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Abstract. Models for exogenous coordination provide powerful glue-
code, in the form of software connectors, to express interaction protocols
between services in distributed applications. Connector reconfiguration
mechanisms play, in this setting, a major role to deal with change and
adaptation of interaction protocols. This paper introduces a model for
connector reconfiguration, based on a collection of primitives as well as
a language to specify connectors and their reconfigurations.

1 Introduction

The purpose of a service-oriented architecture (SOA)[10,11] is to address require-
ments of loosely coupled and protocol-independent distributed systems, where
software resources are packaged as self-contained services providing well-defined
functionality through publicly available interfaces. The architecture describes
their interaction, ensuring, at the same time, that each of them executes inde-
pendently of the context or internal state of the others.

Over the years a multitude of technologies and standards [1] have been pro-
posed for describing and orchestrating web services, publish and discover their
interfaces and enforce certain levels of security and QoS parameters. Either to
respond to sudden and significative changes in context or performance levels,
or simply to adapt to evolving requirements, some degree of adaptability or re-
configurability is typically required from a service-oriented architecture. By a
(dynamic) reconfiguration we mean a process of adapting the architectural cur-
rent configuration, once the system is deployed and without stopping it [14], so
that it may evolve according to some (emergent) requirements [12] or change of
context.

Reconfigurations applied to a SOA may be regarded from two different point
of views. From one of them, they target individual services [21]. In particular,
such reconfigurations are concerned with dynamic update of services, substitu-
tion of a service by another with compatible interfaces (but not necessarily the
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same behaviour) or even their plain removal. Such reconfigurations are usually
triggered by external stimulus [19,13,17,18,23]. Form another point of view, a
reconfiguration is entirely decided by the system itself and targets the way com-
ponents or services interact with each other, as well as the internal QoS levels
measured along such interactions. In particular, such reconfigurations deal with
substitution, addition or removal of communications channels, moving communi-
cation interfaces from a service to another or rearranging a complex interaction
structure.

This paper studies reconfiguration mechanisms for the service interaction
layer in SOA. Adopting a coordination-based view of interaction [20], the model
proposed here represents the ‘gluing-code’ by a graph of channels whose nodes
represent interaction points and edges are labelled with channel identifiers and
types. A channel abstracts a point-to-point communication device with a unique
identifier, a specified behaviour and two ends. It allows for data flow by accepting
data on a source end and dispensing it from a sink end. We call such a graph a
coordination pattern. A subset of its nodes are intended to be plugged to concrete
services, forming the pattern interface.

To keep things concrete, we assume channels in a coordination pattern are
described in a specific coordination model, that of Reo [3,2]. Actually, this choice
is not essential: the reconfiguration mechanisms are directly defined over the
graph and concern only its topology. Only when one intends to reason about the
system’s behaviour or compare the behavioural effect of a reconfiguration, does
the specific semantics of the underlying coordination model become relevant.
Such is not addressed, however, in this paper.

Coordination patterns are introduced in Section 4 and instantiated in the
context of the Reo coordination model. Section 3 discusses reconfigurations, for-
mally defining a collection of primitives. It is shown how the latter can be com-
bined to yield ‘big-step’ reconfiguration patterns which manipulate significative
parts of a pattern structure. The CooPLa language is introduced in Section 4 as
an executable notation for specifying both coordination and reconfiguration pat-
terns. Reconfiguration mechanisms are illustrated through a detailed example in
Section 5. Section 6 concludes the paper.

2 Coordination patterns

A pattern is an effective, easy to learn, repeatable and proven method that
may be applied recurrently to solve common problems [10]. They are common
in several domains of Software Engineering, namely in SOA [22] and business
process [25].

Similarly, in this paper, a coordination pattern encodes a reusable solution
for an architectural (coordination) problem in the form of a specific sort of
interaction between the system constituents. A solution for an architectural
problem is, therefore, the description of interaction properly designed to meet
a set of requirements or constraints. It is reflected in a coordination protocol,



which acts as glue-code for the components or services interacting within the
system.

Formally, a coordination pattern is presented by a graph of channels whose
nodes represent interaction points and edges are labelled with channel identifiers
and types. As explained in the Introduction, we adopt here the Reo framework
[2], in order to give a concrete illustration of our approach.

Let Name and N ode denote, respectively, a set of unique names and a set
of nodes associated either with coordination patterns or channels. A node can
also be seen as an interaction port. It is assumed the following set of primitive
types of channels (see Fig. 1) with the usual Reo [3,2]semantics.

T ype def
= {sync, lossy, fifof , fifoe, drain}

Each channel has exactly two ends and are, normally, directed (with a source
and a sink end) but Reo also accepts undirected channels (i.e., channels with
two ends of the same sort). Channel ends form the nodes of coordination pat-
terns. A node may be of three distinct types: (i) source node, if it connects only
source channel ends; (ii) sink node, if it connects only sink channel ends and
(iii) mixed node, if it connects both source and sink nodes. Fig. 1 recalls the
basic channels used in Reo through the composition of which complex coordina-
tion schemes can be defined. The sync channel transmits data from one end to

sync lossy drain fifoe

•
fifof

Fig. 1. Primitive Reo channels.

another whenever there is a request at both ends synchronously, otherwise one
request shall wait for the other. The lossy channel behaves likewise, but data
may be lost whenever a request at the source end is not matched by another one
at the sink end. Differently, a fifo channel has a buffering capacity of one memory
positions, therefore allowing for asynchronous occurrence of I/O requests. Qual-
ifier e or f refers to the channel internal state (either empty or full). Finally, the
synchronous drain channel accepts data synchronously at both ends and loses it.
We use P to denote the set of all coordination patterns. A coordination pattern
is defined as follows:

Definition 1 (Coordination pattern). A coordination pattern is a triple

ρ
def
= 〈I,O,R〉

– R ⊆ N ode × Name × T ype × N ode is a graph on connector ends whose
edges are labelled with instances of primitive channels, denoted by a channel
identifier (of type Name) and a type (of type T ype);

– I,O ⊆ N ode are the sets of source and sink ends in graph R, corresponding
to the set of input and output ports in the coordination pattern, respectively.



Clearly, every channel instance gives rise to a coordination pattern. For ex-
ample pattern

ρs = 〈{a}, {b}, {〈a, sc, sync, b〉}〉

corresponds to a single synchronous channel, identified by sc, linking an input
port a to an output port b. Similarly, plugging to its output port two lossy
channels yields a lossy broadcaster which replicates data arriving at a, if there
exist pending reading requests at d and e:

ρb = 〈{a}, {d, e}, {〈a, sc, sync, b〉, 〈b, l1, lossy, d〉, 〈b, l2, lossy, e〉}〉

A drain, on the other hand, has two source, but no sink, ends. Therefore, a
pattern formed by an instance of a drain channel resorts to a special end ⊥ ∈
N ode which intuitively represents absence of data flow. Thus, and for example,

ρd = 〈{a, b}, ∅, {〈a, ds, drain,⊥〉, 〈b, ds, drain,⊥〉}〉

As a matter of fact, invariants to avoid ill-formed coordination patterns, are
required. For instance (i) the ⊥ ports can never be connected to other ports
(ii) a name may only be associated to two different ports and a unique channel
type (notice the veracity of this also in the drain example) or (iii) only a single
channel is allowed to connect two consecutive nodes. We assume the existence
of such invariants, and do not address them in this paper.

Notice, however, that the defintion of coordination pattern may be relaxed.
Instead of regarding it as a triple, one may drop the first two components (I
and O), since these can be extracted from component R—the graph—which is
preserved.

A port in a coordination pattern is a channel end not connected (to any
other channel). Identifying the pattern with its graph R, a node is classified as
a port if, in any element of R, it only appears as either the first or the fourth
component in the tuple. Formally, for ρ ∈ P,

I(ρ)
def
= {π1(e) | e ∈ R ∧ in(π1(e), R)}

in(x, S)
def
= 6 ∃e∈S . π4(e) = x

defines the set I (of input ports) of the coordination pattern. Dually,

O(ρ)
def
= {π4(e) | e ∈ R ∧ out(π4(e), R)}

out(x, S)
def
= 6 ∃e∈S . π1(e) = x

defines the set O (of output ports) of the coordination pattern.

In the remaining of this document, input and output ports are accessed via
the above operations. ρ (possibly with indexes) is used to refer to a coordination
pattern and its component R. This convention simplifies the introduction of the
reconfiguration mechanisms in the sequel.



3 Architectural reconfigurations

This section discusses reconfigurations of coordination patterns. We take a rather
broad view of what a reconfiguration is: any transformation obtained through a
sequence of elementary operations, described below, is qualified as a reconfigu-
ration. Our aim is to build a framework in which such transformations can be
defined and the effect of their application to a specific pattern assessed. Later,
one may restrict this set, for example by ruling out transformations which do
not preserve the pattern input-output interface or fail to lead to patterns with
a behaviour which simulates (or bisimulates) the original one. Such considera-
tions, however, require the assumption of a specific semantics for coordination
patterns, easily built from any Reo semantic model, but which lies outside the
more ‘syntactic’ scope of this paper.

Definition 2 (Reconfiguration). A reconfiguration is a sequence r of opera-
tions 〈o0, o1, . . . , on〉, where each oi belongs to the set

Op def
= {par, join, split, remove}

of elementary reconfigurations, specified below. The application of a reconfigura-
tion r to a pattern ρ yields a new pattern and is denoted by ρ • r.

3.1 Primitive reconfigurations

Let us start by defining the set of elementary reconfigurations of a coordination
pattern. The simplest reconfiguration is juxtaposition. Intuitively, it sets two
coordination patterns in parallel without creating any connection between them.
Formally,

Definition 3 (The par operation). Let ρ1 and ρ2 be two coordination patterns.
Then,

ρ1 • par(ρ2) = ρ1 ] ρ2
where ] is set disjoint union.

The par operation assumes disjunction of nodes and channel identifiers in the
patterns to be joined. This is assumed without loss of generality, because formally
a disjoint union of all identifiers is previously made.

The second elementary reconfiguration is join. Intuitively, it creates a new
node j that superposes all nodes in a given set P . This operation adds fresh node
j as a new input or output port if all the nodes in P are, respectively, input or
output ports in ρ. Formally,

Definition 4 (The join operation). Let ρ ∈ P, P ⊆ N ode and j ∈ N ode is
either a fresh node in ρ or belongs to P . Then,

ρ • join(P, j) = ρ′



– ρ′ = 2jnP,j (ρ), with

jnP,j〈q, id, t, s〉 = 〈(q ∈ P → j, q), id, t, (s ∈ P → j, s)〉

The notation (φ → s, t) corresponds to McCarthy’s conditional, returning
s or t if predicate φ evaluates to true or false, respectively. Also note that
the power set of a set A is denoted by 2A and, for a function f from A to B,
2f (X) = {f x | x ∈ X}.

The dual to join is the split operation which takes a node p in a pattern
and breaks connections, separating all channel ends coincident in p. Technically
this is achieved by renaming every occurrence of node p in all channels of the
coordination pattern to a fresh name a.p or p.a depending on whether p is a
sink node of the channel and a is the corresponding source end, or the other way
round. Thus,

Definition 5 (The split operation). Let ρ ∈ P, and p ∈ N ode. Then,

ρ • split(p) = ρ′

– ρ′ = 2spp(ρ), with

spp〈q, ch, t, s〉 = 〈((q = p) → p.s, q), ch, t, ((s = p) → q.p, s)〉

Finally, the remove operation removes a channel from a coordination pattern,
if it exists.

Definition 6 (The remove operation). Let ρ ∈ P, and ch ∈ Name. Then,

ρ • remove(ch) = ρ \ {e | e ∈ R ∧ π2(e) = ch}

3.2 Reconfiguration patterns

Practice and experience in software architecture inspire the definition of pat-
terns for reconfiguring architectures. As stated in the Introduction, the focus of
traditional reconfiguration is set on the replacement of individual components,
rather than on the interaction protocols. The pattern presented here, on the
other hand, are focussed on the latter, but still at this lower-level the interest
is in defining ‘big step’ reconfigurations, by replacing simultaneously significant
parts of a pattern. Fig. 2 sums up the set of such reconfiguration patterns we
have found useful in practice.

The first one removes from a pattern a whole set of channels, applying the
remove primitive systematically,

Definition 7 (The removeP pattern). Let ρ ∈ P and Cs be a set of channels
to remove. Then,

ρ • removeP(Cs) = rS(ρ, Cs)

where
rS(ρ, ∅) = ρ
rS(ρ, Cs) = let c ∈ Cs in rS(ρ • remove(c), Cs \ {c})



Remove pattern Overlap pattern

Insert pattern Move pattern

Replace pattern Implode pattern

Fig. 2. Reconfiguration patterns

Another common reconfiguration overlaps two patterns by joining nodes from
both of them. This is specified by a set of triples indicating which nodes are to
be overlapped and a fresh name for the result. Formally,

Definition 8 (The overlapP pattern). Let ρ, ρr ∈ P and X be a set of triples
of nodes, where the first component is a node of ρ, the second one is a node of
ρr and the third is a fresh node in both coordination patterns. Then,

ρ • overlapP(ρr, X) = rO(ρ • par(ρr), X)

where

rO(ρ, ∅) = ρ
rO(ρ,X) = let ei ∈ X,Ei = {π1(ei), π2(ei)},

in rO(ρ • join(Ei, π3(ei)), X \ {ei})

The insertP pattern puts both patterns side by side, uses split to make room
for a new pattern to be added, as shown in Fig. 2, and join to re-build connections.
Formally,

Definition 9 (The insertP pattern). Let ρ, ρr ∈ P and n,mi,mo, j1, j2 ∈
N ode, where n is a node of ρ, mi,mo are input and output nodes, respectively,



of ρr and j1, j2 are fresh nodes. Then,

ρ • insertP(ρr, n,mi,mo, j1, j2) = let ρ1 = ρ • par(ρr)
ρ2 = ρ1 • split(n)
Isp = I(ρ2) \ I(ρ1)
Osp = O(ρ2) \O(ρ1)
ρ3 = ρ2 • join(Osp ∪ {mi}, j1)

in ρ3 • join(Isp ∪ {mo}, j2)

The moveP pattern moves a single end of a channel from a node into another
node in the coordination pattern. Formally,

Definition 10 (The moveP pattern). Let ρ ∈ P, no, nn ∈ N ode be two dif-
ferent nodes in ρ, ch ∈ Name be the channel to move, of which one of its ends
is node no, and finally, let e ∈ N ode be the second end of ch. Then,

ρ •moveP(no, nn, ch, e) = let ρ1 = ρ • split(no)
Isp = (I(ρ1) \ {no.e}) \ I(ρ)
Osp = (O(ρ1) \ {e.no}) \O(ρ)
ρ2 = ρ1 • join(Isp ∪Osp, no)

in ρ2 • join({no.e, e.no}, nn)

The replaceP patter replaces a sub-structure of the original coordination pat-
tern by a new one. It involves removing the old structure followed by the overlap
of the new pattern. Formally,

Definition 11 (The replaceP pattern). Let ρ, ρr ∈ P and X be the set of
triples of nodes, where the first component is a node of ρ, the second one is a
node of ρr and the third is a fresh node in both coordination patterns. Finally,
let Cs ⊆ Name be the set of channel names to replace. Then,

ρ • replaceP(ρr, X,Cs) = (ρ • removeP(Cs)) • overlapP(ρr, X))

An invariant for this reconfiguration pattern must be met, forcing that the
boarder nodes of the coordination pattern formed by the channels in Cs shall
be the same as the first components of the elements in X.

Finally, the implodeP pattern collapses a set of nodes and channels into a
single node. Formally,

Definition 12 (The implodeP pattern). Let ρ ∈ P, j be a fresh node in ρ,
X ⊆ N ode be the nodes of the structure to implode and Cs ⊆ Name be the
channels forming the structure to implode. Then,

ρ • implodeP(X,Cs, j) = (ρ • removeP(Cs)) • join(X, j)



4 CooPLa: a language for patterns and reconfigurations

Both architectural and reconfiguration patterns can be designed with the help of
a domain specific language — CooPLa— and an integrated editor, supplied as a
plug-in for Eclipse. It supports syntax colouring and intelligent code-completion
and offers during-edition syntax and semantic error checking and error marking
for consistent development of patterns. While editing, the tool offers a visuali-
sation of its graph representation, and any change in the code is automatically
reflected in this view. Fig. 4 shows a snapshot.

With CooPLa we define communication channels, coordination pattern and
reconfigurations.

Channels. Fig. 3 depicts the definition of some of the Reo-like channels introduced
above. Note that the lossy channel type extends that of sync (cf., the extends

keyword). This means the information flow from a to b defined in the latter still
applies; only additional behaviour is specified: if there is a request on a but not
on b, data will flow through a and lost (cf., NULL keyword). Notice the use of !b to
explicitly express the absence of requests on b. As another example, consider the
drain channel. It has two input ports through which data flows to be lost. The
‘|’ construct means that both flows are performed in parallel. Finally, the FIFO
channel has an internal state of type buffer specified as a sequence of dimension
N and observers E and F on which result depends the channel behaviour.

channel sync ( a : b){
a , b −> f low a to b ;

}

channel l o s s y ( a : b) extends sync{
a , ! b −> f low a to NULL;

}

channel dra in (a , b : ) {
a , b −> f low a to NULL | f low b to NULL;

}

channel f i f o ˜N( a : b){
s t a t e : bu f f e r ;
obse rve r s : E, F ;

// bu f f e r = ELEM∗
// E = bu f f e r . l en = 0 ;
// F = bu f f e r . l en = N;

a , ! F −> f low a to bu f f e r ;
!E, b −> f low bu f f e r to b ;

}

Fig. 3. The sync, lossy, drain and fifo channels in CooPLa.

Coordination patterns. Coordination patterns are defined by composition of
primitive channels and patterns previously defined. Declaration of instances is
preceded by the reserved word use. Each instance is declared by indicating (i) the
entity name with the ports locally renamed and (ii) a list of aliases (similar to
variables in traditional programming languages) to be used in the subsequent
parts of the pattern body definition. In case of instantiating a channel with time
or structure, it is defined the inherent dimensions, and in some cases, how such
structure is initialised (making use of the observers defined for such structure).

Patterns are composed by interconnecting ports declared in their interfaces.
This is achieved by the set of primitive reconfigurations introduced in Definition
2. Fig. 4 shows an example of the Sequencer coordination pattern expressed in
the context of the tool developed to support CooPLa.



Fig. 4. Tool Support for CooPLa

Reconfigurations. Reconfigurations in CooPLa are also specified compositionally
from the primitives given in Definition 2, or from more complex reconfigurations
previously defined. Operators over standard data types (e.g., List, Pair and Triple)
can also be used: such is the case, in Fig. 5 of the forall structure which iterates
over all elements of a list. Application of a reconfiguration r to a pattern ρ is
denoted by ρ @ r. Fig. 5 shows an example of two reconfiguration specifications
and respective application to instances of coordination patterns. Both Fig. 4
and 5 present parts of the case study addressed next.

5 Example: A fragment of a case-study

This section illustrates the use of architectural and reconfiguration patterns in
a typical example of web-service orchestration for system integration. The case-
study from where this example was borrowed involved a professional training
company with facilities in six different locations, which relied on four main
software components (all working in complete isolation): an Enterprise Re-
source Planner (ERP), a Customer Relationship Management (CRM), a Train-
ing Server (TS), and a Document Management System (DMS). The expansion
of this company entailed the need for better integration of the whole system.
This lead to changing components into services and adopting a SOA solution.

Several problems, however, were found during service orchestration analysis.
A recurrent one was the lack of parallelism in the business workflow, slowing the
whole system down. The user’s information update activity which involves the
user update services provided by ERP, CRM and TS components, was one of



Fig. 5. Reconfigurations in CooPLa

the tasks affected by such lack of parallel computation, as these services were
invoked in sequence.

Let ρ, in Fig. 6, be the coordination pattern (known as the Sequencer) used
for sequential service orchestration1. Resorting to the reconfiguration patterns
introduced in Section 3.2, lets rearrange the coordination policy so that user pro-
files (in each component) are updated in parallel. A possible solution is obtained
by applying the implodeP reconfiguration pattern as

ρ • implodeP({j1, j2, j3}, n, {f1, f2})

. The following paragraphs show, step-by-step, how to compute the resulting
coordination pattern, depicted in Fig. 7. The actual CooPLa script for this re-
configuration is shown in Fig. 5.

i o

crm erp ts

j1 j2 j3

s1

s2
f1

s3
f2

s4

s5

ρ =

〈
{i}, {crm, erp, ts, o},


(i, s1, sync, j1), (j1, s2, sync, crm), (j1, f1, fifoe, j2),

(j2, s3, sync, erp), (j2, f2, fifoe, j3), (j3, s4, sync, ts),
(j2, s5, sync, o)


〉

Fig. 6. The Sequencer Coordination Pattern

1 For illustration purposes, the input and output ports of the coordination patterns
are shown in the concretization of their formal model



The first argument of implodeP provides the nodes of the structure one desires
to superpose onto the node in the second argument. From Definition 12 first it
is applied the removeP reconfiguration pattern as

ρ • removeP({f1, f2}).

This boils down to the recursive application of the remove primitive operation
as

(ρ • remove(f1)) • remove(f2).

Let ρ′ be the result of removing f1 from ρ:

ρ′ =

〈
{i, j2}, {crm, erp, ts, o},


(i, s1, sync, j1), (j1, s2, sync, crm),

(j2, s3, sync, erp), (j2, f2, fifoe, j3),
(j3, s4, sync, ts), (j2, s5, sync, o)


〉

and ρ′′ be the result of removing f2 from ρ′, which is actually the outcome of
applying the removeP reconfiguration pattern to ρ:

ρ′′ =

〈
{i, j2, j3}, {crm, erp, ts, o},


(i, s1, sync, j1), (j1, s2, sync, crm),

(j2, s3, sync, erp), (j3, s4, sync, ts),
(j2, s5, sync, o)


〉

After removing the channels, and finally it is merged the nodes of the first ar-
gument with node n, and it is obtained the desired coordination pattern (Fig. 7)
which encodes a parallel workflow policy and consequently allows for the update
of user’s information in parallel.

i

o

crm

erp

ts

n

s1

s2

s3
s4

s5

ρ1 =

〈
{i}, {crm, erp, ts, o},

{
(i, s1, sync, n), (n, s2, sync, crm), (n, s3, sync, erp)
(n, s4, sync, ts), (n, s5, sync, o),

}〉

Fig. 7. After imploding the Sequencer: the Parallel Split coordination pattern

The resulting pattern actually does the job: the three user update services
are called simultaneously, and the flow continues to the output port o, which
enables contiguous activities. However, it does not cope with another require-
ment enforcing that no other activity should start before the user’s information
is updated. The obvious solution is to delay the flow on port o, until the three
services provide a finish acknowledgement. A new reconfiguration is, therefore,
necessary. A solution may be overlapping a Synchroniser pattern ρs (see Fig. 8).



a

b

tsi erpi crmi

k1 k2 k3 k4

s9
s8 s7 s6

s10 d3 d2 d1

ρs =

〈
{a, crmi, erpi, tsi}, {b},


(a, s9, fifoe, k1), (k1, s10, sync, b), (k1, d3, drain,⊥),

(k2, d3, drain,⊥), (tsi, s8, sync, k2), (k2, d2, drain,⊥),
(k3, d2, drain,⊥) (erpi, s7, sync, k3), (k3, d1, drain,⊥),
(k4, d1, drain,⊥), (crmi, s8, sync, k4)


〉

Fig. 8. The Synchroniser Coordination Pattern

The CooPLa specification of this reconfiguration is shown in Fig. 5. The idea is
to connect nodes o and a in such a way that all other input ports of ρs are free to
connect to the feedback service interface of the CRM, ERP and TS components.
Fig. 9 depicts the result of performing

ρ1 • overlapP(ρs, {(o, a, j)}).

From Definition 8, the reconfiguration starts by computing ρ1•par(ρs), which
yields the following pattern

ρ′′′ =

〈 {i, a, tsi, erpi, crmi}, {o, crm, erp, ts, b},
(i, s1, sync, n), (n, s2, sync, crm), (n, s3, sync, erp) (n, s4, sync, ts),
(n, s5, sync, o), (a, s9, fifoe, k1), (k1, s10, sync, b), (k1, d3, drain,⊥),

(k2, d3, drain,⊥), (tsi, s8, sync, k2), (k2, d2, drain,⊥), (k3, d2, drain,⊥)
(erpi, s7, sync, k3), (k3, d1, drain,⊥), (k4, d1, drain,⊥), (crmi, s8, sync, k4)


〉

Then, nodes o and a are merged together into a node j, by performing

ρ′′′ • join({o, a}, j).

The result is presented in Fig. 9, which is actually the coordination pattern
meeting the requirement of not allowing other activities to start before the user’s
information update in the CRM, ERP and TS components is completed.

6 Conclusions

6.1 Related work

Reconfigurations in SOA are, most of the times, focused on replacing services, or
modifying their connections to the coordination layer. Often they neglect struc-
tural changes in the actual interaction layer itself [13,17]. In [19,18], however, the
authors highlight the role played by software connectors during runtime archi-
tectural changes. Although these changes are again focused on the manipulation
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k1

k2

k3

k4

s9

s8
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s10

d3
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d1

ρ2 =

〈 {i, tsi, erpi, crmi}, {crm, erp, ts, b},
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
〉

Fig. 9. Overlapping Parallel Split with the Synchroniser pattern

of components, they recognise that connectors are also amenable to contextual
adaptations in order to keep the consistency of the architecture.

Reference [24] resorts to category theory to model software architectures as
labelled graphs of components and connectors. Reconfigurations are modelled
via algebraic graph rewriting rules. This approach has some points of contact
with our strategy.

In [5], are presented two approaches for modelling architectures, their styles,
dynamism and properties based on pioneer work on graph rewriting [9]. The
first approach [7,4] represent the architecture as a hypergraph with hyperedges
and ports to address components and connectors. The Alloy framework is used
to specify the graph of the architecture as well as structural and behavioural
properties of the architecture dynamism. Reconfigurations are performed via
graph rewriting productions and graph morphisms. The second approach [5,6]
adopts a hierarchical model of the graph, to which they refer to as designs, where
the architecture constituents are represented uniformly and interfaces are added
to the graph, allowing for reuse. The Maude framework is used to specify the
architecture and to perform analysis on structural and behavioural properties.
Reconfigurations are encoded as rewrite rules over terms.

In [16,15], the authors relay on high-level replacement systems, more pre-
cisely on typed hypergraphs, to describe Reo connectors (and architectures, in
general). In this perspective, vertices are the nodes and (typed hyper-) edges
are communication channels and components. Reconfiguration rules are speci-
fied as graph productions for pattern matching. This approach performs atomic
complex reconfigurations, rather than a sequence of basic modifications, which
is stated as an advantage for maintaining system consistency. Nevertheless, the



model may become too complex even when a simple primitive operation needs
to be applied.

Differently, in [8] architectures are modelled as Reo connectors, and no infor-
mation on components is stored in the model. The model is a triple composed
of channels with a type and distinct named ports, a set of visible nodes and a
set of hidden nodes. Their model is similar to ours, but for the distinction intro-
duced here between input and output nodes and the need we avoid to be explicit
on the hidden nodes of a pattern. Although a number of primitive transforma-
tions are proposed, this work, as most of the others, do not consider ‘big-step’
reconfigurations which seems a severe limitation in practice.

6.2 Summary and future work

The paper introduces a model for reconfiguration of coordination patterns, de-
scribed as a graphs of primitive channels. It is shown how typical reconfiguration
patterns can be expressed in the model by composition of elementary transfor-
mations. CooPLa provides a setting to animate and experiment reconfigurations
upon typical coordination patterns. We are currently involved in their classi-
fication in a suitable ontology, taking into account structural and behavioural
properties of coordination patterns. What is still missing, however, is the inclu-
sion in the model of automatic assessing mechanisms to assess reconfigurations
semantically and trigger their application based on non-functional requirements.
This concern is orthogonal to the work presented in this paper.
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