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Abstract. Over the last decade, software architecture emerged as a crit-
ical design step in Software Engineering. This encompassed a shift from
traditional programming towards the deployment and assembly of inde-
pendent components. The specification of the overall system structure,
on the one hand, and of the interactions patterns between its compon-
ents, on the other, became a major concern for the working developer.
Although a number of formalisms to express behaviour and supply the
indispensable calculational power to reason about designs, are available,
the task of deriving architectural designs on top of popular component
platforms has remained largely informal.
This paper introduces a systematic approach to derive, from behavioural
specifications written in Ccs, the corresponding architectural skeletons
in the Microsoft .Net framework in the form of executable C] code. Such
prototyping process is automated by means of a specific tool developed
in Haskell.

1 Introduction

1.1 Motivation: Behaviours for Architectures

In recent years the specification of software architectures [4, 3] has been recog-
nized as a critical design step in software engineering. Its role is to make explicit
the underlying structure of a software system, identifying its components and
the interaction dynamics among them. I.e., the behavioural patterns which char-
acterize their interactions.

Classical process algebras (like, e.g., Ccs [9] or Csp [6]) on the other hand,
emerged over the last thirty years as calculi to understand and reason about
systems where interaction and concurrency play a significant, even dominant,
role. It is not suprising that such calculi, which embodied precise notions of
behaviour and observational equivalence, as well as specific proof techniques,
were often integrated in the design of generic architectural description languages
(ADL). Typical examples are Wright [1], based on Csp, and Darwin [8] or
Piccola [7], which integrate a number of constructions borowed from the π-
calculus [11, 10].

It is not the purpose of this paper to introduce a new description language
for software architectures, not even to suggest additional features to existing



languages. Our motivation is essentially pragmatic: suppose behavioural requir-
ments for a given system are suplied as a collection of process algebra expressions;
how can such requirements be incorporated on the design of a particular system?
In other words, how can such requirements be animated and, which is even more
important, how can they guide the overall design of the application architecture?

Our implementation target is the .Net framework [5] for component-based,
distributed application design. Behavioural specifications, on the other hand, are
written in the Ccs [9] notation. The paper contribution is basically a strategy
to implement such Ccs specifications on top of C] .Net. Rather than relying in
a specific ADL, we resort to the behavioural specification to extract the overall
structure of the system, identifying its active components with the declared
processes, the interaction vocabulary, as recorded in the specification actions,
and the, eventually, distributed, execution control, from the specification body.

The prototyping strategy proposed in this paper is described in section 2 and
its application to a small example — the specification of a control architecture
for a road/railway cross — discussed in section 4. The systematic character of
the approach proposed is atested by the possibility of rendering it automatic:
section 3 describes a small tool for teh derivation of C] prototypes from Ccs
specifications. For quick reference, the next subsection provides a (rather terse)
introduction to Ccs.

1.2 Ccs: An Overview

The Ccs notation [9] describes labelled transition structures interacting via a
particular synchronization discipline imposed on the labels. Such synchronization
discipline assumes the existence of actions of dual polarity (called complementary
and represented as, e.g., α and α), whose simulataneous occurence is understood
as a synchronous handshaking, externally represented by a non observable action
τ .

Sequential, non deterministic behaviours are built by what in Ccs are called
dynamic combinators: prefix, represented by a.P , where a denotes an action,
for action sequencing, and sum, P + Q for non deterministic choice. The inert
behaviour is represented by 0. Their formal semantics is given operationally by
the following transition rules:

α.E
α−→ E

E
α−→ E′

E + F −→ E′

F
α−→ F ′

E + F
α−→ F ′

As shown by the rules above, dynamic combinators are sensible to trans-
itions and disappear upon completion. Differently, static combinators persist
along transitions, therefore establishing the system’s architecture. This group
includes the parallel composition, P | Q, and restriction newK P , where K is a
set of actions declared internal to process P , i.e., not accessible from the process
environement. Their operational semantics is as follows:



E
α−→ E′ F

α−→ F ′

E | F τ−→ E′ | F

E
α−→ E′

E | F α−→ E′ | F

F
α−→ F ′

E | F α−→ E | F ′

E
α−→ E′

(if α /∈ {β, β})
new {β} E

α−→ new {β} E′

On top of process terms a number of notions of observational equivalence are
defined based on the capacity of processes to simulate each other behaviour (or an
observable subset thereof). This entails a number of equational laws which form
the basis of a rich calculus to reason and transform behavioural specifications.
Such laws range, for example, from asserting the fact that both sum and parallel
are abelian monoids, idempotent in the first case, to the powerfull expansion
law which enables the unfolding of a process as a sum of all of its derivatives
computed by the transition relation.

Typically, the architecture of a system composed of several processes running
in parallel and interacting with each other is described by what is known in Ccs
as a concurrent normal form

newK (P1 | P2 | ... | Pn)

where K is the subset of local (i.e., internal) actions (or communication ports)
and each process Pi has the shape of a non empty non deterministic choice
between alternative execution threads.

Such a specification format seems to match reasonably well with the informal
description of a softrware architecture as a collection of computational compon-
ents (represented by processes P1 to Pn) together with a description of the
interactions between them (represented by actions whose scope is constrained
by the scope of the new operator. While this abstraction ignores some other
fundamental aspects of architectural descriptions (namely non functional fea-
tures such as performance measures or resource allocation), it provides a usefull
starting point to the software engineer.

In such a context, the following sections discuss how such behaviour expres-
sions can be prototyped in C] to set the overall architectural structure of a
software system. Interestingly enough , as such description is based on a nota-
tion which supports a well-studied calculus, one becomes equipped with the
right tools to transform architectural designs at very early phases of the design
process.

2 Prototyping Behaviour in the .Net Framework

This section focus on the prototyping process, starting from arbitrary Ccs spe-
cifications of a system behaviour to derive its skeleton architecture in .Net.
The qualificative skeleton is a keyword here. Actually, we do not aim to derive
the whole system, but just to resort to the behavioural requirements, as ex-
pressed by the Ccs specifications, to automatically derive the bare structures of



implementations, i.e., their building blocks and corresponding interaction and
synchronization restrictions.

Thus, one is not particularly concerned with the flow of actual values as ar-
guments of methods or constructors, nor how some eventually critical algorithms
specific to individual components will perform. At this level, one is rather inter-
ested in issues like the way all processes communicate, what kind of messages
do they pass to each others, what are their internal states at some point, how
control flow is performed, how processes evolve in time and the implications of
such evolutions in the other processes that also compose the system. Bearing
this in mind, the prototyping process is described in the sequel.

2.1 Actions

An action in a Ccs specification corresponds to a method whose name is equal
to the action’s label in the corresponding implementation. Since such methods
typically implement input ports in the system, they have invariably data type
void as the domain of their return values. On the other hand, complementary
actions specifying output ports, denoted in Ccs by an overline annotation , as in
e.g., coffee, correspond to methods which may return values of any valid data
type.

Accessibility restrictions on methods will be addressed later. For the moment,
let us consider all these methods to be public. As an example, consider the
following Ccs specification of a simple vending machine which receives a coin,
performs an internal computation, retrieves a coffee and finally returns to the
initial state:

M ∼= coin.τ.coffee.M

In C] the coin port will be implemented as

public void coin() { }

In the method body one would define later the corresponding computation which
processes the coin reception.

On the other hand, the coffee port, which specifies an output port, will be
translated as

public cof coffee() { }

declaring a method able to return a value of type cof. Of course, in this example,
the choice of returning some value is rather optional, since the action of returning
a coffee could be achieved inside the definition of the coffee method, by some
internal computation, instead of returning the desired output.



2.2 Processes

Processes in Ccs correspond in C] to identically named classes. Such classes en-
capsulate all the methods derived from the process ports specification. Therefore,
in the previous example, one would get the following C] class:

public class M {

public void coin() { ... }

public cof coffee() { ... }

}

Note that class M implements the context for the process we have been con-
sidering, by declaring and grouping its two actions, but still, it does not capture
the behaviour of the Ccs process M . In fact, there is no method invocation or-
der subjacent to class M, whereas in process M one can only perform method
coffee() after method coin() has been activated. Even more, in process M
the execution of method coin() is immediately followed by a single execution
of method coffee(). The specification does not allow, for example, that several
calls to coin() precede the coffee() call or that several calls to coffee() follow
a coin() insertion. Addressing such issues concerned with the process execution
order requires some additional control flow code on the implementation side.
Such is the topic of the following subsection.

2.3 Reactions

Prototyping sequential port activation, as typically specified in a Ccs expres-
sion, requires the introduction of an additional variable for state control. This
auxiliary variable, denoted by state and simply declared of type string, contains
the current state, captured by the name of the last executed method. Opera-
tionally, every method must inspect this variable to check whether its value is
exactly the identifier of the port that precedes the current one.

For initial ports, i.e., ports corresponding to initial actions on the Ccs spe-
cification, a slightly different approach is adopted. In such cases, the correspond-
ing methods must check whether variable state is either null or contains one
of the port identifiers from the set of ports that precede a (re-)execution of the
current process.

The implementation of the process flow control just sketched requires the in-
troduction of three basic functions which analyses the Ccs specification, namely
initialPorts(P ), precPorts(P ), finalPorts(P ). Their purpose is to identify the
initial, preceding and final actions on a Ccs expression, respectively. Once these
functions evaluate, the rest of the implementation process falls into pretty-
printing and Class accessibility control routines.

Nevertheless, one still has to prevent that no sequential ports execute sim-
ultaneously. To accomplish this, a method must first set the state variable to a
particular temporary execution value (in the example the ”processing” value
is used), and release it at the end of its execution, a scheme similar to what
is called a semaphore in classical concurrency control. This way, one not only



guaranties that no sequential ports execute simultaneously, but also gets a way
to inspect the current state of a particular port. Note that any port in the system
is either performing some computation (revealed by the value ”processing” in
the state variable) or prepared to be called.

Applying the above translation scheme to the example at hands results in
the following C] code:

public class M

{

private string value;

public void coin()

{

if(state != null || state.Equals("coffee"))

{

state = "processing";

"code from the coin computations"

state = "coin";

}

else { throw new Exception("Process sequence violation."); }

}

public cof coffee()

{

if(state.Equals("coin"))

{

state = "processing";

"code from the coffee computations"

state = "coffee";

}

else { throw new Exception("Process sequence violation."); }

}

}

2.4 Alternative Reactions

Alternative reactions in a behavioural specification are achieved by the Ccs non
deterministic choice combinator +. At the implementation level this combinator
is regarded as a special sequence control. This is implemented on the analysis
phase carried on by functions initialPorts(P ), precPorts(P ) and finalPorts(P ),
on which all process control flow stands, which are defined to deal correctly with
the choice combinator + while evaluating over the inspected processes.

2.5 Restriction

Interaction restrictions within a process are handled in Ccs by the new com-
binator. Its implementation at the prototype level resorts to the accessibility
mechanisms of the .net platform. This way, for every variable in the scope of a



Ccs restriction, the corresponding method is set to an internal method, rather
than a public one, as used so far in our toy example.

With this additional step, the methods declared internal become only avail-
able for classes inside the same assembly, isolating them from possible direct
interactions with other classes.

Through accessability control, one may regard a .Net prototyping structure
as a process execution domain, where every identifier lies within a precise ex-
ecution scope. Again, a question remains: where should the boundaries of the
system be set?

At a first glance one might think that processes are themselves good can-
didates for the boundary definition of the corresponding classes. This approach,
however, would easily lead to a great amount of assemblies (one per process)
without taking any direct advantage out of it, even because there can be no
bounded variables at the level of the entire system. Thus, a minimalist approach
is preferred, where one starts with only one assembly for the entire system,
and then relies on each new occurence in the Ccs expression to define pro-
cess scopes and the corresponding bounded variables. Such scopes are created at
implementation time leading to the construction of fresh assemblies with their
methods correctly addressed in terms of accessibility.

By following this methodology for prototyping Ccs restrictions, one not only
gets a correct isolation of process ports, but also specific process space domains
within a system, which can be regarded as smaller (sub)systems of the overall
architecture.

With the introduction of subsystems, another characteristic of typical archi-
tectural reasoning becomes explicit at the prototyping level: the ability to reason
safely on simpler and isolated parts of the entire system.

2.6 The Parallel Architecture

The previous sections have shown how sequential Ccs processes can be correctly
implemented in C]1 , but one is still missing the entire picture of any real
system composed of several interacting processes, as specified by a Ccs parallel
expression.

To address this last issue two techniques are presented, a first one, where
the execution of the system is totally controlled by a system’s analyser, and a
second one, closer to the execution model of Ccs, where processes evolve in time
by internally reacting to each other until the system reaches a point where it
requires interaction with the outside world.

Both ways of encapsulating an entire system and providing a simple way
to test it, rely on the introduction of an additional class, called the system
interaction class. This class encapsulates the entire system, exposing only its
free variables and also ensuring a correct execution order for all the assembled
processes.

1 Actually such a prototyping methodology can be tunned to any object-oriented
language, or with some modifications, even to classical imperative ones.



The first technique mentioned above relies on a single class with a single
method which is able to deal with all the assembled processes. This method
needs to keep the state of all processes and, on every action occurrence, it checks
all possible interactions, performing only one reaction at a time.

The second technique builds a system interaction class in a similar way, but
for the fact that, for each action occurence (and corresponding execution call),
all the internal reactions are performed until the system stops for communication
on an external input or output port or when facing a non deterministic control
choice.

At this point, one might think that some of the previous presented strategies,
addressing process restriction and correct process order reaction, were unne-
cessary since the system interaction class already addresses all of this issues.
However, the system interaction class should be regarded as a simpler way of
interacting with the entire system, and not as the only way of interaction. At
the prototyping level it is always possible, and even desirable, to make use of
single processes or process’s domains for interaction in order to test individual
parts of the system or, in general, any of its sub-architectures.

3 The Automatic Translator

To automate the task of applying this methodology for deriving C] architectural
skeletons out of Ccs specifications, a specific tool was developed in Haskell.

The translator is a two phase procedure. The first phase consists of a parser
for the Ccs notation which converts the processes’ specifications into a suitable
Haskell data type. The implementation of this phase procedure is achieved
by the CCSParser Haskell module, which resorts to the Parsec libraries.
Therefore, after the parsing stage, all Ccs specifications are encoded in the
following data type:

data Process a = Port a (Process a)

| CompPort a (Process a)

| Sum (Process a) (Process a)

| Conc (Process a) (Process a)

| New [a] (Process a)

| RCall

| PCall (ProcDef a)

| ProcessEnd deriving Show

data ProcDef a = PDef (String, Process a) deriving Show

The second phase of the translator performs the calculation of the C] im-
plementation out of instances of data type Process a. This second phase is
implemented by the CCS2DotNet module, which includes the calcProc func-
tion, responsible for the generation of the corresponding C] code. The calcProc
function relies on three other functions which analyze the Ccs specification to
accomplish its task. Such functions were described above. They are, respect-
ively, getFinalPorts, which computes all the final ports of a given process,



getInitialPorts, which computes all the passable initial ports when a process
executes and finally portPreds, which finds all the possible preceding ports of
a given port in a given system.

4 An Example

As a small case study, consider the specification of a control system governing
a crossing between a road and a railway. Notice this example, in despite of its
small size, has a number of characteristics which are paradigmatic of the sort of
systems this prototyping approach may be useful for. First of all it is a simple and
effective system, concerned with a real world situation which embodies safety-
critical requirements. Avoidance of deadlock and safe control flow are certainly
properties which require to be formally proved. This can be done within the Ccs
calculus. Once proved, our prototyping approach allows the software architect to
derive an architectural skeleton of the final implementation which is, therefore,
correct by construction.
We start with the following Ccs specification, due to C. Stirling [12]:

Road ≡car.up.ccross.dw.Road

Rail ≡train.green.tcross.red.Rail

Signal ≡green.red.Signal + up.dw.Signal

C ≡new{green, red, up, dw}(Road|Rail|Signal)

The specification is self-explanatory: basically note that process Signal ensures
the mutual exclusion of control access to both the (physical) semaphore con-
trolling the railway and the gate governing the road traffic. The overall system
is specified by process C which, presented in the concurrent normal form, exposes
the overall system’s architecture.

To use of the prototype derivator to automatically implement process C as a
skeleton system architecture in .Net, one has to perform the two-phase process
described in the previous section. For illustration purposes, we shall consider
here process Signal in some detail. A similar procedure applies to the other
processes.

The first step is to execute function parseCCS from module CCSParser on
string /green.red.Signal + /up.dw.Signal which captures the definition of
process Signal. From this one gets the Signal process corresponding value in
terms of data type Process a, i.e.,

Sum (CompPort "green" (Port "red" RCall)) (CompPort "up" (Port "dw" RCall))

Once process Signal is defined as a value of Process a data type, one just has
to apply function calcProc to that value. Function



calcProc ::(Eq a, Show a) => Process a -> ShowS

returns a value of type ShowS = String -> String. The advantage of resorting
to ShowS values, instead of directly working with domain String, is that func-
tional composition with ShowS maintains linear complexity in functions dealing
with many string concatenations.

The result returned by function calProc is stimulated with the initial action
string (in this case the empty string), and the result written to a .cs file. To
accomplish this last step, function test is used. This receives a value of type
Process a and a string representing the file name to be written. The final result
of function test over the previous calculated value of process Signal is the
following

using System;

namespace CCS {

public class P

{

private string state;

public void greenComp()

{

if(state == null || state.Equals("red") || state.Equals("dw") )

{

state = "processing"

//(computational details to be supplied)

state = "green";

}

else

{

throw new Exception("Process sequence violation.");

}

}

public void red()

{

if( state.Equals("green") )

{

state = "processing"

//(computational details to be supplied)

state = "red";

}

else

{

throw new Exception("Process sequence violation.");

}

}



public void upComp()

{

if(state == null || state.Equals("red") || state.Equals("dw") )

{

state = "processing"

//(computational details to be supplied)

state = "up";

}

else

{

throw new Exception("Process sequence violation.");

}

}

public void dw()

{

if( state.Equals("up") )

{

state = "processing"

//(computational details to be supplied)

state = "dw";

}

else

{

throw new Exception("Process sequence violation.");

}

}

}

Notice that only the structure subjacent to process Signal is defined. The
definition of specific computations inside each method implementing the process
ports is left behind and signalized by the

//(computational details to be supplied)

marks. It is in this sense that our prototype implementations have a skeleton
character. In any case, however, the underlying architecture specified in the
Ccs expression has been translated to the .Net framework in a way which is
both executable and guarantees, by construction, all the relevant safety-critical
properties.

5 Conclusions and Future Work

As shown in the example just discussed, this paper proposes a simple, yet power-
ful, approach to the automatic derivation of C] prototypes of behavioural spe-
cifications in Ccs. Such C] code can be used in a number of different contexts.
For example, an underlying target application can be stateless environments



which abound in the internet, with particular relevance to WebServices. Target-
ing this last paradigm, one can easily distribute processes in an (inter/intra)net
and make use of SOAP to manage all external method calls.

The motivation is exactly the one typically invoked on the use of formal
methods: first resort to a formal notation to enable precise expression of re-
quirements and calculation power to discusse correctness and refinement. Then,
derive executable prototypes in suitable implementation frameworks closer to
the working programmer concerns.

We believe that the working programmer is more and more becoming the
working software architect, whose job is essentially to look for suitable software
components and plugging them in order to guarantee some desirable behaviour.
If Ccs seems to be a sound and relatively well-known calculational formalism,
.Net is becoming an almost de facto standard for implementing component
based apllications. The approach, however, is largely independet of the interac-
tion discipline of Ccs: for example, Csp-like syncronizations, as used in some
popular ADLs, or broadcast communication, can easily be incorporated as well.
In any case the emphasis is shifted from stand-alone programming to architec-
tural design and, in such a sense, we believe the approach sketched in this paper
may be found useful in practice. It should be mentioned that this ideas have
been used in the context of a project on architectural reconstruction of legacy
systems as well as in a undergraduate course on software architecture taught to
third-year students of a Computer Science degree at Minho University.

Current work includes

– The generation of test classes and the derivation of a web-based interface for
prototype testing.

– The extension of the prototyping approach to mobile applications, in which
case behavioural specifications are to be given in the Π-calculus.

Finally, it should be mentioned that C] itself is also evolving towards the
integration of primitive distribution and concurrency control primitives at the
language level [2]. This will certainly provide a richer environment for architec-
tural prototyping.
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