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Abstract. Program slicing is a well known family of techniques used to identify code
fragments which depend on or are depended upon specific program entities. They are
particularly useful in the areas of reverse engineering, program understanding, testing
and software maintenance. Most slicing methods, usually oriented towards the im-
peratice or object paradigms, are based on some sort of graph structure representing
program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph
transversal algorithms. This paper proposes a completely different approach to the sli-
cing problem for functional programs. Instead of extracting program information to
build an underlying dependencies’ structure, we resort to standard program calcula-
tion strategies, based on the so-called Bird-Meertens formalism. The slicing criterion
Is specified either as a projection or a hiding function which, once composed with the
original program, leads to the identification of the intended slice. Going through a
number of examples, the paper suggests this approach may be an interesting, even if
not completely general, alternative to slicing functional programs.

1. Introduction

By the end of the centurgrogram understandingmerged as a key concern in software engin-
eering. In a situation in which the only quality certificate of the running software artifact still is
life-cycle endurance, customers and software producers are little prepared to modify or improve
running code. However, faced with so risky a dependence on legacy software, managers are more
and more prepared to spend resources to increase confidence.enthe level of understand-

ing of — their (otherwise untouchable) code. In fact the technological and economical relevance
of legacysoftware as well as the complexity of their re-engineering entails the need for rigour.

This paper focus on a particular program understanding technique — calliedslicing
[20, 18, 19] — which is reframed as a calculational problem inalgebra of programmingg].
More specifically, computing prograstices i.e., isolating parts of a program which depend on
or are depended upon a specific computational entity, is reduced to the problem of solving an
eqguation on the program denotational domain.

Program slicing, originally introduced in Weiser’s thesis [18], is a family of techniques
for restricting the behaviour of a program to some fragment of interest wiighgontributes to
the computation of a particular output or state variable. Slices are usually regarded as executable
sub-programs extracted from source code by data and control flow analysis. Their computation is
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driven by what is referred to asséicing criterion, which is, in most approaches, a pair containing

a line number and a variable identifier. From the user point of view, this represents a point
in the code whose impact she/he wants to inspect in the overall program. From the program
slicer view, the slicing criterion is regarded as #ezdfrom which a program slice is computed.
According to Weiser original definition a slice consists of all statements with some direct or
indirect consequence on the result of the value of the entity selected as the slicing criterion. The
concern is to find only the pieces of code that affect a particular entity in the program. A basic
distinction is drawn betweebackwardsslicing which collects all data and code fragments on
which the slicing criterion depends, afatward slicing [9] which seeks for what depends on or

is affected by it.

Slicing techniques are typically based on some form of abstract, graph-based represent-
ation of the program under scrutiny, from which dependence relations between the entities it
manipulates can be identified and extracted. Therefore, in general, the slicing problem reduces
to sub-graph identification with respect to a particular node. What kinds of computational entit-
ies can be represented in a node and what code dependencies does the underlying graph support
are therefore the typical concerns.

As mentioned above, the approach sketched in this paper takes a completely different
path. Instead of extracting program information to build an underlying dependencies’ struc-
ture, we resort to standard program calculation strategies, based on the so-called Bird-Meertens
formalism. The slicing criterion is specified either aprajectionor ahiding function which,
once composed with the original program, leads to the identification of the intended slice. The
process is driven by the denotational semantics of the target program, as opposed to more clas-
sical syntax-oriented approaches documented in the literature. To make calculation effective
and concise we adopt thmintfree style of expression [4] popularized among the functional
programming community.

This approach seems to be particularly suited to the analysigsnational programs.
Actually, it offers a way of going inside function definitions and, in some cases, to extract new
functions with a restricted input or output. Note that through approaches based on dependencies’
graphs one usually works at an 'external’ level, for example collecting references to an identifier
or determining which functions make use of a particular reference. A recent paper by the authors
[15] explore such graphs to identiomponentsn functional legacy code. Here, however, we
take a completely different path.

The paper is organised as follows. Section 2 discusses the main intuitions behind our
approach, characterizing, in particutzackwardandforward slicing as calculational problems.
The following section contains the main contribution: a case study on slicing by calculation
inductivefunctions. A number of concrete examples are discussed. Finally section 4 concludes
and points some directions for future work. In a brief appendix, the basic constructions and laws
of programming with functions are recalled for reference.

2. Slicing Equations

2.1. Algebra of Programming

In his Turing Award lecture J. Backus [2] was among the first to advocate the need for program-
ming languages which exhibit adgebrafor reasoning about the objects it purport leading to



the development of program calculi directly based on, actually driven by, type specifications.
Since then this line of research has witnessed significant advances basedwamctbgal ap-
proach to datatypes [11] and reached the status of a program calculus in [4], building on top of a
discipline of algorithm derivation and transformation which can be traced back to the so-called
Bird-Meertens formalisnib, 10, 12] and the foundational work of T. Hagino [8].

In this paper we intend to build on this collectionmbgramming lawgo solve what we
shall callslicing equationsPointwise notation, as used in classical mathematics, involving oper-
ators as well as variable symbols, logical connectives, quantifiers, etc, is however inadequate to
reason about programs in a concise and precise way. This justifies the introductiooiifieee
program denotation in which elements and function application are systematically replaced by
functions and functional composition. The translation of the target program into an equivalent
pointfree formulation is well studied in the program calculi community and shown to be made
automatic to a large extent. In [13, 17] its role is compared to one played by the Laplace trans-
form to solve differential equations in a linear space. Appendix A provides a quick introduction
to the pointfree algebra of functional programs.

2.2. Slicing Equations

Our starting point is a very simple idea: to identify the 'component’ of a functionA —— B
affected by a particular argument or contributing to a particular result all one has to darés to

or postcomposed with an appropriate function, respectively. In the first case the contribution
of an argument is propagated through the bodp pforgetting about the role of other possible
argumentsy is a called aniding function and equation

d.o = @ 1)

captures thdorward slicing problem. @’ is the forward slice ofb wrt to slicing criteriono.
The dual problem corresponds backwardslicing: an output, selected through some sort of
projectionr, is traced back through the body ®f The equation is

Ted = @ (2)

How far can this simple idea be pushed? The simplest case arises wheéris\ww@mnonicalj.e.,
defined as amitheror aslpit. In the first case one gefs= [f,g| : A «—— B; + Bs. The slicing
criterion is simply an embedding,qg, ¢; : B; + By «— B; and the forward slice becomes just

[f9]-n = f ®3)

Dually, for (f, g) : A; x Ay, «— B, one may compute backwardslice, by post-composition
with a projectiong.g, pl : A; «+—— A; x Ay and conclude

T (f,9) = f (4)

The dual cases of computing a forward slice of a function withudtiplictivedomain or a back-

ward slice of a function with additivecodomain, amount to composidgwith the relational
converse®f a projection or an embedding, respectively, leading to equatons; or .7 - P.
Clearly this is relational composition. From a formal point of view this entails the need to pur-
sue calculation in theelational calculus [1]. For the language engineer, however, this means
that, in the general case, there is no unique solution to the slicing problem: one may end with
a set of possible slices, corresponding to different views over the 'theorectical’, relational, non
executable, slice.



We will not explore this relational counterpart in this paper. Instead our aim is to discuss
how far one can go keeping within the functional paradigm in analysing slicing of particularly
important class of functions: theductiveones. l.e., functions whose domain is the carrier of an
initiall algebra for a regular functor, usually called iaaductive type This means that our target
functions will be always given bgatamorphism$4], i.e., ® = (f); : A < pr, whereuy is
the inductive type for functof andf : A «—— TA is the recursiorgenealgebra. Such will be
our case-study through the following section.

3. Slicing Inductive Functions

This section is organised around four different slicing cases whose target is always an inductive
function® : A «— u1. Each subsection discusses one of these caseduct backwardsum
forward, sum backwardndproduct forwardslicing. An example is provided in each case.

3.1. Product Backward Slicing

This a 'well-behaved’ case: the codomaindois a product and, therefore, the slicing criterion
is just the appropriate projection. Asis recursive, however, the solution to the slicing problem
should be a newenealgebraf’ such thatr, - & = ((f’]), as explained in the following diagram.

>'=(f'D

— T~
Ak ™ Hz Ai HUT

N

Solving the slicing equatio®’ = 7, - ® reduces, by the fusion law for catamorphisms, to verify
the commutativity of the leftmost square. This becomes quite clear through an example.

Example. Consider the problem of identifyingsdicein the following functional version of the
Unix word-count utility (vc), with the-Ic  flag.

wc = wcAux (1,0)

wcAux :: (Int, Int) -> [String] -> (Int, Int)
wcAux p ] =p
wcAux (Ic, cc) (h:it) = if h == \n’ then wcAux (Ic+1, cc+l) t
else wcAux (Ic, cc+l) t

which is translated into the Bird-Merteens formalism as
([{L,0), [(suce x succ) « ma, (id x succ) « wa] » p?]])¢

wherep = (("\n’ ==) - m) andFX =1+ String  x X is the relevant functor.

Our goal is to identify a slice olc which just computes the number of lines. This value is given

by the first component of the pair returned by the origiwalprogram. Thus, it is expectable

that a function which selects the first element of a pair constitutes a good candidate for a slicing
criterion. Thus the slicing problem reduces to solving the following equation:

(f'De = m1 - ([(1,0), [(suce x succ) - ma, (id x suce) - w2] - p?])e



which is done as follows

(f'De = m1 - ({1, 0), [(suce x succ) - ma, (id X suce) - w2) - p?])e

= {cata-fusion
feFm = m - [(1,0), [(suce x suce) - ma, (id x succ) « ma) - p?]
= {absorption+, cancelationx, naturaléd, definition of x }
f - Fm = [1,[succ.my - 7o, - mo] - p7)
& {definition of x, cancelationx }
[ Fm = [1,[succma - (id x m1), 72 - (id X 71)] - p?]
& {absorption+, p = p - (id x m), definiton ofx, cancelationx }
f e Fm = [1,[succ-ma,mo] -+ (id x w1 +id x 71) - (p - (id X 71))7]
& {predicate fusioh
[ Fm = [1,[succ. ma,ma] - p? - (id X m1)]
& {naturalid, absortion+, F definition}
f e (id+id x ) = [1, [succ - ma,ma] « p?] - (id + id x 1)
& {id + id x 7y is surjective
= [1,[succ - ma, ma] - p?]

This calculation leads to the identificationgdgnealgebra of the intended slice, which translated
back to HASKELL, yields

wc = foldr (\c¢ -> if ¢ == "\n’ then succ else id) 1

or, going pointwise,

wc = WCAux 1

wcAux :: Int -> String -> Int
wcAux p ] =p
wcAux Ic (h:it) = if h == \n’ then wcAux Ic+1 t else wcAux Ic t

3.2. Sum Forward Slicing

This is also a 'well-behaved’ case, in which the slicing criterion reduces to an embedding. The
slicing problem, however, requires to be rephrased so that the dom&ibefomes a sum. This

is shown in the following diagram where the slicing criteriorvis= int - 14, i.e., the relevant
embedding composed with the initial algebra (which is an isomorphism).

q)/
A
A~ M LUl

The computation o®’ proceeds by the cancellation law for catamorphisms, as illustrated in the
following example.

Example. To illustrate a sum forward slicing calculation consider a pretty printer for a subset
of the XML language. We start with a data type encodingLXexpressions:



data XML = SimpElem String [XML]
| Elem String [(Att, AttValue)] [XML]
| Text String

type Att = String

type AttValue = String

from which functorF X = S x X* + § x AS x X* + S is inferred, whereString and
[(Att, AttValue)] are abbreviated t6 and AS, respectively. Then consider the pretty
printer program:

pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++
(concat . map pXML $ xmls) ++
"</ ++ e ++ "S" ++ nl
pXML (Elem e atts xmls) = "<" ++ e ++ concat (map pAtts atts) ++ ">" ++
nl ++ (concat . map pXML $ xmls) ++
"</ ++ e ++ "S" ++ nl

pXML (Text t) =t ++ nl
pAtts (att, attvalue) =" " ++ att ++ "=\"" ++ attvalue ++ "\""
nl = "\n"

whose pointfree definition reads

pXML = ([[pSElem,pElem],id x nl]))g
pSElem

pElem = ob x m-m x concat - map pAtts - my-m * cb * nl *x

ob x ™ x ¢b x nl x concat - Ty *x oeb x m * cb x nl

concat « mo *x oeb x pl-m x ¢cb * nl

pAttS — ”» N * 7T1 * »” — \’7” * 7T2 * R \7777

wherenl = "\n”",0b =7 <", cb =" >",0eb =7 < /7, fxg = F+ - (f,g) is aright

associative operator and+- is the uncurried version of the A$KELL operator for list concat-
enation. The above pointfree definition may seem complex, but it hopefully becomes clear with
the following diagram:

outp

XML (S x XML*+ (S x AS) x XML*) + S

PXML=(f)s i(idx ()i +(idxid) x (£)f ) +id

f=[lpSElem,pElem],id * nl] (S x A"+ (S x AS) x A ) +5

Now lets suppose one wants to compute a slice with respect to const8ictpElem of the
XMLdata type. This amounts to isolate the parts of the pretty printer that deabinmbElem
constructed values. To begin with, one has to define a slicing criterion that isolates arguments
of the desired type. This is, of course, givendy +; composed with the initial algebra of the
underlying functorj.e., ¢ = ing - ¢; - t;. The calculation proceeds by cancellation in order to
identify the impact ob overp X M L.

pXML- o
& {definition ofpX M L, definition ofc}
([[pSElem,pElem],id * nl])g - ing + (11« 1)
& {cata-cancelatigh
[[pSElem,pElem],id * nl]+ Foxar + (11 +01)
& {definiton ofF}



[[pSElem,pElem],id = nl] - ((id x pX ML* + (id x id) x pX ML*) +id) - (11 - t1)

& {definition of+, cancelatior}
[[pSElem,pElem]|,id * nl]- (¢1 - (¢1 - (id x pXML"))
& {cancelation+ (twice)}
pSElem - (id x pX M L")
& {definition of pS Elem, result (5), constant functiop

ob x my+ (id Xx pXML*) x ¢b * nl * concat - wg -+ (id X pX ML*) x
oeb x 1 - (id x pXML*) * ¢b x nl
& {definition of x, cancelationx }

ob x m * ¢b * nl * concat + pXML* - w5 % oeb x w1 * ¢cb * nl

The following result has been used in this calculation
(fxg)-h=f-hxg-h 5)
which is proved as follows:

(f > g)-h

& {definition ofx}
++-(f,9) - h

& {fusion-x }
e (frhg-h)

& {definition ofx}
f+hxg-h

The computed slice is a specialized version of funcpML, which only deals with
values built withSimpleElem . Such function can be directly translated ta$kELL, yielding
the following program

pXML' (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++
(concat . map pXML \$ xmls) ++
"</ ++ e ++ "S" ++ nl

3.3. Sum Backward Slicing

The third case is similar to the first one in the sense that in both of them one seeks for backward
slices. This time, however, the domain of the original function ) . A; «— pr is a sum:
each slice will therefore be a function which produces values over a specific output type. This
complicates the picture: we simply canmwbject such value from the output @b. Just the
opposite, the natural slicing criteria would be the converse of a projection.

Let us take a different approach: if projecting is impossible, we mayhstié I.e., using
the universal : 1 «—— A to reduce tal the output components one wants to get rid of. Hiding
functions are constructed by combiniag x and identities witH. Note that in this formulation

the slicing criterion becomeasegative— it specifies what is to be discarded. A we are dealing
with inductive functions, the problem is again to find trenefor the slice, as documented in the



following diagram.

®'=(f')
A+1 A A,
Zz<k + k + Zz>k o — Zi<k id+!k+zi>k id Zz o=(f) 2l
f’T fT Tin'r
T(Zi<k Ai+ 1+ Zi>k Ai) To T Zz A; T Tyt

This sort of slicing is particularly useful when the codomain of origibas itself an inductive
type, say for a functo&. In such a case one has to compdseith the converse of thé-initial
algebra in order to obtain an explicit sum in the codomian,

o = () id+l+ ) id)-outg

i<k i>k

Such is the case discussed in the following example.

Example. Consider a program which generates the DOM tree of the (simplifiad) Mn-
guage introduced in the previous example. E&ie the corresponding polynomial functor. Note
that DOM tree are themselves values of an inductive type for a fukctor= N + N x X*, as
one may extract from the following AEKELL declaration:

data DT a = Leaf NType a
| Node NType a [DT a]
data NType = NText | NElem | NAtt

from which NV abbreviatefNtype x a. The program to be sliced diree : ug «— ur, Which
is written in pointfree style as follows:

dTree = cata ¢
g = either (either g1l g2) (Leaf NText)

gl = uncurry (Node NElem)
g2 = uncurry (Node NElem) . split (p1 . pl) (g3 . p2 . pl <++> p2)
g3 = map (Leaf NAtt . uncurry (++) . (id >< ("="++)))

Our aim is to calculate its slice wrt values of typ&de, i.e., to ifdentify the program
components which interfere with the production of values of this type. To do so, the slicing
criterion must preserve the right hand side of data pand slice away everything else (in this
case just the left hand side). Thus, we end up with (! + id) - outg. The slicing process is
illustrated as follows:

I+id outg (f)p=dTree

1+ NxDT*<————— N+ N x DT* DT LF

[[91»95]757&]T [[91’92]193]T fT inFT

F(1+ N x DT*) F(N + N x DT*) <— F(DT*) Fur
outg

F(1+id) FdTree

The process proceeds by calculating the new genes andg; which define the desired slice.

(91, 92), g3] - (id x (! +id) +id x (! x id) + id) = (' + id) - [[91, g2], 93]
& {absortion+, fusion-+}
(g1 - (id x (' +id)), g5 - (id x (! x id))], g3 - id) = [[(* + id) - g1, (! +id) - go], (! + id) - gs]



For the sake of brevity, we shall now consider only the first component of this either equality
(the remaining cases follow obviously a similar pattern). Thus, our goal is tg/fiadch that

g1+ (idx (M +id)) = (! +14d) - g1

Note, however, that using the right distributivity isomorphigmc¢an be further decomposed as
follows
distr

SX(N+N xDT*) ——= S x N+ S5 x (N x DT*)

igl /
[}L] ,hz]

N+ N x DT*
and similarly forg; = [hs, hy] - distr. Then,

[ha, ha] « distr - (id x (1 +1id)) = (1 +id) « [h1, h2] - distr

& {definition of distr, fusion-+}
[hs, ha] « (idx! +id x id)) - distr = [(! +id) - h1, (! 4+ id) - h2] - distr
& {absorption+}

[hg « (idx!), hy - (id x id)] - distr = [(! +id) - h1, (! +id) - h2] - distr
Hence
hg + (idx!) = (! +1id) - hl and hy - (id x id) = (! +4d) - h2

Let us concentrate again in the first equality (the other case is similar), that is,

h
Sx1——>1+N x DT*

idx!T T!Jrid

Sx N > N4+NxDT*

In the most general case, functions to a sum type are conditionals. Therefore, we may assume
thaths = p — 11 - ey, 10 - eg @andhy = g — 11 - dy, Lo - do, respectively. Then,

(p—>L1'61,L2°€2)°(’idX!):(!+id)'q—>bl°d1,L2°d2

= {conditionl fusior}
p—tly-€1" (idX!),LQ €9 (ZdX') =q— ('—I—Zd) sl dl,('—f—ld) < Lo - do
& {cancelation+, naturalid}

p—tl1-€1° (idX!),Lg c€eg (ZdX') =q — L1°!,L2 °d2

which amounts to

p-(idx!) = ¢
el (ZdX') = |
€9 * (ZdX') = dQ
What can be concluded from here? First of@ll=!. Thenp : B «—— S is derived from

q:B+— S x N as follows
p(s) = false = \/q(sm) = false

n



Finallye; : N x DT* «— S comes fromd, : N x DT* «—— S x N. But what is the relation
between them? Actually, abstracting from the second argumedy gives rise to a powerset
valued function

v : S—=P(NxDT")
v(s) = {da(n,s) |ne NAp(n,s)}

Thereforee, is just a possiblemplementatiorof . This means that the slice ot unique:

we are again in the relational world. It should be stressed, however, that the advantage of this
calculation process is to lead the program analyist as close as possible of the critical details.
Or, puting it in a different way, directs the slice construction until human interaction becomes
necessary to make a choice.

3.4. Product Forward Slicing

At first sight this is an ackward case as far as inductive functions are concerned. One may resort
to outt to unfold the inductive type, as we did in the sum forward case, but this leads always
to a polynomial functor with sums as the main connective. So what do we mean by product
forward slicing? Suppose the relevant functor is, $8¥,= 1 + A x B x X + B x X?. Our

aim is to compute a slice @ : A «—— ur corresponding to discarding the contribution of the
component of the parameters.

Our first guess is to adopt the strategy of the previous case and define the slicing criterion
as thehiding function

ing « (id +idx! x id+! x id) : pur «— Fur

This iswrong of course: the hiding function changes the signature functor. Expression above
would become correct if formulated in terms of functéX = 1+ A x 1 x X + 1 x X2
Expressiond +id x! x id+! x id becomes a natural transformation frérto F'. However, during
calculations the relational converse of this natural transformation would be required and making
progress will depend, to a great extent, on the concrete definitidn of

Let us, therefore, try a different solution: instead of getting rid of compo@ignby
composition with!, we replace each concrete values by a mark still belongirigy teor that we
resort, for the first time in this paper, to the classical semanticsasfidgLL in terms of pointed

complete partial orders. The qualificatipeintedmeans there exist for each type a bottom
elementl x which can be used for our purposes as illustrated in the following diagram.

o

T

A o T inT Zl HJ - o= (IT, <p idX L X[ T;5 4 id) Hr Zl HJ o outt pr

Care should be taken when calculating functional programs in a order-theorectic setting. In
particular, as embeddings fail to preserve bottoms, the sum construction is no longer a coproduct
and the either is not unique. The set-theorectical harmony, however, can be (almost) recovered
if one restricts tostrict functions (details can be checked eng, [12]). Such is the case of the
example below, whose derivation is, therefore, valid.



Example. Let us return to the pretty printer example. Suppose we want to slice away every
recursive call in this function. This is achieved by the following slicing criteria ing - ((id x
L+ (id x id) x L) +id) - oute. The calculation proceeds as follows.

pXML-o
& {definition of pX M L, definition ofo}
([[pSElem,pElem], id * nl])g - ing « ((id x L+ (id x id) x L)+ id) - outr
& {cata-cancelation
[[pSElem,pElem],id * nl] - Fpxarr « ((id x L+ (id x id) x L) +id) - outr
& {definiton ofF, Functor-+, Functorx, naturalid}
[[pSElem,pFElem],id * nl] - ((id x (L-pXML*) + (id X id) X (L« pXML*)) + id) - out
& {absorption+, naturaléd}

[[pSElem - (id x (L - pXML*),pElem - ((id x id) x (L - pXML*)],id * nl] - outg

The calculation continues by evaluating the impact apon each parcel. For the sake of brevity
we shall concentrate on the Elem function, other cases being similar. Then,

pSElem - (id x (L« pXML")

= {definition ofpsElem}

ob x m * ¢b * nl x concat - w3 * oeb * w * ¢b x nl- (id x (L-pXML"))
& {constant function, result (b)

ob x m * ¢b * nl x concat + wy + (id x (L pXML*)) *x oeb x m * cb * nl
& {definition of x, cancelationx }

cb x m * cb x nl x concat - (L-pXML*)-79 x oeb x m * cb x nl

To recover an executable program, it is necessary to remove from the expression above all
occurences of_. Finally, going pointwiase, we obtain the following slice

pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++ "</* ++ e ++ ">" ++ nl

Note, however, that in general, unlike product backward slicing which always yields
executable solutions, in this case it may succeed that the final slice is not executable. This does
not come to a surprise, since we are filtering input that can be critical to the overall computation
of the original function.

4. Conclusions

This paper presented an approach to slicing of functional programs in which slice identification
is formulated as an equation in an essentially equational and pointfree program calculus [4].

The requirement that programs should be first translated to a pointfree notation may seem,
at first sight, a major limitation. However, automatic translators have been developed within our
own research group [6]. Moreover, not only this sort of translators but also rewriting systems
to make program calculation a semi-automatia task, are needed to scale up this approach to
non academic case-studies. Fortunately this is an active area of research within the algebra of
programming community.

Although specific research in slicing of functional programs is sparse, the work of Reps
and Turnidge [14] should be mentioned as somewhat related to ours. The ideia of composing



projection functions to slice other functions comes from their work, but the approach they take to
analyse the impact of such composition is completely different from ours. They resort to regular
tree grammars, which must be previously given in order to compute the desired slices. This way,
their approach strictly depends on the actual program syntax. Moreover, they limit themselves to
functions dealing with lists or dotted pairs. Another work slightly related to ours is [21] where

a functional framework is used to formalize the slicing problem in a language independent way.
Nevertheless, their primary goal is not to slice functional programs, but to use the functional

mottoto slice imperative programs given a modular monadic semantics.

The approach outlined in this paper is still in its infancy. Current work includes

e its extension to functions defined lylomorphimg4], with inductive types acting as
virtual data structures,
¢ as well as to the dual picture obinductivefunctions,i.e., functions to final coalgebras.

This last extension may lead to a method foocess slicingwith processes encoded in coin-

ductive types (see.g, [16] or [3]), with possible applications to the area of reverse engineering
of software architectures (in the sensesd, [22]).

Finally, we intend to

¢ to take therelational challenge seriously and look for possible gains in calculational
power by moving to a category of relations as a preferred semantic universe.

Whether this approach scales up to real, complex examples is currently being assessed by con-
ducting a major case study in foreign open-soureskELL code.
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A Glimpse on the Laws of Functions

Composition. This appendix provides a brief review of the algebra of functions, recalling the
basic constructions and laws used in the paper. We begin mentioning some functions which have



a particular role in the calculus: for exampdientitiesdenoted byd 4 : A «—— A or the so-called
final functions!, : 1 —— A whose codomain is the singleton set denoted laynd consequently
map every element aofl into the (unique) element df. Elementsr € X are represented as
points i.e., functionsz : X «—— 1, and therefore function applicatiofi: can be expressed by
compositionf - .

Functions can bgluedin a number of ways which bare a direct correspondence with the
ways programs may be assembled together. The most obvious pipeli®ing which corres-
ponds to standard functional composition denoted'by, for f : B «—— C'andg : B «+—— A.
Functions with a common domain can be glued througbla ( f, g) as shown in the following
diagram:

Z

2l

which defines the product of two sets. Actually, the product of two deasd B can be char-
acterised either concretely (as the set of all pairs that can be formed by elemdrasdf3) or

in terms of an abstract specification. In this case, we sayl setB is defined as the source of

two functionsm; : A «—— A x Bandm, : B «+—— A x B, called theprojections which satisfy

the following property: for any other setand arrowsf : A «—— Z andg : B «—— Z, thereis a
unique arrow f, g) : A x B «—— Z, usually called theplit of f andg, that makes the diagram
above to commute. This can be said in a more concise way through the following equivalence
which entails both aexistencé=-) and auniquenesg$<) assertion:

k=(fg) = m-k=fANm-k=g (6)

Such an abstract characterization turns out to be more generic and suitable for conducting cal-
culations. Let us illustrate this claim with a very simple example. Suppose we want to show that
pairing projections of a cartesian product has no effieet, (w1, m) = id. If we proceed in a
concrete way we first attempt to convince ourselves that the unique possible definitgpiitfor
is as a pairing functiori,e., (f,g) z = (f z,¢ z). Then, instantiating the definition for the case
at hands, conclude

<7T1772> <1‘,y> = <7Tl <$ay>77r2 <I7y>> = <1‘,y>

Using the universal property (6) instead, the result follows immediately angaméfreeway:
id = <7T1,7T2> = m-id=m Amg-id =my
Equation
(m1,m2) = idaxs (7)

is called thereflectionlaw for products. Similarly the following laws (known respectively>as
cancelationfusionandabsorptior) are derivable from (6):

7r1'<fvg>:fa7r2'<f7g>:g (8)
(g.h) - f = (g-f.h-[) ©)
(ixj)-{g;h) = (i-g.j-h) (10)
The same applies ®tructural equality
(fLg)=(k.h) = f=kANg=h (11)

Finally note that the product construction applies not only to sets but also to functions, yielding,
forf: B+«— Aandg : B’ —— A, functionf x g : B x B’ «—— A x A’ defined as the split
(f-m1,g-m). This equivales to the following pointwise definitiofix g = A (a,b) . (f a, g b).



Notation B4 is used to denottunction spacei.e., the set of (total) functions from to
B. ltis also characterised by an universal property: for all funcfiorB <—— A x C, there exists

a uniquef : B¢ «— A, called thecurry of f, such thatf = ev - (f x C). Diagrammatically,

A AxC
l - l\
f fXxido
BC BC xC—> B
i.e.
k=f = f=ev-(kxid) (12)

Dually, functions sharing the same codomain may be glued together throwgthencombin-
ator, expressing alternative behaviours, and introduced as the universal arrow in a datatype sum
construction.

ThesumA + B (or coproducj of A and B corresponds to their disjoint union. The
construction is dual to the product one. From a programming point of view it corresponds to the
aggregation of two entities itime (as in aunion construction irC), whereas product entails an
aggregation irspace(as arecord ). It also arises by universalityd + B is defined as the target
of two arrows:; : A+ B «—— Aand., : A+ B «— B, called thenjections which satisfy the
following universal property: for any other sétand functionsf : 7 «+— Aandg : 7 «— B,
there is a unique arroyy, g| : 7 < A + B, usually called theither (or casg of f andg, that
makes the following diagram to commute:

A—3>A+B<—B

N

z
Again this universal property can be written as

k=[fgl = k-u=fANk-a=g (13)
from which one infers correspondesdncelationreflectionandfusionresults:
[f7g]'L1:f7[f7g]'L2:g (14)
[t1,02] = idxiy (15)
Products and sums interact through the followaxghangdaw
[(f.a).(f' 90 = ([f. £ 9. 9D) (17)

provable by either product (6) or sum (13) universality. Buencombinator also applies to
functions yieldingf + ¢ : A’ + B’ «—— A + B defined as.; - f, s - g].

Conditional expressions are modelled by coproducts. In this paper we adopt the Mc-
Carthy conditional constructor written 48 — f, g), wherep : B «—— A is a predicate.

Intuitively, (p — f, g) reduces tof if p evaluates tarue and tog otherwise. The conditional
construct is defined as

p— f.g9) = [fg]-p?
wherep? : A+ A «—— A is determined by predicajeas follows

id, T4
7 = AN 14— A1+ A1 A



whered| is the distributivity isomorphism. The following laws are useful to calculate with
conditionals [7].

h-(p— f.9) =@ — h-f h-9g) (18)
(p*)fvg)'h:(p°h4’f'hag°h) (19)
p—fig =@—=®—rfa9,®—fg) (20)

Recursion. Recursive functions over inductive datatypes (such as finite sequences or binary
trees) are given by thegeneticinformation,i.e., the specification of what is to be done in an
instance of a recursive call. Consider, for example, the pointfree specification of the function
which computes the length of a lieh : N «—— A*. A* is an example of an inductive type: its
elements are built by one of the followimgnstructors nil : A* «—— 1, which builds the empty

list, andcons : A* «—— A x A*, which appends an element to the head of the list. The two
constructors are glued by &itherin = [nil, cons| whose codomain is an instance of polynomial
functorF X = 1 + A x X. The algorithm contents of functidan is exposed in the following
diagram:

[0,succ72]

1+ AXxN————N

id+id><|enT Tlen
in=[nil,cons
1+AxA* i cone] A*

where the 'genetic’ information is given B9, succ - m5|: either returrD or the successor of the
value computed so far. Functiten, being entirely determined by its 'gene’ is saidiitgluctive
extensioror catamorphisnand represented k|0, succ - m]]).

Catamorphisms extend to any polynonfiadnd possess a number of remarkable proper-
ties,e.qg,

(in) = (21)
(g)-in = g-F(g) (22)
flg) = () < f-9=nh-Ff (23)
(9)-Tf = (g-F(fid)) (24)

whereT is the functor that assigns to a s€tthe corresponding inductive type fér(in our
example,T X = X*). Laws above are called, respectively, cata-reflection, -cancelation, -fusion
and -absorption.



