obj) & allow_c_fork1() {
 if(obj is P51) {
 ((P51) obj).obs_fork1();
 ((P51) obj).request_obs_fork1(this);
 }
 if(obj is P12) {
 ((P12) obj).obs_fork1();
 ((P12) obj).request_obs_fork1(this);
 }

 fork1();
 }

 public async obs_fork1();
 public void fork1() & obs_fork1() {
 allow_c_fork1();
 }
}

It is also interesting to compare the implementation obtained by applying the pre-

sented method with the one present in the Cw documentation [10]. There, the bounda-
ries of each identity in the system are not clear nor are the means by which they com-
municate with each other or the resource sharing is accomplished.

By taking our approach to the problem, one starts by specifying the solution in
CCS, which is a concise and formal language in which the reasoning about the solu-
tion is focused on the important aspects of problem and not on possible implementa-
tion problems.

From this specification a implementation is derived which reflects many of the
characteristics of the equivalent , notably a concise description of the solution, a clear
definition of the intervening entities in the system and a precise notion of the behav-
ioural evolution of each process taking part in the overall system.

This way, in the implementation of the dinning philosophers above, it is easy to in-
spect the involving entities, since each process corresponds to a different file, and
analyse the different process behaviour at the light of the derivation rules. Communi-
cation between the different identities and their interrelation is also easily perceived

International Conference on Innovative Views of the .Net Technology

92

by inspecting the main function where references to the communicating processes are
crossed and where the instances of the processes are created.

4 Conclusions and Future Work

The example discussed above is quite illustrative of the distance between architec-
tural specifications, in suitable formalisms, and these implementations. The objective
of this paper is to narrow such a gap.

A systematic method to derive implementations is already a step in this direction by
eliminating possible (and probable) human implementation errors.

Our basic claim is that, at early phases of the software architecture design, the
software architect should only need to worry about the actual architectural details of
the problem. By reasoning in CCS and following the present method, the software
architect is released from the burden of thinking about possible implementation de-
tails, that can but complicate the quest for a desirable architectural solution. Moreover
it is well-known that the gap between architectural specifications and implementations
only increases, at least linearly, with the complexity of the problems being addressed.

A limitation of the presented method and a good topic for future work, is the one
arising from processes having the same port appearing in different choice branches. In
these cases, a possible solution would involve the renaming of this port to a fresh
name and the reflection of the renaming in the rest of the process implementation.

A second topic for future work is the extension of the proposed method in order to
capture typed value-passing arguments between ports.

Finally, we are working on the development of a tool to implement the presented
ideas, from CSS specifications to their derived implementations, extending the transla-
tor for documented in [14].

References

[1] R. Allen and D. Garlan. A formal basis for architectural connection. ACM TOSEM,
6(3):213–249, 1997.

[2] E. W. Dijkstra. Cooperating sequential processes. pages 65–138, 2002.
[3] C. Fournet, G. Gonthier, J.-J. Lévy, L. Maranget, and D. Rémy. A calculus of mobile agents.

In Proc. CONCUR’ 96. Springer Lect. Notes Comp. Sci. (1119), 1996.
[4] D. Garlan. Formal modeling and analysis of software architecture: Components, connectors

and events. In M. Bernardo and P. Inverardi, editors, Third International Summer School on
Formal Methods for the Design of Computer, Communication and Software Systems: Soft-
ware Architectures (SFM 2003). Springer Lect. Notes Comp. Sci, Tutorial, (2804), Berti-
noro, Italy, September 2003.

[5] D. Garlan and M. Shaw. An introduction to software architecture. In V. Ambriola and
G. Tortora, editors, Advances in Software Engineering and Knowledge Engineering (volume
I). World Scientific Publishing Co., 1993.

[6] E. Gunnerson. A Programmer’s Introduction to . Apress, 2000.

International Conference on Innovative Views of the .Net Technology

93

[7] C. A. R. Hoare. Communicating Sequential Processes. Series in Computer Science. Pren-
tice-Hall International, 1985.

[8] M. Lumpe. A -calculus Based Approach to Software Composition. PhD thesis, University of
Bern, January 1999.

[9] J. Magee, N. Dulay, S. Eisenbach, and J. Kramer. Specifying distributed software architec-
tures. In 5th European Software Engineering Conference, 1995.

[10] Microsoft Research. Documentation, 2004.
[11] R. Milner. Communication and Concurrency. Series in Computer Science. Prentice-

Hall International, 1989.
[12] R. Milner. Communicating and Mobile Processes: the -Calculus. Cambridge Univer-

sity Press, 1999.
[13] R. Milner, J. Parrow, and D. Walker. A calculus of mobile processes (parts I and II).

Information and Computation, 100(1):1–77, 1992.
[14] N. Rodrigues and L. S. Barbosa. Prototyping behavioural specifications in the .Net

framework. In A. Mota and A. Moura, editors, Proc. 7th Brazilian Symposium on Formal
Methods (SBMF’2004), pages 108–118. UFP, November 2004.

