
Program Slicing by Calculation∗

Nuno F. Rodrigues1, Luı́s S. Barbosa1

1Departamento de Inforḿatica, Universidade do Minho
4710-057 Braga, Portugal

{nfr,lsb }@di.uminho.pt

Abstract. Program slicing is a well known family of techniques used to identify code
fragments which depend on or are depended upon specific program entities. They are
particularly useful in the areas of reverse engineering, program understanding, testing
and software maintenance. Most slicing methods, usually oriented towards the im-
peratice or object paradigms, are based on some sort of graph structure representing
program dependencies. Slicing techniques amount, therefore, to (sophisticated) graph
transversal algorithms. This paper proposes a completely different approach to the sli-
cing problem for functional programs. Instead of extracting program information to
build an underlying dependencies’ structure, we resort to standard program calcula-
tion strategies, based on the so-called Bird-Meertens formalism. The slicing criterion
is specified either as a projection or a hiding function which, once composed with the
original program, leads to the identification of the intended slice. Going through a
number of examples, the paper suggests this approach may be an interesting, even if
not completely general, alternative to slicing functional programs.

1. Introduction

By the end of the centuryprogram understandingemerged as a key concern in software engin-
eering. In a situation in which the only quality certificate of the running software artifact still is
life-cycle endurance, customers and software producers are little prepared to modify or improve
running code. However, faced with so risky a dependence on legacy software, managers are more
and more prepared to spend resources to increase confidence on —i.e., the level of understand-
ing of — their (otherwise untouchable) code. In fact the technological and economical relevance
of legacysoftware as well as the complexity of their re-engineering entails the need for rigour.

This paper focus on a particular program understanding technique — calledcode slicing
[20, 18, 19] — which is reframed as a calculational problem in thealgebra of programming[4].
More specifically, computing programslices, i.e., isolating parts of a program which depend on
or are depended upon a specific computational entity, is reduced to the problem of solving an
equation on the program denotational domain.

Program slicing, originally introduced in Weiser’s thesis [18], is a family of techniques
for restricting the behaviour of a program to some fragment of interest which,e.g., contributes to
the computation of a particular output or state variable. Slices are usually regarded as executable
sub-programs extracted from source code by data and control flow analysis. Their computation is

∗The research reported in this paper is supported by FCT, under contract POSI/ICHS/44304/2002, in the context
of the PURe project.

driven by what is referred to as aslicing criterion, which is, in most approaches, a pair containing
a line number and a variable identifier. From the user point of view, this represents a point
in the code whose impact she/he wants to inspect in the overall program. From the program
slicer view, the slicing criterion is regarded as theseedfrom which a program slice is computed.
According to Weiser original definition a slice consists of all statements with some direct or
indirect consequence on the result of the value of the entity selected as the slicing criterion. The
concern is to find only the pieces of code that affect a particular entity in the program. A basic
distinction is drawn betweenbackwardsslicing which collects all data and code fragments on
which the slicing criterion depends, andforward slicing [9] which seeks for what depends on or
is affected by it.

Slicing techniques are typically based on some form of abstract, graph-based represent-
ation of the program under scrutiny, from which dependence relations between the entities it
manipulates can be identified and extracted. Therefore, in general, the slicing problem reduces
to sub-graph identification with respect to a particular node. What kinds of computational entit-
ies can be represented in a node and what code dependencies does the underlying graph support
are therefore the typical concerns.

As mentioned above, the approach sketched in this paper takes a completely different
path. Instead of extracting program information to build an underlying dependencies’ struc-
ture, we resort to standard program calculation strategies, based on the so-called Bird-Meertens
formalism. The slicing criterion is specified either as aprojectionor a hiding function which,
once composed with the original program, leads to the identification of the intended slice. The
process is driven by the denotational semantics of the target program, as opposed to more clas-
sical syntax-oriented approaches documented in the literature. To make calculation effective
and concise we adopt thepointfreestyle of expression [4] popularized among the functional
programming community.

This approach seems to be particularly suited to the analysis offunctional programs.
Actually, it offers a way of going inside function definitions and, in some cases, to extract new
functions with a restricted input or output. Note that through approaches based on dependencies’
graphs one usually works at an ’external’ level, for example collecting references to an identifier
or determining which functions make use of a particular reference. A recent paper by the authors
[15] explore such graphs to identifycomponentsin functional legacy code. Here, however, we
take a completely different path.

The paper is organised as follows. Section 2 discusses the main intuitions behind our
approach, characterizing, in particularbackwardandforward slicing as calculational problems.
The following section contains the main contribution: a case study on slicing by calculation
inductivefunctions. A number of concrete examples are discussed. Finally section 4 concludes
and points some directions for future work. In a brief appendix, the basic constructions and laws
of programming with functions are recalled for reference.

2. Slicing Equations

2.1. Algebra of Programming

In his Turing Award lecture J. Backus [2] was among the first to advocate the need for program-
ming languages which exhibit analgebra for reasoning about the objects it purport leading to

the development of program calculi directly based on, actually driven by, type specifications.
Since then this line of research has witnessed significant advances based on thefunctorial ap-
proach to datatypes [11] and reached the status of a program calculus in [4], building on top of a
discipline of algorithm derivation and transformation which can be traced back to the so-called
Bird-Meertens formalism[5, 10, 12] and the foundational work of T. Hagino [8].

In this paper we intend to build on this collection ofprogramming lawsto solve what we
shall callslicing equations. Pointwise notation, as used in classical mathematics, involving oper-
ators as well as variable symbols, logical connectives, quantifiers, etc, is however inadequate to
reason about programs in a concise and precise way. This justifies the introduction of apointfree
program denotation in which elements and function application are systematically replaced by
functions and functional composition. The translation of the target program into an equivalent
pointfree formulation is well studied in the program calculi community and shown to be made
automatic to a large extent. In [13, 17] its role is compared to one played by the Laplace trans-
form to solve differential equations in a linear space. Appendix A provides a quick introduction
to the pointfree algebra of functional programs.

2.2. Slicing Equations

Our starting point is a very simple idea: to identify the ’component’ of a functionΦ : A ←− B
affected by a particular argument or contributing to a particular result all one has to do is topre-
or post-composeΦ with an appropriate function, respectively. In the first case the contribution
of an argument is propagated through the body ofΦ, forgetting about the role of other possible
arguments:σ is a called ahiding function and equation

Φ · σ = Φ′ (1)

captures theforward slicing problem.Φ′ is the forward slice ofΦ wrt to slicing criterion σ.
The dual problem corresponds tobackwardslicing: an output, selected through some sort of
projectionπ, is traced back through the body ofΦ. The equation is

π · Φ = Φ′ (2)

How far can this simple idea be pushed? The simplest case arises wheneverΦ is canonical,i.e.,
defined as aneitheror aslpit. In the first case one getsΦ = [f, g] : A←− B1 + B2. The slicing
criterion is simply an embedding,e.g., ι1 : B1 + B2 ←− B1 and the forward slice becomes just

[f, g] · ι1 = f (3)

Dually, for 〈f, g〉 : A1 × A2 ←− B, one may compute abackwardslice, by post-composition
with a projection,e.g., p1 : A1 ←− A1 × A2 and conclude

π1 · 〈f, g〉 = f (4)

The dual cases of computing a forward slice of a function with amultiplictivedomain or a back-
ward slice of a function with aadditivecodomain, amount to composingΦ with the relational
conversesof a projection or an embedding, respectively, leading to equationsΦ · π◦

1 or ι◦1 · Φ.
Clearly this is relational composition. From a formal point of view this entails the need to pur-
sue calculation in therelational calculus [1]. For the language engineer, however, this means
that, in the general case, there is no unique solution to the slicing problem: one may end with
a set of possible slices, corresponding to different views over the ’theorectical’, relational, non
executable, slice.

We will not explore this relational counterpart in this paper. Instead our aim is to discuss
how far one can go keeping within the functional paradigm in analysing slicing of particularly
important class of functions: theinductiveones. I.e., functions whose domain is the carrier of an
initiall algebra for a regular functor, usually called aninductive type. This means that our target
functions will be always given bycatamorphisms[4], i.e., Φ = ([f])T : A ←− µT, whereµT is
the inductive type for functorT andf : A ←− TA is the recursiongenealgebra. Such will be
our case-study through the following section.

3. Slicing Inductive Functions

This section is organised around four different slicing cases whose target is always an inductive
functionΦ : A ←− µT. Each subsection discusses one of these cases:product backward, sum
forward, sum backwardandproduct forwardslicing. An example is provided in each case.

3.1. Product Backward Slicing

This a ’well-behaved’ case: the codomain ofΦ is a product and, therefore, the slicing criterion
is just the appropriate projection. AsΦ is recursive, however, the solution to the slicing problem
should be a newgenealgebraf ′ such thatπk · Φ = ([f ′]), as explained in the following diagram.

Ak

∏
i Aiπk

oo µT
Φ

oo

Φ′=([f ′])

uu

TAk

f ′

OO

T
∏

i Ai

f

OO

Tπk

oo TµT

inT

OO

TΦ
oo

Solving the slicing equationΦ′ = πk ·Φ reduces, by the fusion law for catamorphisms, to verify
the commutativity of the leftmost square. This becomes quite clear through an example.

Example. Consider the problem of identifying aslicein the following functional version of the
Unix word-count utility (wc), with the-lc flag.

wc = wcAux (1,0)

wcAux :: (Int, Int) -> [String] -> (Int, Int)
wcAux p [] = p
wcAux (lc, cc) (h:t) = if h == ’\n’ then wcAux (lc+1, cc+1) t

else wcAux (lc, cc+1) t

which is translated into the Bird-Merteens formalism as

([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

wherep = ((′\n′ ==) · π1) andFX = 1 + String ×X is the relevant functor.
Our goal is to identify a slice ofwc which just computes the number of lines. This value is given
by the first component of the pair returned by the originalwc program. Thus, it is expectable
that a function which selects the first element of a pair constitutes a good candidate for a slicing
criterion. Thus the slicing problem reduces to solving the following equation:

([f ′])F = π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F

which is done as follows

([f ′])F = π1 · ([[〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]])F
⇐ {cata-fusion}

f ′ · F π1 = π1 · [〈1, 0〉, [(succ× succ) · π2, (id× succ) · π2] · p?]
⇔ {absorption-+, cancelation-×, natural-id, definition of×}

f ′ · F π1 = [1, [succ · π1 · π2, π1 · π2] · p?]
⇔ {definition of×, cancelation-×}

f ′ · F π1 = [1, [succ · π2 · (id× π1), π2 · (id× π1)] · p?]
⇔ {absorption-+, p = p · (id× π1), definiton of×, cancelation.×}

f ′ · F π1 = [1, [succ · π2, π2] · (id× π1 + id× π1) · (p · (id× π1))?]
⇔ {predicate fusion}

f ′ · F π1 = [1, [succ · π2, π2] · p? · (id× π1)]
⇔ {natural-id, absortion-+, F definition}

f ′ · (id + id× π1) = [1, [succ · π2, π2] · p?] · (id + id× π1)
⇔ {id + id× π1 is surjective}

f ′ = [1, [succ · π2, π2] · p?]

This calculation leads to the identification ofgenealgebra of the intended slice, which translated
back to HASKELL, yields

wc = foldr (\c -> if c == ’\n’ then succ else id) 1

or, going pointwise,

wc = wcAux 1

wcAux :: Int -> String -> Int
wcAux p [] = p
wcAux lc (h:t) = if h == ’\n’ then wcAux lc+1 t else wcAux lc t

3.2. Sum Forward Slicing

This is also a ’well-behaved’ case, in which the slicing criterion reduces to an embedding. The
slicing problem, however, requires to be rephrased so that the domain ofΦ becomes a sum. This
is shown in the following diagram where the slicing criterion isσ = inT · ιk, i.e., the relevant
embedding composed with the initial algebra (which is an isomorphism).

A µT
Φ=([f])

oo TµT =
∑

i Ui
inT

oo Ukιk

oo

σ=inT·ιk

vv

Φ′

ww

The computation ofΦ′ proceeds by the cancellation law for catamorphisms, as illustrated in the
following example.

Example. To illustrate a sum forward slicing calculation consider a pretty printer for a subset
of the XML language. We start with a data type encoding XML expressions:

data XML = SimpElem String [XML]
| Elem String [(Att, AttValue)] [XML]
| Text String

type Att = String
type AttValue = String

from which functorF X = S × X∗ + S × AS × X∗ + S is inferred, whereString and
[(Att, AttValue)] are abbreviated toS andAS, respectively. Then consider the pretty
printer program:

pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++
(concat . map pXML $ xmls) ++
"</" ++ e ++ ">" ++ nl

pXML (Elem e atts xmls) = "<" ++ e ++ concat (map pAtts atts) ++ ">" ++
nl ++ (concat . map pXML $ xmls) ++
"</" ++ e ++ ">" ++ nl

pXML (Text t) = t ++ nl
pAtts (att, attvalue) = " " ++ att ++ "=\"" ++ attvalue ++ "\""
nl = "\n"

whose pointfree definition reads

pXML = ([[[pSElem, pElem], id ? nl]])F
pSElem = ob ? π1 ? cb ? nl ? concat · π2 ? oeb ? π1 ? cb ? nl

pElem = ob ? π1 · π1 ? concat · map pAtts · π2 · π1 ? cb ? nl ?

concat · π2 ? oeb ? p1 · π1 ? cb ? nl

pAtts = ” ” ? π1 ? ” = \”” ? π2 ? ” \ ””

wherenl = ” \ n”, ob = ” < ”, cb = ” > ”, oeb = ” < /”, f ? g = ++ · 〈f, g〉 is a right
associative operator and++ is the uncurried version of the HASKELL operator for list concat-
enation. The above pointfree definition may seem complex, but it hopefully becomes clear with
the following diagram:

XML
outF //

pXML=([f])F

��

(S ×XML∗ + (S ×AS)×XML∗) + S

(id×([f])∗F +(id×id)×([f])∗F)+id

��
A (S ×A∗ + (S ×AS)×A∗) + S

f=[[pSElem,pElem],id ? nl]
oo

Now lets suppose one wants to compute a slice with respect to constructorSimpElem of the
XMLdata type. This amounts to isolate the parts of the pretty printer that deal withSimpElem
constructed values. To begin with, one has to define a slicing criterion that isolates arguments
of the desired type. This is, of course, given byι1 · ι1 composed with the initial algebra of the
underlying functor,i.e., σ = inF · ι1 · ι1. The calculation proceeds by cancellation in order to
identify the impact ofσ overpXML.

pXML · σ

⇔ {definition ofpXML, definition ofσ}
([[[pSElem, pElem], id ? nl]])F · inF · (ι1 · ι1)

⇔ {cata-cancelation}
[[pSElem, pElem], id ? nl] · FpXML · (ι1 · ι1)

⇔ {definiton ofF}

[[pSElem, pElem], id ? nl] · ((id× pXML∗ + (id× id)× pXML∗) + id) · (ι1 · ι1)
⇔ {definition of+, cancelation-+}

[[pSElem, pElem], id ? nl] · (ι1 · (ι1 · (id× pXML∗))
⇔ {cancelation-+ (twice)}

pSElem · (id× pXML∗)
⇔ {definition ofpSElem, result (5), constant function}

ob ? π1 · (id× pXML∗) ? cb ? nl ? concat · π2 · (id× pXML∗) ?

oeb ? π1 · (id× pXML∗) ? cb ? nl

⇔ {definition of×, cancelation-×}
ob ? π1 ? cb ? nl ? concat · pXML∗ · π2 ? oeb ? π1 ? cb ? nl

The following result has been used in this calculation

(f ? g) · h = f · h ? g · h (5)

which is proved as follows:

(f ? g) · h

⇔ {definition of?}
++ · 〈f, g〉 · h

⇔ {fusion-×}
++ · 〈f · h, g · h〉

⇔ {definition of?}
f · h ? g · h

The computed slice is a specialized version of functionpXML, which only deals with
values built withSimpleElem . Such function can be directly translated to HASKELL, yielding
the following program

pXML’ (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++
(concat . map pXML \$ xmls) ++
"</" ++ e ++ ">" ++ nl

3.3. Sum Backward Slicing

The third case is similar to the first one in the sense that in both of them one seeks for backward
slices. This time, however, the domain of the original functionΦ :

∑
i Ai ←− µT is a sum:

each slice will therefore be a function which produces values over a specific output type. This
complicates the picture: we simply cannotproject such value from the output ofΦ. Just the
opposite, the natural slicing criteria would be the converse of a projection.

Let us take a different approach: if projecting is impossible, we may stillhide. I.e., using
the universal! : 1 ←− Ak to reduce to1 the output components one wants to get rid of. Hiding
functions are constructed by combining+, × and identities with!. Note that in this formulation
the slicing criterion becomesnegative— it specifies what is to be discarded. A we are dealing
with inductive functions, the problem is again to find thegenefor the slice, as documented in the

following diagram.

∑
i<k Ai + 1k +

∑
i>k Ai

∑
i Ai

σ =
P

i<k id+!k+
P

i>k id
oo µT

Φ=([f])
oo

Φ′=([f ′])
qq

T(
∑

i<k Ai + 1k +
∑

i>k Ai)

f ′

OO

T
∑

i Ai
Tσ

oo

f

OO

TµT
TΦ

oo

inT

OO

This sort of slicing is particularly useful when the codomain of originalΦ is itself an inductive
type, say for a functorG. In such a case one has to composeΦ with the converse of theG-initial
algebra in order to obtain an explicit sum in the codomain,i.e.

σ = (
∑
i<k

id+!k +
∑
i>k

id) · outG

Such is the case discussed in the following example.

Example. Consider a program which generates the DOM tree of the (simplified) XML lan-
guage introduced in the previous example. LetF be the corresponding polynomial functor. Note
that DOM tree are themselves values of an inductive type for a functorG X = N + N ×X∗, as
one may extract from the following HASKELL declaration:

data DT a = Leaf NType a
| Node NType a [DT a]

data NType = NText | NElem | NAtt

from whichN abbreviatesNtype × a. The program to be sliced isdtree : µG ←− µF, which
is written in pointfree style as follows:

dTree = cata g
g = either (either g1 g2) (Leaf NText)
g1 = uncurry (Node NElem)
g2 = uncurry (Node NElem) . split (p1 . p1) (g3 . p2 . p1 <++> p2)
g3 = map (Leaf NAtt . uncurry (++) . (id >< ("="++)))

Our aim is to calculate its slice wrt values of typeNode, i.e., to ifdentify the program
components which interfere with the production of values of this type. To do so, the slicing
criterion must preserve the right hand side of data typeDTand slice away everything else (in this
case just the left hand side). Thus, we end up withσ = (! + id) · outG. The slicing process is
illustrated as follows:

1 + N ×DT ∗ N + N ×DT ∗!+idoo DT
outGoo µF

([f])F=dTreeoo

F(1 + N ×DT ∗)

[[g′1,g′2],g
′
3]

OO

F(N + N ×DT ∗)

[[g1,g2],g3]

OO

F(!+id)
oo F(DT ∗)

f

OO

FoutG

oo FµF

inF

OO

FdTree
oo

The process proceeds by calculating the new genesg′
1, g′

2 andg′
3 which define the desired slice.

[[g′1, g
′
2], g

′
3] · (id× (! + id) + id× (!× id) + id) = (! + id) · [[g1, g2], g3]

⇔ {absortion-+, fusion-+}
[[g′1 · (id× (! + id)), g′2 · (id× (!× id))], g′3 · id] = [[(! + id) · g1, (! + id) · g2], (! + id) · g3]

For the sake of brevity, we shall now consider only the first component of this either equality
(the remaining cases follow obviously a similar pattern). Thus, our goal is to findg′

1 such that

g′1 · (id× (! + id)) = (! + id) · g1

Note, however, that using the right distributivity isomorphism,g1 can be further decomposed as
follows

S × (N + N ×DT ∗) distr //

g1

��

S ×N + S × (N ×DT ∗)

[h1,h2]ttiiiiiiiiiiiiiiiii

N + N ×DT ∗

and similarly forg′
1 = [h3, h4] · distr. Then,

[h3, h4] · distr · (id× (! + id)) = (! + id) · [h1, h2] · distr

⇔ {definition ofdistr, fusion-+}
[h3, h4] · (id×! + id× id)) · distr = [(! + id) · h1, (! + id) · h2] · distr

⇔ {absorption-+}
[h3 · (id×!), h4 · (id× id)] · distr = [(! + id) · h1, (! + id) · h2] · distr

Hence

h3 · (id×!) = (! + id) · h1 and h4 · (id× id) = (! + id) · h2

Let us concentrate again in the first equality (the other case is similar), that is,

S × 1
h3 // 1 + N ×DT ∗

S ×N

id×!

OO

h1 // N + N ×DT ∗

!+id

OO

In the most general case, functions to a sum type are conditionals. Therefore, we may assume
thath3 = p→ ι1 · e1, ι2 · e2 andh1 = q → ι1 · d1, ι2 · d2, respectively. Then,

(p→ ι1 · e1, ι2 · e2) · (id×!) = (! + id) · q → ι1 · d1, ι2 · d2

⇔ {conditionl fusion}
p→ ι1 · e1 · (id×!), ι2 · e2 · (id×!) = q → (! + id) · ι1 · d1, (! + id) · ι2 · d2

⇔ {cancelation-+, naturalid}
p→ ι1 · e1 · (id×!), ι2 · e2 · (id×!) = q → ι1·!, ι2 · d2

which amounts to

p · (id×!) = q

e1 · (id×!) = !
e2 · (id×!) = d2

What can be concluded from here? First of alle1 =!. Thenp : B ←− S is derived from
q : B←− S ×N as follows

p(s) = false ≡
∨
n

q(s, n) = false

Finally e2 : N ×DT ∗ ←− S comes fromd2 : N ×DT ∗ ←− S × N . But what is the relation
between them? Actually, abstracting from the second argument ofd2 gives rise to a powerset
valued function

γ : S → P(N ×DT ∗)
γ(s) = {d2(n, s) | n ∈ N ∧ p(n, s)}

Thereforee2 is just a possibleimplementationof γ. This means that the slice isnot unique:
we are again in the relational world. It should be stressed, however, that the advantage of this
calculation process is to lead the program analyist as close as possible of the critical details.
Or, puting it in a different way, directs the slice construction until human interaction becomes
necessary to make a choice.

3.4. Product Forward Slicing

At first sight this is an ackward case as far as inductive functions are concerned. One may resort
to outT to unfold the inductive type, as we did in the sum forward case, but this leads always
to a polynomial functor with sums as the main connective. So what do we mean by product
forward slicing? Suppose the relevant functor is, say,FX = 1 + A × B × X + B × X2. Our
aim is to compute a slice ofΦ : A←− µF corresponding to discarding the contribution of theB
component of the parameters.

Our first guess is to adopt the strategy of the previous case and define the slicing criterion
as thehiding function

inF · (id + id×!× id+!× id) : µF ←− FµF

This iswrong, of course: the hiding function changes the signature functor. Expression above
would become correct if formulated in terms of functorF′X = 1 + A × 1 × X + 1 × X2.
Expressionid+ id×!× id+!× id becomes a natural transformation fromF to F′. However, during
calculations the relational converse of this natural transformation would be required and making
progress will depend, to a great extent, on the concrete definition ofΦ.

Let us, therefore, try a different solution: instead of getting rid of componentB, by
composition with!, we replace each concrete values by a mark still belonging toB. For that we
resort, for the first time in this paper, to the classical semantics of HASKELL in terms of pointed
complete partial orders. The qualificativepointedmeans there exist for each typeX a bottom
element⊥X which can be used for our purposes as illustrated in the following diagram.

A µT
Φ

oo
∑

i

∏
j Ui,j

inT

oo TµT =
∑

i

∏
j Ui,j

σ=
P

i(
Q

j<k id×⊥k×
Q

j>k id)
oo

σ

ww
µT

outT
oo

Care should be taken when calculating functional programs in a order-theorectic setting. In
particular, as embeddings fail to preserve bottoms, the sum construction is no longer a coproduct
and the either is not unique. The set-theorectical harmony, however, can be (almost) recovered
if one restricts tostrict functions (details can be checked in,e.g., [12]). Such is the case of the
example below, whose derivation is, therefore, valid.

Example. Let us return to the pretty printer example. Suppose we want to slice away every
recursive call in this function. This is achieved by the following slicing criteriaσ = inF · ((id×
⊥+ (id× id)×⊥) + id) · outF. The calculation proceeds as follows.

pXML · σ

⇔ {definition ofpXML, definition ofσ}
([[[pSElem, pElem], id ? nl]])F · inF · ((id×⊥+ (id× id)×⊥) + id) · outF

⇔ {cata-cancelation}
[[pSElem, pElem], id ? nl] · FpXML · ((id×⊥+ (id× id)×⊥) + id) · outF

⇔ {definiton ofF, Functor-+, Functor-×, natural-id}
[[pSElem, pElem], id ? nl] · ((id× (⊥ · pXML∗) + (id× id)× (⊥ · pXML∗)) + id) · outF

⇔ {absorption-+, natural-id}
[[pSElem · (id× (⊥ · pXML∗), pElem · ((id× id)× (⊥ · pXML∗)], id ? nl] · outF

The calculation continues by evaluating the impact ofσ upon each parcel. For the sake of brevity
we shall concentrate on thepsElem function, other cases being similar. Then,

pSElem · (id× (⊥ · pXML∗)
⇔ {definition ofpsElem}

ob ? π1 ? cb ? nl ? concat · π2 ? oeb ? π1 ? cb ? nl · (id× (⊥ · pXML∗))
⇔ {constant function, result (5)}

ob ? π1 ? cb ? nl ? concat · π2 · (id× (⊥ · pXML∗)) ? oeb ? π1 ? cb ? nl

⇔ {definition of×, cancelation-×}
cb ? π1 ? cb ? nl ? concat · (⊥ · pXML∗) · π2 ? oeb ? π1 ? cb ? nl

To recover an executable program, it is necessary to remove from the expression above all
occurences of⊥. Finally, going pointwiase, we obtain the following slice

pXML (SimpElem e xmls) = "<" ++ e ++ ">" ++ nl ++ "</" ++ e ++ ">" ++ nl

Note, however, that in general, unlike product backward slicing which always yields
executable solutions, in this case it may succeed that the final slice is not executable. This does
not come to a surprise, since we are filtering input that can be critical to the overall computation
of the original function.

4. Conclusions

This paper presented an approach to slicing of functional programs in which slice identification
is formulated as an equation in an essentially equational and pointfree program calculus [4].

The requirement that programs should be first translated to a pointfree notation may seem,
at first sight, a major limitation. However, automatic translators have been developed within our
own research group [6]. Moreover, not only this sort of translators but also rewriting systems
to make program calculation a semi-automatia task, are needed to scale up this approach to
non academic case-studies. Fortunately this is an active area of research within the algebra of
programming community.

Although specific research in slicing of functional programs is sparse, the work of Reps
and Turnidge [14] should be mentioned as somewhat related to ours. The ideia of composing

projection functions to slice other functions comes from their work, but the approach they take to
analyse the impact of such composition is completely different from ours. They resort to regular
tree grammars, which must be previously given in order to compute the desired slices. This way,
their approach strictly depends on the actual program syntax. Moreover, they limit themselves to
functions dealing with lists or dotted pairs. Another work slightly related to ours is [21] where
a functional framework is used to formalize the slicing problem in a language independent way.
Nevertheless, their primary goal is not to slice functional programs, but to use the functional
mottoto slice imperative programs given a modular monadic semantics.

The approach outlined in this paper is still in its infancy. Current work includes

• its extension to functions defined byhylomorphims[4], with inductive types acting as
virtual data structures,
• as well as to the dual picture ofcoinductivefunctions,i.e., functions to final coalgebras.

This last extension may lead to a method forprocess slicing, with processes encoded in coin-
ductive types (see,e.g., [16] or [3]), with possible applications to the area of reverse engineering
of software architectures (in the sense ofe.g., [22]).

Finally, we intend to

• to take therelational challenge seriously and look for possible gains in calculational
power by moving to a category of relations as a preferred semantic universe.

Whether this approach scales up to real, complex examples is currently being assessed by con-
ducting a major case study in foreign open-source HASKELL code.

References
[1] R. C. Backhouse and P. F. Hoogendijk. Elements of a relational theory of datatypes. In B. Möller,

H. Partsch, and S. Schuman, editors,Formal Program Development, pages 7–42. Springer
Lect. Notes Comp. Sci. (755), 1993.

[2] J. Backus. Can programming be liberated from the Von Neumann style? a functional style and
its algebra of programs.Communications of the ACM, 21:613–641, 1978.

[3] L. S. Barbosa. Process calculià la Bird-Meertens. InCMCS’01, volume 44.4, pages 47–66,
Genova, April 2001. Elect. Notes in Theor. Comp. Sci., Elsevier.

[4] R. Bird and O. Moor.The Algebra of Programming. Series in Computer Science. Prentice-Hall
International, 1997.

[5] R. S. Bird. An introduction to the theory of lists. In M. Broy, editor,Logic of Programming and
Calculi of Discrete Design, volume 36 ofNATO ASI Series F, pages 3–42. Springer-Verlag,
1987.

[6] A. Cunha. Point-Free Program Calculation. PhD thesis, Dep. Inforḿatica, Universidade do
Minho, 2005.

[7] J. Gibbons. Conditionals in distributive categories. CMS-TR-97-01, School of Computing and
Mathematical Sciences, Oxford Brookes University, 1997.

[8] T. Hagino. A typed lambda calculus with categorical type constructors. In D. H. Pitt, A. Poigné,
and D. E. Rydeheard, editors,Category Theory and Computer Science, pages 140–157.
Springer Lect. Notes Comp. Sci. (283), 1987.

[9] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing using dependence graphs. InPLDI
’88: Proceedings of the ACM SIGPLAN 1988 Conf. on Programming Usage, Design and
Implementation, pages 35–46. ACM Press, 1988.

[10] G. R. Malcolm. Data structures and program transformation.Science of Computer Programming,
14(2–3):255–279, 1990.

[11] E. Manes and A. Arbib.Algebraic Approaches to Program Semantics. Texts and Monographs in
Computer Science. Springer Verlag, 1986.

[12] E. Meijer, M. Fokkinga, and R. Paterson. Functional programming with bananas, lenses, envel-
opes and barbed wire. In J. Hughes, editor,Proceedings of the 1991 ACM Conference on
Functional Programming Languages and Computer Architecture, pages 124–144. Springer
Lect. Notes Comp. Sci. (523), 1991.

[13] J. Oliveira. Bagatelle in C arranged for VDM SoLo.Journal of Universal Computer Science,
7(8):754–781, 2001. Special Issue onFormal Aspects of Software Engineering, Colloquium
in Honor of Peter Lucas, Institute for Software Technology, Graz University of Technology,
May 18-19, 2001).

[14] T. W. Reps and T. Turnidge. Program specialization via program slicing. InSelected Papers
from the Internaltional Seminar on Partial Evaluation, pages 409–429, London, UK, 1996.
Springer-Verlag.

[15] N. Rodrigues and L. S. Barbosa. Component identification through program slicing. In L. S.
Barbosa and Z. Liu, editors,Proc. of FACS’05 (2nd Int. Workshop on Formal Approaches to
Component Software), volume (to appear), UNU-IIST, Macau, October 2005. Elect. Notes
in Theor. Comp. Sci., Elsevier.

[16] D. Schamschurko. Modeling process calculi with PVS. In CMCS’98, Elect. Notes in Theor.
Comp. Sci., volume 11. Elsevier, 1998.

[17] G. Villavicencio and J. Oliveira. Formal reverse calculation supported by code slicing. InPro-
ceedings of the Eighth Working Conference on Reverse Engineering, WCRE 2001, 2-5 Oc-
tober 2001, Stuttgart, Germany, pages 35–46. IEEE Computer Society, 2001.

[18] M. Weiser.Program Slices: Formal, Psychological and Practical Investigatios of an Automatic
Program Abstraction Methods. PhD thesis, University of Michigan, An Arbor, 1979.

[19] M. Weiser. Programmers use slices when debugging.Commun. ACM, 25(7):446–452, 1982.

[20] M. Weiser. Program slicing.IEEE Trans. Software Eng., 10(4):352–357, 1984.

[21] Y. Zhang, B. Xu, and J. E. L. Gayo. A formal method for program slicing. In2005 Australian
Software Engineering Conference (ASWEC’05), pages 140–148. IEEE Computer Society,
2005.

[22] J. Zhao. Applying slicing technique to software architectures. InProc. of 4th IEEE International
Conferencei on Engineering of Complex Computer Systems, pages 87–98, August 1998.

A A Glimpse on the Laws of Functions

Composition. This appendix provides a brief review of the algebra of functions, recalling the
basic constructions and laws used in the paper. We begin mentioning some functions which have

a particular role in the calculus: for exampleidentitiesdenoted byidA : A←− A or the so-called
final functions!A : 1←− A whose codomain is the singleton set denoted by1 and consequently
map every element ofA into the (unique) element of1. Elementsx ∈ X are represented as
points, i.e., functionsx : X ←− 1, and therefore function applicationf x can be expressed by
compositionf · x.

Functions can begluedin a number of ways which bare a direct correspondence with the
ways programs may be assembled together. The most obvious one ispipelining which corres-
ponds to standard functional composition denoted byf · g for f : B ←− C andg : B ←− A.
Functions with a common domain can be glued through asplit 〈f, g〉 as shown in the following
diagram:

Z
f

||xxxxxxxxx
g

##FFFFFFFFF

〈f,g〉
��

A A×Bπ1
oo

π2
// B

which defines the product of two sets. Actually, the product of two setsA andB can be char-
acterised either concretely (as the set of all pairs that can be formed by elements ofA andB) or
in terms of an abstract specification. In this case, we say setA × B is defined as the source of
two functionsπ1 : A ←− A × B andπ2 : B ←− A × B, called theprojections, which satisfy
the following property: for any other setZ and arrowsf : A←− Z andg : B ←− Z, there is a
unique arrow〈f, g〉 : A × B ←− Z, usually called thesplit of f andg, that makes the diagram
above to commute. This can be said in a more concise way through the following equivalence
which entails both anexistence(⇒) and auniqueness(⇐) assertion:

k = 〈f, g〉 ≡ π1 · k = f ∧ π2 · k = g (6)

Such an abstract characterization turns out to be more generic and suitable for conducting cal-
culations. Let us illustrate this claim with a very simple example. Suppose we want to show that
pairing projections of a cartesian product has no effect,i.e., 〈π1, π2〉 = id. If we proceed in a
concrete way we first attempt to convince ourselves that the unique possible definition forsplit
is as a pairing function,i.e., 〈f, g〉 z = 〈f z, g z〉. Then, instantiating the definition for the case
at hands, conclude

〈π1, π2〉 〈x, y〉 = 〈π1 〈x, y〉, π2 〈x, y〉〉 = 〈x, y〉

Using the universal property (6) instead, the result follows immediately and in apointfreeway:

id = 〈π1, π2〉 ≡ π1 · id = π1 ∧ π2 · id = π2

Equation
〈π1, π2〉 = idA×B (7)

is called thereflectionlaw for products. Similarly the following laws (known respectively as×
cancelation, fusionandabsorption) are derivable from (6):

π1 · 〈f, g〉 = f , π2 · 〈f, g〉 = g (8)

〈g, h〉 · f = 〈g · f, h · f〉 (9)

(i× j) · 〈g, h〉 = 〈i · g, j · h〉 (10)

The same applies tostructural equality:

〈f, g〉 = 〈k, h〉 ≡ f = k ∧ g = h (11)

Finally note that the product construction applies not only to sets but also to functions, yielding,
for f : B ←− A andg : B′ ←− A′, functionf × g : B × B′ ←− A × A′ defined as the split
〈f ·π1, g ·π2〉. This equivales to the following pointwise definition:f×g = λ 〈a, b〉 . 〈f a, g b〉.

NotationBA is used to denotefunction space, i.e., the set of (total) functions fromA to
B. It is also characterised by an universal property: for all functionf : B ←− A×C, there exists
a uniquef : BC ←− A, called thecurry of f , such thatf = ev · (f × C). Diagrammatically,

A

f

��

A× C

f×idC

��

f

##GGGGGGGGG

BC BC × C ev
// B

i.e.,

k = f ≡ f = ev · (k × id) (12)

Dually, functions sharing the same codomain may be glued together through aneithercombin-
ator, expressing alternative behaviours, and introduced as the universal arrow in a datatype sum
construction.

The sumA + B (or coproduct) of A andB corresponds to their disjoint union. The
construction is dual to the product one. From a programming point of view it corresponds to the
aggregation of two entities intime(as in aunion construction inC), whereas product entails an
aggregation inspace(as arecord). It also arises by universality:A+B is defined as the target
of two arrowsι1 : A + B ←− A andι2 : A + B ←− B, called theinjections, which satisfy the
following universal property: for any other setZ and functionsf : Z ←− A andg : Z ←− B,
there is a unique arrow[f, g] : Z ←− A + B, usually called theeither (or case) of f andg, that
makes the following diagram to commute:

A
ι1 //

f
##FFFFFFFFF A + B

[f,g]

��

B
ι2oo

g
{{xxxxxxxxx

Z

Again this universal property can be written as

k = [f, g] ≡ k · ι1 = f ∧ k · ι2 = g (13)

from which one infers correspondentcancelation, reflectionandfusionresults:

[f, g] · ι1 = f , [f, g] · ι2 = g (14)

[ι1, ι2] = idX+Y (15)

f · [g, h] = [f · g, f · h] (16)

Products and sums interact through the followingexchangelaw

[〈f, g〉, 〈f ′, g′〉] = 〈[f, f ′], [g, g′]〉 (17)

provable by either product (6) or sum (13) universality. Thesumcombinator also applies to
functions yieldingf + g : A′ + B′ ←− A + B defined as[ι1 · f, ι2 · g].

Conditional expressions are modelled by coproducts. In this paper we adopt the Mc-
Carthy conditional constructor written as(p → f, g), wherep : B ←− A is a predicate.
Intuitively, (p → f, g) reduces tof if p evaluates totrue and tog otherwise. The conditional
construct is defined as

(p → f, g) = [f, g] · p?

wherep? : A + A←− A is determined by predicatep as follows

p? = A
〈id,p〉 // A× (1 + 1) dl // A× 1 + A× 1

π1+π1 // A + A

wheredl is the distributivity isomorphism. The following laws are useful to calculate with
conditionals [7].

h · (p → f, g) = (p → h · f, h · g) (18)

(p → f, g) · h = (p · h → f · h, g · h) (19)

(p → f, g) = (p → (p → f, g), (p → f, g)) (20)

Recursion. Recursive functions over inductive datatypes (such as finite sequences or binary
trees) are given by theirgeneticinformation, i.e., the specification of what is to be done in an
instance of a recursive call. Consider, for example, the pointfree specification of the function
which computes the length of a listlen : N ←− A∗. A∗ is an example of an inductive type: its
elements are built by one of the followingconstructors: nil : A∗ ←− 1, which builds the empty
list, andcons : A∗ ←− A × A∗, which appends an element to the head of the list. The two
constructors are glued by aneither in = [nil, cons] whose codomain is an instance of polynomial
functorF X = 1 + A × X. The algorithm contents of functionlen is exposed in the following
diagram:

1 + A× N
[0,succ·π2] // N

1 + A×A∗ in=[nil,cons] //

id+id×len

OO

A∗

len

OO

where the ’genetic’ information is given by[0, succ · π2]: either return0 or the successor of the
value computed so far. Functionlen, being entirely determined by its ’gene’ is said itsinductive
extensionor catamorphismand represented by([[0, succ · π2]]).

Catamorphisms extend to any polynomialF and possess a number of remarkable proper-
ties,e.g.,

([in]) = id (21)

([g]) · in = g · F ([g]) (22)

f · ([g]) = ([h]) ⇐ f · g = h · F f (23)

([g]) · T f = ([g · F (f, id)]) (24)

whereT is the functor that assigns to a setX the corresponding inductive type forF (in our
example,T X = X∗). Laws above are called, respectively, cata-reflection, -cancelation, -fusion
and -absorption.

