Reuse and Integration of Specification
Logics: The Hybridisation Perspective

Luis S. Barbosa, Manuel A. Martins, Alexandre Madeira
and Renato Neves

Abstract Hybridisation is a systematic process along which the characteristic fea-
tures of hybrid logic, both at the syntactic and the semantic levels, are developed on
top of an arbitrary logic framed as an institution. It also captures the construction
of first-order encodings of such hybridised institutions into theories in first-order
logic. The method was originally developed to build suitable logics for the specifica-
tion of reconfigurable software systems on top of whatever logic is used to describe
local requirements of each system’s configuration. Hybridisation has, however, a
broader scope, providing a fresh example of yet another development in combining
and reusing logics driven by a problem from Computer Science. This paper offers an
overview of this method, proposes some new extensions, namely the introduction of
full quantification leading to the specification of dynamic modalities, and exempli-
fies its potential through a didactical application. It is discussed how hybridisation
can be successfully used in a formal specification course in which students progress
from equational to hybrid specifications in a uniform setting, integrating paradigms,
combining data and behaviour, and dealing appropriately with systems evolution and
reconfiguration.

Keywords Software specification - Hybrid logic - Hybridization

L.S. Barbosa (<) - A. Madeira - R. Neves
HASLab - INESC TEC & University of Minho, Braga, Portugal
e-mail: luis.s.barbosa@inesctec.pt

A. Madeira
e-mail: amadeira@inesctec.pt

R. Neves
e-mail: rjneves @inescporto.pt

M.A. Martins
CIDMA - Department of Mathematics, University of Aveiro, Aveiro, Portugal
e-mail: martins@ua.pt

© Springer International Publishing Switzerland 2016 1
T. Bouabana-Tebibel and S.H. Rubin (eds.), Theoretical Information

Reuse and Integration, Advances in Intelligent Systems and Computing 446,

DOI 10.1007/978-3-319-31311-5_1

2 L.S. Barbosa et al.

1 Introduction

Hybrid logic [5, 10, 14, 31] adds to a modal language the ability to name, or to
explicitly refer to, specific states of the underlying Kripke structure. This is done
through the introduction of propositional symbols of a new sort, called nominals,
each of which is true at exactly one possible state. Sentences are then enriched in
two directions. On the one hand, nominals are used as simple sentences, each of
them holding exclusively in the state it names. On the other hand, explicit reference
to states is provided by sentences such as @; p, stating the validity of p at the state
named i.

Hybrid logic was originally introduced by A. Prior in his book [46], and later
revisited, in the school of Sofia, by Passy and Tinchev [47], awakening a broad
interest within the modal logic community along the 90s. Our own interest in this
generalisation of modal logic was triggered by a concrete problem in (rigorous)
software engineering—the specification of reconfigurable software systems. The
qualifier reconfigurable is used for systems whose execution modes, and not only
the values stored in their internal memory, may change in response to the continuous
interaction with the environment. Such systems behave differently in different modes
of operation, or configurations, and commute between them along their lifetime.

Present such is more the norm than the exception. A typical, everyday example is
offered by cloud based applications that elastically react to client demands. Another
example is a modern car in which hundreds of electronic control units must operate
in different modes depending on the current situation—such as driving on a highway
or finding a parking spot. Switching between these modes is an intuitive example of a
dynamic reconfiguration. As a matter of fact, reconfigurability, together with related
issues like self-adaptation or context-awarness, became a main research topic [48],
in the triple perspective of foundations, methods and technologies.

Clearly, the dynamics of reconfiguration of a software system can be described by
some sort of transition system, whose states represent configurations and transitions
aretriggered by whatever conditions enforce a switch of configurations. However, one
needs also to capture the specific, local requirements which characterise each con-
figuration and distinguish one from the others. Formally, such different behaviours
can be modelled by imposing additional structure upon the states of the transition
system which expresses the overall dynamics.

This path was explored in our previous work [35] on a specification methodol-
ogy for reconfigurable systems. The basic insight is that, starting from a classical
state-machine specification, each state, regarded as a possible system’s configura-
tion, is equipped with a rich mathematical structure to describe its functionality.
Technically, specifications become structured state-machines whose states denote
algebras or first order structures, rather than sets. Such a specification should be
able to make assertions both about the transition dynamics and, locally, about each
particular configuration. This explains why hybrid logic was chosen as the lingua
Jfranca for the envisaged methodology. One may therefore specify (local) proper-
ties of specific configurations in the system or even assert the equality between two

Reuse and Integration of Specification Logics ... 3

particular configurations, something that is beyond what can be said in a modal lan-
guage. Modalities, however, capture state transitions, providing a way to specify the
global dynamics of reconfigurability.

For the working software architect, the relevant question goes a step forward: the
envisaged methodology should be independent of whatever logic is found appropriate
to express local requirements for each configuration. Actually, specific problems do
require specific logics to describe their configurations (e.g., equational, first-order,
fuzzy, etc.). Therefore, instead of choosing a particular version of hybrid logic, the
method proposed in [35] starts by choosing a specific logic to express requirements
at the configuration level. This is later taken as the base logic on top of which the
characteristic features of hybrid logic are developed.

Such a process along which the characteristic features of hybrid logic, both syn-
tactical and semantical, are developed on top of a given logic, in a parametric way,
is called hybridisation, and was proposed in Madeira Ph.D. thesis [34], whose core
results were published in Refs. [22, 23, 39]. Going generic entailed the need for a
proper abstract foundation. Therefore, the whole approach is framed in the context
of the theory of institutions of Goguen and Burstall [20, 25], each logic (base and
hybridised) being treated abstractly as an institution.

As discussed in the sequel, hybridisation techniques not only offer a main concep-
tual tool for dealing with reconfigurable systems, but are also valuable in designing
innovative teaching approaches in Software Engineering.

Aims. In such a context, this paper has a triple objective. First of all, it offers an
overview of this method, emphasising conceptual exposition, rather than the purely
technical style the interested reader may find in the references above. Secondly it
exemplifies its potential through a didactical application, as a follow up to the original
workshop paper [38]. The focus is on how the method can provide ways of reusing
and integrating different specification logics in an undergraduate course on formal
software specification. This leads to the design of a new course along which students
progress from equational to hybrid specifications in a uniform setting, integrating
paradigms, combining data and behaviour, and dealing appropriately with systems
evolution and reconfiguration. Finally, it extends the method in two directions: (i)
computational support for the translation of system’s requirements in the format
of boilerplates to HCASL; (ii) introduction of full quantification in the method
providing a way to specify dynamic modalities and, in general, the change ‘on-the-
fly’ of the transition relation.

Paper structure. The hybridisation method is described and illustrated in the next
section. Section3 discusses the integration of the method in the HETS platform,
therefore providing effective tool support to (some families of) hybridised specifi-
cations. Its didactical use in an introductory course to formal software specification
is the subject of Sects.4 and 5. Section 6 extends the method to deal with full quan-
tification, which forms the main, original contribution of the paper. Finally, Sect.7
reviews related work in the area of combination of logics and concludes pointing out
current research directions.

4 L.S. Barbosa et al.

2 The Hybridisation Method

2.1 Institutions

An institution is an abstract formalisation of a logical system, encompassing syntax,
semantics and satisfaction. The concept was put forward by Goguen and Burstall, in
the end of the Seventies, in order to “formalise the formal notion of logical systems”, in
response to the “population explosion among the logical systems used in Computing
Science” [25].

The universal character of institutions proved effective and resilient as witnessed
by the wide number of logics it was able to formalise. Examples range from the
usual logics in classical mathematical logic (propositional, equational, first order,
etc.), to the ones underlying specification and programming languages or used for
describing particular systems from different domains. Well-known examples include
probabilistic logics [9], quantum logics [18], hidden and observational logics [6, 8],
coalgebraic logics [15], as well as logics for reasoning about process algebras [42],
functional [50, 52] and imperative programing languages [52].

The theory of institutions (see [20] for an extensive account) was motivated by the
need to abstract from the particular details of each individual logic and to characterise
fundamental concepts, such as satisfaction and combination of logics, in very general
terms. This lead to the development of a solid institution-independent specification
theory, on which, structuring and parameterisation mechanisms, required to scale
up software specification methods, are defined ‘once and for all’, irrespective of the
concrete logic used in each application domain.

Formally, an institution

I = (Sign”, Sen”, Mod”, (E%) s¢sign7|)

consists of a category Sign” of signatures and signature morphisms; a functor Sen”,
Sen? : Sign? — Ser, giving for each signature a set of sentences over that signa-
ture; another functor Mod? : (Sign?)? — CAT, providing for each signature X a
category of X'-models and X -(model) homomorphisms, and, finally, a satisfaction
relation.

Note that each morphism of signatures ¢ : ¥ — X’ € Sign” induces a semantic
map, i.e., a functor Mod?* () : Mod% (X") — Mod? (X) called the reduct functor,
whose effect is to cast a model of X’ as a model of X. Therefore, the satisfaction
relation |=’2g [Mod? (X)| x Sen®(X), foreach ¥ € |SignI |, verifies the following
condition, which, for each signature morphism ¢, entailing a syntactic transforma-
tion, captures the basic principle of truth invariance under change of notation [25]:

M’ =Y, Sen” (0)(p) iff Mod” (p)(M') =5 p

Reuse and Integration of Specification Logics ... 5

2.2 The Method

This section reviews the hybridisation method proposed in [23, 39]. The method
enriches a base (arbitrary) institution / with hybrid logic features and the correspond-
ing Kripke semantics. The result is still an institution, HI, called the hybridisation
of 1. In the sequel we concentrate in a simplified version, i.e., quantifier-free and
non-constrained, of the general method, to convey the basic intuitions.

At the syntactic level the base signatures are enriched with nominals and polyadic
modalities. Therefore, the category of I-hybrid signatures, denoted by Sign’/,
is defined as the direct (cartesian) product of categories of the original category
of signatures Sign? and that of signatures of REL, the sub-institution of (the
institution of) first order logic, without non-constant operation symbols, Sign®£’.
Signatures of the hybridised institution combine those of / with a set of con-
stants Nom for nominals and a set of relational symbols A to represent modali-
ties. HI signatures are, thus, triples (X, Nom, A), with signature morphisms ¢ =
(sigs PNom» Pms) : (X, Nom, A) — (X', Nom’, A"), defined component-wise: the
first component is inherited from / and the others simply map nominals and modal-
ities while preserving the arities of the latter.

The second step in the method is to enrich the base sentences accordingly. The
sentences of the base institution / and the nominals in Nom are taken as atoms
and composed with the Boolean connectives, the modalities in A, and satisfac-
tion operators indexed by nominals. For example, for a n-ary modality A, a nom-
inal i and ‘H/-sentences p, pi1, p2 ..., pn, the following are also sentences in HI:
(A1, ooy pn)s (N (p1s oy pn) and @p.

Given a HI-signature morphism ¢, the translation of sentences Sen’Z(y) is
defined structurally: e.g.,

SGHHI(QP)(I') = SDNom(i)
Sen™ (9)(@;p) = @,y Sen"” (p) and
SenHI((p)([A](Pl’ e Pn) = [@Ms(A)](SenHI(p]), Cee, SenHI(pn))

Models of HI can be regarded as (A-)Kripke structures whose worlds are /-
models. Formally, they are pairs (M, W) where W is a (Nom, A)-model in REL and
M is a function which assigns to each state w € W a model M (w) € |M0dI (X)].
We denote M (w) simply by M,,.

In each world (M, W), W, provides an interpretation for nominal n, whereas
relation W), interpretes modality A. The reduct definition is lifted from the base
institution: the reduct of a A’-model (M’, W) along a signature morphism ¢ : A —
A’ is the A-model (M, W) such that W is the (©nom, ©ms)-reduct of W’ (i.e., |W| =
|W'|, W, = W; for each nominal n, and W) = W;MS (for each modality in
A).

Finally, the satisfaction relation for the hybridised institution resorts to the one in
the base institution for sentences in 7, i.e.,

Nom (1)

6 L.S. Barbosa et al.

o (M, W) " piff M, =' p when p € Sen!(X),
captures the semantics of nominals

e (M, W) EYiiff W; = w, wheni € Nom
o (M, W) " @piff (M, W) =Y p

and modalities, as in

o (M, W) EY [N, ...,&) iff, for any (w, wy, ..., w,) € Wy, (M, W) =% &
forsome 1l <i<n

and is defined as usual for the Boolean connectives.

The main result is that H/I effectively constitutes an institution [39]. The next step
is the systematic characterisation of encodings of the hybridised institution H/ into
the institution of many sorted first-order logic (FOL) building on existent encodings
of the base institution / into FOL. This is discussed below in Sect. 3.

2.3 Examples

Propositional logic. Propositional logic gives rise to a well-known institution PL
whose signatures are sets of propositional symbols and signature morphisms are
functions between them. Models assign truth values to propositions and interpret
propositional sentences, built with the Boolean connectives, in the usual way.

The hybridisation of the institution of propositional logic PL introduces nominals
and modalities resulting in an institution whose sentences are generated by

pr=plil@plpOpl=plNp,....p) [[N(p,...,p)

where py is a sentence inherited from PL, © = {V, A, =}, and i and) stand, respec-
tively, for a nominal and a modality symbol. Note there is a double level of connec-
tives in the sentences: one coming from base PL-sentences and another introduced
by the hybridisation process. However, they “semantically collapse” and, hence, no
distinction between them needs to be done (see [23] for details). A HPL model has
a transition structure to interpret each added modality. Each world comes equipped
with a PL-model, i.e., a particular subset of propositions holding locally.

As one would expect, restricting signatures to those with just a single unary
modality results in the usual institution for classical hybrid propositional logic [14].
Propositional fuzzy logic. Many-valued logics [26] generalise classic logics by
replacing, as their truth domain, the 2-element Boolean algebra, by larger sets struc-
tured as complete residuated lattices. A residuated lattice includes an associative,
monotonic binary operation ®, with the biggest element as the identity and such
that there exists an element x = z verifying y < (x = z) iff x ® y < z. They were
originally formalised as institutions in [21].

Given a complete residuated lattice L, an institution MVL; is defined based on
PL-signatures, but whose sentences are pairs (p, p) formed by an element p of L

Reuse and Integration of Specification Logics ... 7

and a PL-sentence p defined over the usual Boolean connectives and ®. Models are
functions evaluating propositions on the lattice, rather than on the Boolean domain.
Accordingly, a sentence (p, p) is satisfied in a model M if p is less or equal the
evaluation of sentence p in M.

This institution captures many many-valued logics discussed in the literature. For
instance, taking L as the Lukasiewicz arithmetic lattice over the closed interval [0, 1],
wherex @ y =1 —max{0,x +y — 1)} (andx = y = min{l, 1 — x 4 y}), yields the
standard propositional fuzzy logic.

The institution obtained through the hybridisation of MVL,, for a fixed L, is
similar to HPL but for two aspects: sentences are defined as in HPL but taking
sentences (po, p) as atomic; and a function assigning to each proposition a value in
L, is associated to each world.

Note that expressivity increases even in the restricted case of a (one-world) stan-
dard semantics. Differently from what happens in the base logic, where each sentence
is tagged by a L-value, in the hybridised institution expressions may involve different
L-values, as in, for example, (p, p) A (¢, p’). The reason for this is the introduction
of Boolean connectives by the hybridisation process.

Equational logic. Signatures in the institution EQ of equational logic are pairs (S, F)
where S is a set of sort symbols and F = {Fy_,, | ar € S*, s € S} is a family of sets
of operation symbols indexed by arities ar (for the arguments) and sorts s (for the
results). Signature morphisms map both components in a compatible way. A model
for a given signature is an algebra interpreting each sort symbol as a carrier set
and each operation symbol as a function; model morphisms are, of course, homo-
morphisms of algebras. Sentences are universal quantified equations (VX)¢ = ¢’ and
the satisfaction relation is the usual Tarskian satisfaction defined recursively on the
structure of the sentences.

The hybridisation of EQ gives rise to an institution HEQ whose signatures are
triples ((S, F'), Nom, A) and the sentences are defined as in the previous examples,
but taking (S, F)-equations (VX)7 = ¢’ as atomic base sentences instead. Models are
Kripke structures with a (local) (S, F)-algebra associated to each world.

3 Hpybridisation at Work

Hybridised logics provide an interesting framework to specify and reason about
reconfigurable software systems. As explained above, models for reconfigurable soft-
ware can be regarded as structured transition systems, whose states represent individ-
ual configurations with whatever structure they have to bear in concrete applications.
Transitions, on the other hand, correspond to the admissible reconfigurations. For
example, if local requirements are captured equationally, as they often are in formal
specification methods, distinct configurations can be modelled by distinct algebras.
Clearly, specifications are given equationally, based on EQ-signatures. Nominals
identify the “relevant” configurations, and reconfigurations amount to state transi-
tions. Therefore, one resorts to equations tagged with the satisfaction operators to

8 L.S. Barbosa et al.

specify configurations; plain equations to specify the system global properties and
modal features to specify its reconfiguration dynamics.

The key ingredient to make these ideas appealing for the working software engi-
neer is the existence of computer-based support for reasoning about specifications
in logics obtained by hybridisation. Technically, this amounts to the existence of
tools to transport specifications from a logical system to another, with more effective
proof support. This is done through the systematic characterisation of encodings of
hybridised institutions into FOL, the institution of many sorted first-order logic. In
this section we discuss such encodings and the tool support they provide on top the
HETS platform [40].

3.1 First-Order Encodings

As mentioned above, for each institution “encodable” in FOL theories, there is a
method to construct an encoding from its hybridisation to FOL. Therefore, a wide
variety of computer assisted provers for first order logic can be “borrowed” to reason
about specifications in the new, hybridised logics.

Technically such encodings extend the classical standard translation of modal
logic into the (one-sorted) first order logic [53], more precisely, of its hybrid version
[10], to the encodings of hybridised institutions into FOL.

The standard translation from hybrid propositional logic HPL into the (one-
sorted) first-order logic introduces a new sort to encode the state space, interprets
nominals as constants, modalities as binary relations, and propositions as unary pred-
icates encoding the validity of each proposition in each state. Brauner [14] extends
this encoding in devising the translation from hybrid first order logic HFOL to FOL.
Basically, he introduces a new universe as an extra sort in the signature, and “flat-
tens” the universes, operations and predicates of the (local) FOL-models to an unique
(global) FOL-model. Local functions and predicates become parametric over states,
and the state universes distinguished with a sort-family of definability predicates.
Intuitively, whenever m belongs to the universe of w, 7(w, m) and o(w,m) = b
means that 7w(m) and o(m) = b hold in state w. The restriction of this global model
M to the local universes, operations and predicates of a fixed word w, gives rise to
a “slice of M”, say M|,, i.e., a local FOL-model which represents (and coincides
with) M,,.

A similar method, based on a state-parametric construction, is used in our con-
text to lift I2FOL to HI2FOL. Thus, all the signatures and sentences targeted by
I2FOL become parametric on states. A slice M|,, corresponds now to the “FOL-
interpretation” of the local /-model M,,, which can be recovered using I2FOL. Actu-
ally, this process can be understood as a combination of logic encodings between the
standard translation of hybrid logic into FOL and other encodings into FOL.

Such encodings are required to be conservative “theoroidal comorphisms” [27,
41],1.e., they are supposed to map signatures to theories. Conservativity, i.e., require-
ment that models are translated through surjections, is a sufficient condition to use

Reuse and Integration of Specification Logics ... 9

such maps as actual encodings. In particular, this is necessary in order to borrow
from FOL proof resources in a sound and complete way. This entails the need for an
abstract characterisation of conservativity which appeared in [23]. This reference also
extends the method originally proposed in [39] for generating first-order encodings
in hybridised institutions to theories, constrained models and quantified sentences.
Constrained models provide a very general way to introduce sharing constraints
into the picture. Those are traditionally modelled via the so-called “rigid” syntactic
entities, which means that some sorts, functions, or predicates are designated as
“rigid” and consequently their interpretations are invariant across possible worlds.
Constrained models are indispensable for having encodings into first-order logic,
more precisely to reflect the consequence relation (see [22] for a detailed account).

3.2 Implementation in the HETS Platform

Encodings, as discussed above, provide the right path to transport specifications from
a logical system to another offering more effective, computer-based proof support.
HETS has been described as a “motherboard” of logics where different “expansion
cards” can be plugged in. These are individual logics (with their particular analysers
and proof tools) as well as logic translations. To make them compatible, logics are
formalised as institutions and translations as comorphisms. Therefore, the integra-
tion of hybrid specifications in the HETS platform is legitimate, since all formal
requirements (e.g., that institutions exist, that comorphisms can be defined, etc.) are
already guaranteed by the hybridisation process itself.

This implementation was done along two different directions, both documented
in [43]. Firstly the general hybridisation method was incorporated in HETS , mak-
ing available parsing and static analysis for the hybridisation of any base institution
already supported by this platform. Secondly, the encoding along the comorphism
HCASL — CASL was implemented, offering effective tool support for proofs on a
number of HCASL-sub-institutions, namely HPL and HFOL. Institution HCASL
consists of the hybridisation of the institution for CASL [36], the platform lingua
franca, with the models restricted to those with common realisation of sorts in all the
states and of the quantified variables. This provides for free the proof support environ-
ment of a particularly well established logic. The implementation of the hybridisation
method in HETS proved an effective and flexible way to prove properties of hybrid
specifications and thus to support the design method in [35, 37].

3.3 An Example

Figure 1 depicts the setting for a toy, yet illustrative example of a hybrid specification
andits encoding. The systemis a “swinging” calculator with only one operation which
can be interpreted in two possible modes. In one of them it adds two natural numbers,

10 L.S. Barbosa et al.

Fig.1 The swinging Shift
calculator

Shift

in the other multiplies them. One switches between these two modes through the Shift
command.
The underlying Kripke frame is specified as follows:

modalities Shift
nominals Sum, Mult
@Sum — Mult
Sum v Mult
@Sum ((Shift) Mult A [Shift] Mult)
@Mult ((Shift) Sum A [Shift] Sum)

The first axiom rules out models where Sum and Mult would collapse into each
other. The second one restricts to models which admit at most two possible modes.
Thus all valid Kripke frames for this example will have precisely the two desired
modes of operation. Transitions between them (i.e., the reconfiguration dynamics) are
characterised by the last two sentences. The “reconfigurable” operation is declared

9o ¢

in the calculator’s “global” signature:

op __#__:Nat x Nat — Nat

Global properties of the calculator, for example # commutativity and associativity,
can be specified as follows,

Y n, m, p: Nat
entm=m#n
e(n#tmy#p=n#m#p)

The behaviour of #, however, needs to be defined locally, i.e. relative to each possible
mode of operation, Sum and Mult. Thus,

Y n,m: Nat
e @Sumn#0=n
e @Sum n # suc(m) = suc(n # m)
e @Multn#0=0
edp,q: Nat
o @Mult n# succm) =p AN @Sumn#q=p AN @QMult n#m =gq

Reuse and Integration of Specification Logics ... 11

which concludes the specification. Note that the last sentence represents the equation
nx (m+ 1) =n+ (n*xm), where + and * are, respectively, the usual addition and
multiplication of natural numbers. The translation of these axioms to CASL proceeds
as described above, with the introduction of a new sort to encode the state space upon
which nominals are interpreted as constants (W rl_Sum and Wrl_Mult, respectively).
The translation of the two axioms characterising the behaviour of # in the Sum mode
is as follows:

Y world : World
oV n:Nat e (#(Wrl_Sum, n O(Wrl_Sum))) =n

Y world : World
eV n, m: Nat
o (#(Wrl_Sum, n, suc(Wrl_Sum, m)))
= (suc(Wrl_Sum, #(Wrl_Sum, n, m))))

The next step is to check for properties. For illustration purposes, consider the three
properties below. The first one states monotonicity of addition; the second the cyclic
character of the Shift modality; and the third represents the equation n +n = n * 2.

Y n,m, r: Nat

e @Sum(n<m=n<m#r) %1%
e dp: Nat

e @Sumn#m=pA @Sum < Shift > < Shift >n#m=p %2 %
edp:Nate @Sumn#n=p = @Mult n# suc(suc(0)) =p %3 %

The CASL-translations computed for these properties are, respectively,

Y world : World
eV n, mr:Nat
o <(Wrl_Sum, n, m)
= <(Wrl_Sum, n,
#(Wrl_Sum, m, r : Nat))) %1%

Y world : World
eV n, m: Nat
e dp: Nat
o (#(Wrl_Sum, n,m)) =p
A = Y world0 : World
o Acc_Shift(Wrl_Sum, world0)
= V worldl : World
e Acc_Shift(world0, worldl)
= — (#(worldl : World, n, m)) = p %2 %

Y world : World
eV n:Nat
e dp: Nat

12 L.S. Barbosa et al.

) Prove: Hets_input_examples/ReconfCalcfcalc_ReconfCalc

Edit View Navigation Abstraction Layd Goals: Selected goal(s):

E

Proof details | Display | Prove

[+] cyclicity1

a2 it Sublogic of currently selected theory:
[+] Cyclicity2 Hybrid

[+] DoubleDef

[+] stateExclusion

Pick theorem prover:
CspCASLProver
Isabelle
Mathserve Broker
QuickCheck
SPASS
VSE
invert selected comorphism path:
[| id_Hybrid;Hybrid2CASL;CASL2SL : |

AL

[+] lemma1

ned composition of theory
Theorems to include if proven:

| CasesSumBiggerMult
v Cyclicity1
o cyclicityz
DoubleDef
StateExclusion
lemmat
lnvert | lemma2

Fig. 2 A HETS session for the swinging calculator

o (#(Wrl_Sum, n,n)) =p
= (#Wrl_Mult, n, suc(Wrl_Mult, suc(Wrl_Mult, 0(Wrl_Mult)))))
—p %3 %

Once translated, all these properties are easily proved by one of the provers plugged
into the HETS platform, for example SPASS. Figure?2 registers an HETS session
relative to this example showing the proof window, part of the model theory, and the
specification graph.

3.4 From Boilerplates to HCASL Specifications

In order to facilitate the use of hybridised logics in real world specification projects,
a language of boilerplates for modelling requirements of reconfigurable systems
was proposed by the authors [37]. In the discipline of requirements engineering, a
boilerplate [29] is defined as a simplified, normative English text, intended to capture
software requirements in a controlled way. It is supposed to be highly reusable and
amenable to some form of computer-based simulation.

The term derives from steel manufacturing, where it refers to steel rolled into
large plates for use in steam boilers. The intuition is that a boilerplate has been time-
tested and is “strong as steel” suitable for repeated reuse. Our starting point in the

Reuse and Integration of Specification Logics ... 13

above cited paper was that the use of “controlled natural language” for requirements
elicitation is a successful practice in industry and, despite of its informal character,
provides an interesting starting point towards more formal approaches [37].

This approach is extended in the present paper by providing a systematic transla-
tion scheme of this language of boilerplates to hybridised specifications in HCASL.
Once the system’s requirements are captured by a collection of boilerplates which,
taken jointly, specify a structured transition system, a formal specification is gener-
ated in HCASL. The latter can then be handled through HETS . Its states, correspond-
ing to different configurations, or modes of execution, are endowed with a specific
description of the functionality available locally. The boilerplates define globally the
relevant modes of execution and the transition structure, as well as, at the local level,
the interface of services available and their properties.

The role of this tool is illustrated through the swinging calculator example dis-
cussed above. Figure 3 shows a fragment of the relevant requirements captured as
boilerplates. The language comprises different classes of boilerplates to deal with dif-
ferent kinds of requirements. Figure 4 contains the translator output, i.e., the derived
HCASL specification. At this stage both texts offer no difficulty and the reader can
appreciate the translation process. Note, however, that specifications of real systems
can become rather complex, which advises the use of boilerplates. On the other hand,
it should also be mentioned that not all design features can be suitably expressed
through boilerplates, a few of them requiring some fine tuning directly over the spec-
ification. A complete account of the language of boilerplates is given in the paper
mentioned above [37].

System’s interface is defined by {
sorts Nat

op __#__ : Nat * Nat -> Nat

op O : Nat
}.

System has events Shift.
System has modes Sum, Mult.

Property Mult does not hold in mode Sum.
Either mode Sum is active or mode Mult is active.

System changes from Sum to Mult through event Shift.
System may change from Sum to Mult through event Shift.
System changes from Mult to Sum through event Shift.
System may change from Mult to Sum through event Shift.

Property forall n,m, p: Nat. n # (m # p) = (n # m) # p holds in all modes.
Property forall n, m: Nat. n # m = m # n holds in all modes.

Property forall n,m: Nat. n # O = n holds in mode Sum.

Fig. 3 Requirements for the swinging calculator encoded in boilerplates

14 L.S. Barbosa et al.

logic Hybrid

spec X =

sorts Nat

op __#__ : Nat * Nat -> Nat
op O : Nat

modalities Shift
nominals Mult,Sum

. @ Sum not Here Mult

. Here Sum \/ Here Mult

. @ Sum < Shift > Here Mult

. @ Sum [Shift] Here Mult

. @ Mult < Shift > Here Sum

. @ Mult [Shift] Here Sum
forall n,m, p: Nat. n # (m # p) = (n # m) # p
forall n, m: Nat. n # m = m # n

. @ Sum forall n,m: Nat. n # 0 = n

end

Fig. 4 The derived HCASL specification

The first boilerplate describes the system interface at each local state. Then the
relevant configurations (Sum and Mult) are declared as well as the event labelling
the transition from one to the other. The definition of the configurations proceeds with
the third group of boilerplates which describes a number of properties to be respected.
The transition structure is described afterwards; notice how expression “changes”
is translated to a “diamond” modality (emphasising that an effective transition will
take place), whereas expression “may change” leads to a “box” modality: the event
under consideration, if present, can only result in such a transition. Finally, the last
lines in Fig.3 are examples of boilerplates for capturing properties of the system’s
functionality at different configurations.

4 An Application to the Design of a Specification Course

The ideas behind hybridisation and hybridised logics were further tested in the design
of a specification course in the curriculum of the Computer Science undergraduate
degree at Universidade Minho, Portugal. The underlying motivation was to explore
a uniform framework for specifying system’s requirements either functional (i.e.,
relative to the meaning of individual services or operations) or behavioural (i.e.,
relative to its overall evolution and reaction to external stimulus), and to emphasise
a strong connection between modelling and verification.

The course rationale. The course has a standard typology: a lecture per week
(1h), an exercises class devoted to pen-and-pencil resolution of exercises previously

Reuse and Integration of Specification Logics ... 15

proposed and their discussion (2h) and a laboratory session with the HETS system
(1h). Students work in groups of two elements.

The course develops around a triangle whose vertices are repeatedly revisited: the
models, the languages in which such models and their properties are expressed and the
satisfaction relation between them, which enables property verification and design
assessment. Another methodological option concerned the adoption of a generic
Jframework, in which progressively more elaborated requirements could be repre-
sented, in contrast to one with a narrower scope or clearly oriented to a particular
specification style. This has the advantage of focusing students and enhancing their
ability to work at higher abstraction levels.

This favoured the choice of an institutional approach and the hybridisation method
described in the previous sections, computationally supported by the HETS frame-
work.

The course structure. As expected, the course targets reconfigurable systems, whose
components may evolve in time through a number of different stages or modes of
operation, in which specific service configurations are made available through their
interfaces. The envisaged teaching/learning process develops around three specifi-
cation stages: algebraic, modal and hybrid. The idea is to cover the whole spectrum
of basic specification logics in three course units, all of them sharing HETS as the
common tool support. A fourth unit in the syllabus explores a number of case-studies
in the project of reconfigurable systems. The course illustration in Sect.5 is taken
from this last unit. Before that, let us review the rationale under each of them.

The algebraic stage. At a first stage each system configuration is specified
axiomatically as a “stand-alone” algebraic theory; its model being a concrete alge-
bra satisfying such a theory. Component’s functionality is therefore given in terms of
input-output relations modeling operations on data. This stage covers the classical
concepts in algebraic specification, namely those of signature, sentence, equation and
equational reasoning, model and satisfaction of an equation. The envisaged learning
outcome is the ability to master these concepts and capture informal requirements
about component’s functionality by defining a (syntactic) universe of discourse and
formulating properties as axioms.

The modal stage. The second stage emphasises the reactive nature of the systems
at hands. Component’s evolution is modelled by a transition system: a configuration
changes in response to a particular event in the system. Modal logics are introduced
as specification languages for state transition systems. Modal formulas are evaluated
inside such systems, at a particular state, and modal operators disclose access to infor-
mation stored at other states accessible from the current one via a suitable transition.
The main learning outcome is to make students familiar with the modal framework
and the meaning of modalities as a language to specify transition structures.

The hybrid stage. The third stage starts with a crucial observation: functional and
transitional behaviour are strongly interconnected in practice as the functionality
offered by the system, at each moment, may depend on the stage of its evolution.
This entails the need for

16 L.S. Barbosa et al.

e enriching the basic modal language with the ability to refer to individual states,
regarded as possible system’s configurations or modes of operation;

e distinguishing global behaviour (in the underlying transition system) from local
behaviour expressed, at each state, by a particular specification.

The first requirement leads to the introduction of nominals as explicit references to
specific states of the underlying transition system. Conceptually this exposes students
to another basic and pervasive notion in Computer Science, that of naming. Hybrid
logics [10] are the appropriate tool for this last stage in the course. The need for
formulating specific local requirements, on the other hand, imposes extra structure
upon states. Actually, different states are interpreted as different modes of operation
and each of them is equipped with an algebraic specification of the corresponding
functionality. Technically, specifications become structured state-machines, where
states are specified as algebras, rather than as sefs.

As mentioned in the previous section, HETS provides for free the proof support
environment needed for this course. The boilerplates translator introduced in the
previous section can also be used in the course to directly generate HCASL specifi-
cations. Its pedagogical value, in training students to write specifications, is greatly
appreciated. It should be stressed, however, that, in despite of the crucial role played
by institution theory in this approach, no familiarity with institutions is required from
students.

5 A Glimpse of a Course Session

The course contents and methodology are better understood through the presentation
of a typical problem addressed first in the exercises class and later in the laboratory, in
the last stage of the course. For space limitations we only focus on a fragment of the
original problem. The example, small but self-contained, is taken from a description
of requirements for an automatic cruise control (ACC) system summarised in [30]
as follows:

The mode class CruiseControl contains four modes, Off, Inactive, Cruise, and Override.
At any given time, the system must be in one of these modes. Turning the ignition on causes
the system to leave Off mode and enter Inactive mode, while turning the cruise control level
to const when the brake is off and the engine running causes the system to enter Cruise
mode. (...) Once cruise control has been invoked, the system uses the automobile’s actual
speed to determine whether to set the throttle to accelerate or decelerate the automobile, or
to maintain the current speed (...)To override cruise control (i.e., enter Override), the driver
turns the lever to off or applies the brake.

These requirements are captured by the state machine depicted in Fig.5 and
expressed in hybrid propositional logic (HPL).

A modality next is introduced to denote the state-machine accessibility relation.
Nominals in set {off , inactive, override, cruise} correspond to the operation modes
mentioned in the requirements. The first element students can formally capture within
the logic is the transition structure, as in, for example,

Reuse and Integration of Specification Logics ... 17

Fig. 5 The transition N
structure &rride

off & cruise

A

—p¥(inactive Y

o (T1) @uq (next) inactive
o (T2) @,errige ((next) off A (next) inactive A (next) cruise)

Local properties can also be expressed through the satisfaction operator @;, for each
nominal Z, to refer to the corresponding state. For instance, the requirement that the
ignition is off when the system is in the off mode, while it is on and the engine
running (EngRunning) in the cruise mode, is modelled by

o (L) @y5(—IgnOn)
o (Ly) @,pyise(IgnOn N EngRunning)

Symbols EngRunning and IgnOn, with a self-explanatory designation, are proposi-
tions whose validity is discussed in each configuration (state). Others are used in the
sequel. Definitional properties can also be captured, as in

e (A1) LeverOff <& — LeverCons
o (A4) HighSpeed = — CruiseSpeed N — LowSpeed

The second step in the case study is to equip each state of the underlying transi-
tion system with a first-order structure, to model its local functionality. Therefore,
hybrid structures are enriched with a family of first-order structures indexed by the
set of states, i.e., they become structures (M, W) where function M defines a family
(M) wew) of first-order structures over the same signature and universe (constraint
necessary for the conservativity of the HFOL2FOL encoding). Each M,, models
the system’s behaviour at state w € W. Note that at state w each first order for-
mula is evaluated in the structure M,,. Properties are now expressed in a hybrid
first order language HFOL whose detailed presentation we omit here (but see [35]).
We focus instead on the sort of properties students are supposed to formulate. An
algebraic specification is used to model system’s functionality. This entails the need
for introducing data types able to support the envisaged notions of time, speed and
acceleration.

spec TIMESORT =INT

with sort Int — time, ops O — init, suc — after end
spec SPEEDSORT =INT with sort /nt — speed end
spec ACELLSORT =INT with sort Int — accel end

18 L.S. Barbosa et al.

Operation Pedal models the accelerations applied by the driver at each moment. On
the other hand, Automatic captures accelerations applied on the engine by the ACC,
and CurrentSpeed records the current speed. Finally, constant MaxCruiseSpeed rep-
resents the maximum speed allowed on the ACC mode:

spec ACCSIGN =
TIMESORT and SPEEDSORT and ACELLSORT
then ops Pedal : time — accel,
Automatic : time — accel,
Speed : speed x accel — speed,
CurrentSpeed : time — speed.;
MaxCruiseSpeed : speed

Students are asked to identify properties that globally hold, in all possible configu-
rations, and the ones which model local requirements. In the first group we have, for
example,

Vs :speed; a: accel; t : time

e (G1) Speed(s,a) >0

e (G2) CurrentSpeed(t) = 0 A Pedal(t) > 0 =
CurrentSpeed(after(t)) > 0

e (G3) Pedal(t) > 0 < CurrentSpeed(t) <CurrentSpeed(after(t))
e (Gy) Speed(s,a)=s<a=0

e (Gs5) CurrentSpeed(after(t)) =Speed(CurrentSpeed(t),Pedal(t))

Local properties refer to specific configurations. For example, in state off, Speed and
Pedal are null and no other operation in the interface react. Thus,

Vt:time;s: speed; a: accel

o (L1) @upCurrentSpeed(t) =0
° (Lyﬂ) @ Speed(s, a) =

On the other hand, in state inactive, speed and acceleration depend on the accelerations automatically

introduced in the system, i.e.,

Vs: speed sa:accel
L4 (L) @inacriveSpeed(s, a) = s +a

inactive

Y t: time; s : speed; a : accel

(L(l,m,c) @ cpuise[CurrentSpeed(t) > MaxCruiseSpeed = Automatic(after(t)) < 0]
° (Lcrm_ye) @cruise[CurrentSpeed(t) < MaxCruiseSpeed < Automatic(after(t)) = 0]
° (Lcrum») @ (pyiseSpeed(s,a) = s+ a
o (L) @cpuisePedal(r) > 0 = Pedal(r) = Automatic(r)

An interesting feature in this example is that properties local to states override
and off do coincide. The system’s behaviour on both states only differs in what
concerns the definition of the allowed transitions. Actually, students may now be
invited to revisit the specification of the transition system presented above. It turns

Reuse and Integration of Specification Logics ... 19

out that some propositions may be re-stated by means of properties of local states.
For instance,

V t: time;

e (L)) @pyise[CurrentSpeed(t) = 0 = (next)"(inactive A CurrentSpeed(after(t)) = 0)]

where (\)“p abbreviates (\)p A [A]p.

Finally, in the laboratory session students are invited to translate hybrid to first
order specifications and use HETS to animate them. On translating to HFOL2FOL
we end up with the following signature (see Fig. 6):
ops

Speed* : st* x speed x accel — speed,
Pedal* : st* x time — accel;. ..
pred
next : st* x st*; IgnOn™ : st*; ...

where global properties are universally quantified, and local properties take as an
argument the respective nominal. For instance, global properties (G;) and (G») are
translated into

Vs :speed; w : st*;a: accelt : time
o (G1) =*(w ,Speed*(w, s, a), 0%(w))
o (Gy+) CurrentSpeed*(w,t) = 0*(w) A >*(w, Pedal*(w,t), 0*(w)).

and local properties (L iﬁ[) and (Ljrm.se), into
Vt:time

° (L(')*) CurrentSpeed*(off ,t) = 0*(off)

® (L?mise) Z*

(cruise,Pedal*(cruise,t),0* (cruise))= Pedal(cruise,t) = Automatic*(cruise,t).

6 A Step Ahead: The Power of Quantification

6.1 Introducing Full Quantification

This section introduces a new, major extension to the method surveyed in the previous
sections to support quantification. This requires the inclusion of another parameter
in the method: a quantification space." D™ for Mod"*Z.

In the institutional framework, as a subclass of Sign’*Z, quantification morphisms
consist of triples X = (Xsig» XNom» Xms) : (£, Nom, A) — (X', Nom', A’). Each of
these components is responsible for a particular kind of quantification. We are partic-
ularly interested in inclusion morphisms, which are the ones that give rise to standard

Quantification spaces are extensively discussed in Madeira’s thesis [34], as well as in a joint paper
with Diaconescu [23].

20 L.S. Barbosa et al.

(aNala) 5! Prove: CCSpecBasicADTO_ACCSign)) 1) [\ MathServe Broker: CCSpecBasicADTO_ACCSign
Goals: Selected goal(s): Goals: Options:
TSESEI Dsorove 0yt roor oo rove | N T e
Sublogic of curently selected theory: EdA0pHons;
CASLeCFOL= e i
i : e preceding proven
Fick theorem prover: = theorems in next proof attempt
CSpCASLProver = [save problem batch
isabelle stop | Prove | Proveal
=
QuickCheck Status: Proved
| Used Axioms:
SPASS 6606 h) 3.1.1 - Devel. Graph for CC icADTO
VSE RN S T e Sopman i ol Mot
Vamoire +
Al | e I VAT Selected comorphism path: J = °

file CCSpecBasicADTR.casl as Libraj %y,
Analyzing spec Int
Analyzing spec TimeSert
Analyzing spec SpeedSort
Analyzing spec AcellSert
Analyzing spec ACCSign
Analyzing spec Off
Analyzing spec Inactive
Analyzing spec Override
Analyzing spec Cruise
daVinci bug: Mismateh in returned context
Tryi in with x
Al None rying again with setlontext

| Loealhost:spee alexandremadeiras hets -g CCS) @ w o @ =
f i Te. i e
Dacalact former theorems Analyzing file CCSpecBasicADTR.casl as librap &

= L
Select open goals I id_CASL.eCFOL=;CASL250ftFOL : § -
Fine grained composition of theory
Axioms to include: Thearems to include if nroven: 5
r Terminal — Wish =, @ @

?:?@

&

Analyring spec Int
Analyzing spec TimeSort
show theory. | ho] relyzing spec Speeasart

Fig. 6 A HETS session

quantifications. For example, considering Xnom : Nom <= Nom + Y, for Y a finite

set of constants, and considering xwms and xs;, the identity morphisms, we obtain the
standard state quantification that can be found in the literature.

In the (fully) quantified version of the method proposed in this paper, the set
Sen"Z(A) is enriched with the sentence (Yx)p, for any x : A — A’ € D" and
p € Sen’? (4"). Similarly, the translation of sentences is extended, in each mor-

phism ¢ : A — Ay, by Sen”™ (9)((Vx)p) = (Vx())Sen”™ (¢[x])(p). Finally, in
what concerns the satisfaction relation, we consider

o (M, W) EY (V)piff M, W) =" p

forany (M, W’) such that Mod™Z (x)(M’, W') = (M, W). Existential quantification
is introduced in a similar way.

In standard logical terminology, given an inclusion morphism
X = (Xsig» XNom» Xms) : (X, Nom, A) — (X', Nom', A")

where XNom : Nom < Nom + U and xums : A < A + Y, for finite sets U = {u,
u, ..., uy} and ¥ = {y1, y2, ..., ym}, the new sentence (Vx)p may be written as
Vi tin, ooty Yyr.ys,....yn P- Moreover, one can say that (M, W) = (V0)p iff, for any 6-
expansion (M, W)? of (M, W), one has (M, W)?, w = p.

Quantified sentences play a major role in specification theory. Actually,

Reuse and Integration of Specification Logics ... 21

e Quantification coming from the base institution can be used to specify local con-
figurations.

e Quantification over nominals, makes possible to express properties about the sys-
tem’s global state space. This is particularly useful, for instance, to express the
existence of configurations satisfying a given requirement.

e Quantification over modalities, finally, constitutes a rather powerful form of quan-
tification useful to express enabling/disabling of reconfigurations.

The last two types of quantification are explored below as a very general way to
introduce dynamic modalities. Specifically, quantification over nominals and over
modalities makes possible to express paradigmatic changes on the relational model,
like swapping and sabotage. This is done at minimal cost and in a very general way
which captures several approaches in the literature which are specific to particular
situations.

6.2 Effects and Dynamic Modalities

Suppose you take a train and start planning your trip as you go. With a proper map
the task is quite straightforward. But what if the transportation system breaks down,
and a malevolent demon starts canceling connections, anywhere in the network?
This question appears in the motivation section of van Benthem seminal paper on
sabotage logic [54]. The scenario is as follows: there is a transition structure (the
map, a graph) over which sentences are interpreted as usual in modal logic; however
this may change dynamically while being traversed.

Sabotage logic is an example of a modal logic equipped with modalities that can
change the accessibility relation of the underlying Kripke model along the evalua-
tion of a formula. In particular, edges are deleted. Adding new edges or swapping
existent ones are further examples of effects leading to logics which, over time, have
found interesting applications in describing and reasoning about dynamic aspects
of phenomena. Some recent papers [1-3] explore specific instances of these ideas
further witnessing their relevance to application areas ranging from reconfigurable
software specifications to changing obligations contexts in epistemic logics. In these
logics the meaning of the basic modal operators remains unchanged, but new ones,
suitably called dynamic modalities, are introduced to encode specific changes in the
accessibility relation.

Our approach aims at going a step forward. Instead of formulating new, tailor-
made logics for each family of effects, we resort to the fully quantified hibridisation
of the Triv institution, in which the typical dynamic modalities in the literature
can be captured in a uniform way and within a unique logic. The introduction of
quantification over modality symbols allows not only a suitable encoding of effects,
like reversing or deleting transitions, but also the precise specification of their scope
(e.g., the whole or part of the accessibility relation) and the point of application (e.g.,
anywhere, relative to the current evaluation point, an edge between specific named

22 L.S. Barbosa et al.

states, etc.). This goes beyond and generalises current approaches in the literature.
The only work we are aware of with a similar spirit, but through a different way, is
a very recent paper by Areces et al. [4] which proposes a characterisation of what
the authors call relation-changing modal operators. Actually, our approach differs
from the one above, by the ability to express a bigger diversity of effects. The reason
is that we resort to an abstract hybrid logic and, through nominals, it is possible to
express changes in specific points of the relational structure.

Besides providing a uniform setting to discuss dynamic modalities, and, more
generally, effects over Kripke models, the main advantage of the approach introduced
here is the possibility to characterise typical results in the study of these logics in a
generic way, for example a general notion of bisimulation parametric on the effect.
Finally note that, in the approach proposed here, and contrary to what appears in
the literature, models remain standard Kripke structures, no actual updating taking
place in the accessibility relation. The effect of dynamic modalities is to expand
the original relation into a new, updated one and, then, to hand it over the current
evaluation point.

6.2.1 Effects and Events
An effect E(X, Y, x,y) captures a specific transformation, or update, of an acces-
sibility relation X in a Kripke model. It can be regarded as a macro relating two

accessibility relations X and Y. For example the swap effect, which inverts in Y the
orientation of an edge in X, is specified as

(Swap) SwX, Y. x.y) L @.(X)y A @,(Y)x
The sabotage effect, which ignores in Y the edge (x, y) of X, is given by
(Sabotage) Se(X, Y, x,9) L @ (X)y A =@, (Y)y
Enriching X with a specific new edge, is expressed through the bridge effect:
(Bridge) Bg(X.Y.x,y) L =@, (X)y A @ (Y)y

Weaker forms of the two latter effects can also be considered:

(Conditional Sabotage) PSg(X,Y,x,9) Z @,(X)y - =@, (Y)y
(Conditional Bridge) PBg(X,Y,x,y) L =@, (X)y > @,(Y)y

An effect can act upon a given, specific edge (x, y), or a set of edges. This is
called the range (rng) of an effect—exclusive (denoted by o) or partial (p). Once this

Reuse and Integration of Specification Logics ... 23

specified for a particular effect, the resulting expression is called an event. Formally,
givenaneffect £, an E-event E,g (X, Y, x, y) withrng € {p, o} isasentence in HTriv
such that

abv

o £,(X,Y,x,y) = EX,Y,x,y) NExg(X, Y, x,y)

abv

e E,(X,Y,x,y) = EX, Y, x,y)) AUX,Y,x,y)
where

o Exp(X.Y.x,y) £ (¥, 1) ((@y(X)v < @,(Y)v) V (E(X. Y, 5,0) A @)
e UX,Y,x,y) &t (Vs, v)((@x(X)v < @(Y)v) V(@ux A @Uy))

Intuitively, expression Exz (X, Y, x,y) asserts that an edge with source in x can
only be updated, on going from X to Y, as result of effect E. Apart from this, relations
X and Y remain equal. Expression U(X, Y, x,), on the other hand, establishes that
any modification affects exclusively the pair of states x and y.

Let us illustrate this construction with the event o-swap for edge (x, y):

SwoX,Y,%,9) ¥ SwX,Y,x,y) AUKX,Y,x,Y)

= (@, (X)yA@,(Y)x) A (Vs5,0)(@,(X)v < @(Y)v V (@ux A @,Y))

where relation Y is constructed by swapping exactly the edge (x, y) of X. The partial
range version of this event, p-swap, is

abv

SwpX,Y,x,y) = SwX,Y,x,y) AExs,(X,Y,x,y)
= (@X(X)y/\ @y(Y)x)/\
(Vs, v)((@S(X)v <« @ (Y)v) v SwX,Y,s,v) A @Sx))
= (@X(X)y A @y(Y)x)/\
(s, v)((@S(X)v < @ (Y)v) V(@ (X)v A @,(X)s) A @sx))

As expected, the new accessibility relation Y is identical to X, but on a number of
swapped edges with source in x. The result of a partial swap and a partial sabotage
event is depicted in Figs. 8 and 9, respectively (over the same relation X depicted in
Fig.7).

Fig. 7 The original °
relation X

24

Fig. 8 X swapped

Fig. 9 X sabotaged

6.2.2 Dynamic Modalities

L.S. Barbosa et al.

Y

—peo—po
v T

Y

[-0« L
Y Xz

oy

e} >-o< 0
Y Xz

°

."4 Y

— >e— peo
v T

~y

Dynamic modalities are built from the events introduced in the previous section.
Please note that there is no actual update of the accessibility relation. A dynamic
modality expands the original model with a new, modified relation with reference to
which evaluation proceeds. For any event Eyng (X, Y, x, y), two dynamic modalities
are defined: a local and a global modality. The first one is defined by

(Local) < Emg(X) > p & @Y. 0, 0)(x A Emg(X, Y, x,7) A @,p})

where Y, x, y are variables not occurring in p.

Reuse and Integration of Specification Logics ... 25

The intuition is that event E is performed in possible edges whose source is the
current evaluation point, which then changes through a transition over an updated
edge. The global modality, on the other hand, is defined by

where Y, x, y are variables not occurring in p. In this case the event is performed at
some point in the model and the current evaluation point does not change. Observe
that substitution pY represents the “shift” between the original relation X by the
“updated” one Y.

As usual, corresponding boxed dynamic modalities are obtained through

def
L (VY x5,) (2 A Emg(X, Y, x,)) = @,p))

[Eeng)11 p
[EmgONe p 2 (VY x,) (Emg(X, Y, x,y) — p¥)

where Y, x,y are variables not occurring in p and p} is the sentence obtained
by substituting all the occurrences of X by Y. As expected, for any formula
p € Fm(Nom, Prop, A), correspondences

= L Eg(X) > —p < [[Emg(XO] p

and
- KL Erng(x) g Tp [[Erng(x)]]gp

hold.

7 Concluding

The hybridisation method discussed in this paper can be broadly understood as a
specific way of combining logics at the model theoretical level. Actually, it classi-
fies as a rool for simplifying problems involving heterogeneous reasoning, a common
ingredient to this family of methods according to the corresponding entry in the Stan-
ford Encyclopedia of Philosophy [16]. The same entry stresses the role of Computer
Science applications as a main driving force for research in obtaining new logic sys-
tems from old: One of the main areas interested in the methods for combining logics
is software specification. Certain techniques for combining logics were developed
almost exclusively with the aim of applying them to this area. [16].

More specifically, hybridisation is a form of asymmetric combination of logics
in the sense that specific features of hybrid logic are developed “on top” of another
logic. This follows the pattern of, and to a certain extent extends, previous work
by Diaconescu and Stefaneas [24] on “modalisation” of institutions, which endows
systematically institutions with Kripke semantics for standard modalities. The insti-

26 L.S. Barbosa et al.

tutional setting [7] in which we worked offers a suitable framework to discuss the
generation of new logics from old, and to identify the sort of properties preserved
or reflected along such a process. As in many other areas of theoretical Computer
Science, going categorial means going generic.

In the following paragraphs we briefly discuss some directions for future work.
The first is concerned with the extension of the educational application of the hybridi-
sation method described above. The other two are specific research challenges on
pushing forward the method reviewed in this paper.

A curricular challenge. Sects.4 and 5 introduced the rationale for a somehow not
very standard introductory course to software specification with hybrid(ised) logics.
Building on an institution-based framework kept implicit along the lectures, the
course aims at conducting students through two orthogonal paradigms (equational
and hybrid) which are then combined in a common specification framework.

The approach underlying the course is based on a particular instance of the hybridi-
sation method. However, other possible “hybridisations” (e.g., of institutions of mul-
tialgebras or partial algebras) are suitable to explore a wide range of exercises in a
similar spirit. Moreover, the course skills may be easily expanded into new directions:
for instance, functional and imperative programming languages may be presented
as institutions (see [52]) whose hybridisation may be used to develop reconfigurable
algorithms. On a different note, a two-level hybridisation of a base logic, as discussed
in [34], provides modalities and nominals at two different levels: local and global.
This seems a suitable setting to talk about reconfigurable software applications whose
local configurations are also described by transition systems. More generally, mod-
els become hierarchical transition systems. In [44], the authors have also presented
the logic underlying ALLOY [32] in an institutional setting. This paves the way to
hybridising ALLOY and combining in the course the use of the traditional ALLOY
model finder with theorem proving (in HETS) in an integrated way.

Beyond reconfigurability, hybridised logics may provide flexible frameworks to
address related problems in software design, namely those concerning adaptation
and software evolution.

Hybridisation for quantitative reasoning. Specification frameworks for quantitative
reasoning, dealing for example with weighted or probabilistic transition systems,
emerged recently as a main challenge for software engineers. This witnesses a shift
from classical models of computation, such as labeled transition systems, to similar
structures where quantities can be handled. Examples include weighted [19], hybrid
[28, 33] or probabilistic [49] automata, as well as their coalgebraic rendering (e.g.,
[51]). An interesting topic to pursue is taking up this “quantitative” challenge within
the context of the hybridisation process itself. The simplest move in such a direction
proceeds by instantiation. In this case quantitative reasoning is just reflected and
expressed at the local level of concrete, specific configurations. A complementary
path may focus on generalising the underlying semantic structures, replacing the
REL-component in models by coalgebras over suitable categories of probability
distributions, metric, or topological spaces.

Reuse and Integration of Specification Logics ... 27

Calculus. Comparing the calculus for hybrid propositional logic in Ref. [14] with the
one for hybrid first-order logic in [13], a common structure pops out: both “share”
rules involving sentences with nominals and satisfaction operators (i.e., formulas of
a “hybrid nature”) and have specific rules to reason about “atomic sentences” that
come from the base institution. Hence, it makes sense to consider the development
of a general proof calculus for hybrid institutions on top of the calculus of the
corresponding base institution, in the style of [12, 17]. Somehow anticipating the
general construction, a calculus for equational hybrid logic was proposed in [11].

Recent work [45] reports preliminary general results in this direction. In partic-
ular, it is shown that, whenever the base logic has the usual Boolean connectives,
hybridisation preserves decidability, and furthermore, the generated calculus is sound
and complete whenever the one for the base logic is. These results have not only a
theoretical interest on their own, but also pave the way for new approaches to tool
supported verification.

Acknowledgments This work is financed by the ERDF—European Regional Development Fund
through the Operational Programme for Competitiveness and Internationalisation—COMPETE
2020 Programme, and by National Funds through the FCT (Portuguese Foundation for Science
and Technology) within project POCI-01-0145-FEDER-006961. M. Martins was further
supported by project UID/MAT/04106/2013. A. Madeira and R. Neves research was carried
out in the context of a post-doc and a Ph.D. grant with references SFRH/BPD/103004/2014
and SFRH/BD/52234/2013, respectively. L.S. Barbosa is also supported by SFRH/BSAB/
113890/2015.

References

1. Areces, C., Fervari, R., Hoffmann, G.: Moving arrows and four model checking results. In: Ong,
L., de Queiroz, R. (eds.) Proceedings of the 19th International Workshop on Logic. Language,
Information and Computation (WoLLIC 2012). Lecture Notes in Computer Science, vol. 7456,
pp- 142-153. Springer, Buenos Aires, Argentina (2012)

2. Areces, C., Fervari, R., Hoffmann, G.: Tableaux for relation-changing modal logics. In: Pro-
ceedings of Frontiers of Combining Systems 2013, Nancy, France, Sept 2013

3. Areces, C., Fervari, R., Hoffmann, G.: Swap logic. Logic J. IGPL 22(2), 309-332 (2014)

4. Areces, C., Fervari, R., Hoffmann, G.: Relation-changing modal operators. Logic J. IGPL
23(4), 601-627 (2015)

5. Areces, C., ten Cate, B.: Hybrid logics. In: Blackburn, P., Wolter, F., van Benthem, J. (eds.)
Handbook of Modal Logic. Studies in Logic and Practical Reasoning, vol. 3, pp. 822-868.
Elsevier (2007)

6. Burstall, R., Diaconescu, R.: Hiding and behaviour: an institutional approach. In: Roscoe, W.
(ed.) A Classical Mind: Essays in Honour of C.A.R. Hoare, pp. 75-92. Prentice-Hall (1994)

7. Burstall, R.M., Goguen, J.A.: The semantics of CLEAR, a specification language. In: Bjgrner,
D. (ed.) Abstract Software Specifications (1979 Copenhagen Winter School, 22 Jan-2 Feb
1979), Lecture Notes in Computer Science, vol. 86, pp. 292-332. Springer (1980)

8. Bidoit, M., Hennicker, R.: Constructor-based observational logic. J. Log. Algebr. Program.
67(1-2), 3-51 (2006)

9. Beierle, C., Kern-Isberner, G.: Looking at probabilistic conditionals from an institutional point
of view. In: Kern-Isberner, G., Rodder, W., Kulmann, F. (eds.) Conditionals, Information, and

28

10.

11.

12.

13.

14.
15.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.
30.

31.
32.

33.

L.S. Barbosa et al.

Inference (Revised Selected Papers of WCII 2002, Hagen, Germany, 13—15 May 2002), Lecture
Notes in Computer Science, vol. 3301, pp. 162—179. Springer (2005)

Blackburn, P.: Representation, reasoning, and relational structures: a hybrid logic manifesto.
Logic J. IGPL 8(3), 339-365 (2000)

Barbosa, L.S., Martins, M.A., Carreteiro, M.: A Hilbert-style axiomatisation for equational
hybrid logic. J. Logic Lang. Inf. 23(1), 31-52 (2014)

Borzyszkowski, T.: Logical systems for structured specifications. Theor. Comput. Sci. 286(2),
197-245 (2002)

Braiiner, T.: Natural deduction for first-order hybrid logic. J. Logic Lang. Inf. 14(2), 173-198
(2005)

Braiiner, T.: Hybrid Logic and Its Proof-Theory. Applied Logic Series. Springer (2010)
Cirstea, C.: An institution of modal logics for coalgebras. J. Log. Algebr. Program. 67(1-2),
87-113 (2006)

. Carnielli, W., Coniglio, M.E.: Combining logics. In: Zalta, E.N. (ed.) The Stanford Encyclo-

pedia of Philosophy. Winter 2011 edn. (2011)

Codescu, M., Gdind, D.: Birkhoft completeness in institutions. Logica Universalis 2(2), 277—
309 (2008)

Caleiro, C., Mateus, P., Sernadas, A., Sernadas, C.: Quantum institutions. In: Futatsugi, K.,
Jouannaud, J.-P., Meseguer, J. (eds.) Algebra, Meaning, and Computation, Essays Dedicated
to Joseph A. Goguen on the Occasion of His 65th Birthday. Lecture Notes in Computer Science,
vol. 4060, pp. 50-64. Springer (2006)

Droste, M., Gastin, P.: Weighted automata and weighted logics. Theor. Comput. Sci. 380(1-2),
69-86 (2007)

Diaconescu, Razvan: Institution-independent Model Theory. Studies in Universal Logic.
Birkhduser Basel (2008)

Diaconescu, R.: On quasi-varieties of multiple valued logic models. Math. Log. Q. 57(2),
194-203 (2011)

Diaconescu, R.: Quasi-varieties and initial semantics in hybridized institutions. J. Logic Com-
put. (2015)

Diaconescu, R., Madeira, A.: Encoding hybridized institutions into first-order logic. Math.
Struct. Comput. Sci. 1-44 (2015) (in print)

Diaconescu, R., Stefaneas, P.S.: Ultraproducts and possible worlds semantics in institutions.
Theor. Comput. Sci. 379(1-2), 210-230 (2007)

Goguen, J.A., Burstall, R.M.: Institutions: abstract model theory for specification and program-
ming. J. ACM 39(1), 95-146 (1992)

Gottwald, S.: A Treatise on Many-Valued Logics. Studies in Logic and Computation vol. 9.
Research Studies Press (2001)

Goguen, J.A., Rosu, G.: Institution morphisms. Formal Asp. Comput. 13(3-5), 274-307 (2002)
Henzinger, T.A.: The theory of hybrid automata. In: 11th Annual IEEE Symposium on Logic
in Computer Science (LICS’96, New Brunswick, New Jersey, USA, 27-30 July 1996), pp.
278-292 (1996)

Hull, M.E.C., Jackson, K., Dick, J.: Requirements Engineering, 2nd edn. Springer Verlag (2005)
Heitmeyer, C.L., Kirby, J., Labaw, B.G.: The SCR method for formally specifying, verifying,
and validating requirements: tool support. In: Richards Adrion, W., Fuggetta, A., Taylor, R.N.,
Wasserman, A.l (eds.) Pulling Together, Proceedings of the 19th International Conference on
Software Engineering, Boston, Massachusetts, USA, 17-23 May 1997, pp. 610-611. ACM
(1997)

Indrzejczak, A.: Modal hybrid logic. Logic Logical Philos. 16, 147-257 (2007)

Jackson, D.: Software Abstractions (Logic, Language, and Analysis), 2nd edn. MIT Press
(2011)

Lynch, N.A., Segala, R., Vaandrager, F.W., Weinberg, H.B.: Hybrid i/o automata. In: Alur,
R., Henzinger, T.A., Sontag, E.D. (eds.) Hybrid Systems III: Verification and Control
(DIMACS/SYCON Workshop, 22-25 Oct 1995, Ruttgers University, New Brunswick, NJ,
USA). Lecture Notes in Computer Science, vol. 1066, pp. 496-510. Springer (1995)

Reuse and Integration of Specification Logics ... 29

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.
47.

48.

49.

Madeira, A.: Foundations and techniques for software reconfigurability. Ph.D. thesis, Univer-
sidades do Minho, Aveiro and Porto (Joint MAP-i Doctoral Programme), July 2013

Madeira, A., Faria, J.M., Martins, M. A., Barbosa, L.S.: Hybrid specification of reactive systems:
an institutional approach. In: Barthe, G., Pardo, A., Schneider, G. (eds.) Software Engineering
and Formal Methods (SEFM 2011, Montevideo, Uruguay, 14—-18 Nov 2011). Lecture Notes in
Computer Science, vol. 7041, pp. 269-285. Springer (2011)

Mossakowski, T., Haxthausen, A., Sannella, D., Tarlecki, A.: CASL: the common algebraic
specification language: semantics and proof theory. Comput. Inf. 22, 285-321 (2003)
Madeira, A., Martins, M.A., Barbosa, L.S.: Boilerplates for reconfigurable systems: a language
and its semantics. In: Du Bois, A.R., Trinder, P. (eds.) Programming Languages—17th Brazil-
ian Symposium, SBLP 2013, Brasilia, Brazil, 3—4 Oct 2013. Proceedings. Lecture Notes in
Computer Science, vol. 8129, pp. 75-89. Springer (2013)

Martins, M.A., Madeira, A., Barbosa, L.S., Neves, R.: Paradigm integration in a specification
course. In: Joshi, J., Bertino, E., Thuraisingham, B.M., Liu, L. (eds.) Proceedings of 15th IEEE
International Conference on Information Reuse and Intergration, IRI 2014, Redwood City, CA,
USA, 13-15 Aug 2014, pp. 492-499. IEEE Press (2014)

Martins, M.A., Madeira, A., Diaconescu, R., Barbosa, L.S.: Hybridization of institutions.
In: Corradini, A., Klin, B., Cirstea, C. (eds.) Algebra and Coalgebra in Computer Science
(CALCO 2011, Winchester, UK, 30 Aug—2 Sept 2011). Lecture Notes in Computer Science,
vol. 6859, pp. 283-297. Springer (2011)

Mossakowski, T., Maeder, C., Liittich, K.: The heterogeneous tool set, Hets. In: Grumberg,
0., Huth, M. (eds.) Tools and Algorithms for the Construction and Analysis of Systems (TACAS
2007—Braga, Portugal, 24 Mar—1 Apr 2007). Lecture Notes in Computer Science, vol. 4424,
pp- 519-522. Springer (2007)

Mossakowski, T.: Different types of arrow between logical frameworks. In: auf der Heide,
F.M., Monien, B. (eds.) Automata, Languages and Programming (ICALP96, Paderborn, Ger-
many, 8—12 July 1996). Lecture Notes in Computer Science, vol. 1099, pp. 158-169. Springer
(1996)

Mossakowski, T., Roggenbach, M.: Structured CSP—a process algebra as an institution. In:
Fiadeiro, J.L., Schobbens, P.-Y. (eds.) Recent Trends in Algebraic Development Techniques
(Revised Selected Papers of WADT 2006, La Roche en Ardenne, Belgium, 1-3 June 2006).
Lecture Notes in Computer Science, vol. 4409, pp. 92—-110. Springer (2006)

Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Hybridisation at work. In: Heckel, R.,
Milius, S. (eds.) Algebra and Coalgebra in Computer Science—5th International Conference,
CALCO 2013, Warsaw, Poland, 3-6 Sept 2013. Proceedings. Lecture Notes in Computer
Science, vol. 8089, pp. 340-345 (2013)

Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: An institution for alloy and its transla-
tion to second-order logic. In: Bouabana-Tebibel, T., Rubin, S.H. (eds.) Integration of Reusable
Systems [extended versions of the best papers presented at IEEE International Conference on
Information Reuse and Integration and IEEE International Workshop on Formal Methods Inte-
gration, San Francisco, CA, USA, Aug 2013]. Advances in Intelligent Systems and Computing,
vol. 263, pp. 45-75. Springer (2013)

Neves, R., Madeira, A., Martins, M.A., Barbosa, L.S.: Completeness and decidability results
for hybrid(ised) logics. In: Braga, C., Marti-Oliet, N. (eds.) Formal Methods: Foundations and
Applications - 17th Brazilian Symposium, SBMF 2014, Maceid, AL, Brazil, 29 Sept—1 Oct
2014. Lecture Notes in Computer Science, vol. 8941, pp. 146-161. Springer (2015)

Prior, A.N.: Past, Present and Future. Oxford University Press (1967)

Passy, S., Tinchev, T.: An essay in combinatory dynamic logic. Inf. Comput. 93(2), 263-332
(1991)

Ciocarlie, H., Szepesia, R.: An overview on software reconfiguration. Theory Appl. Math.
Comput. Sci. 1, 74-79 (2011)

Segala, R.: A compositional trace-based semantics for probabilistic automata. In: Lee, I.,
Smolka, S.A. (eds.) Concurrency Theory (CONCUR’95—Philadelphia, PA, USA, 21-24 Aug
1995). Lecture Notes in Computer Science, vol. 962, pp. 234-248. Springer (1995)

30

50.

S1.

52.

53.
54.

L.S. Barbosa et al.

Schroder, L., Mossakowski, T.: HasCasl: integrated higher-order specification and program
development. Theor. Comput. Sci. 410(12-13), 1217-1260 (2009)

Sokolova, A.: Probabilistic systems coalgebraically: a survey. Theor. Comput. Sci. 412(38),
5095-5110 (2011)

Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Software Devel-
opment. Monographs on Theoretical Computer Science, an EATCS Series. Springer (2012)
van Bentham, J.: Modal Logic and Classic Logic. Humanities Press (1983)

van Benthem, J.: An essay on sabotage and obstruction. In: Hutter, D., Stephan, W. (eds.)
Mechanizing Mathematical Reasoning, Essays in Honor of Jorg H. Siekmann on the Occasion
of His 60th Birthday. Lecture Notes in Computer Science, vol. 2605, pp. 268-276. Springer
(2005)

	Reuse and Integration of Specification Logics: The Hybridisation Perspective
	1 Introduction
	2 The Hybridisation Method
	2.1 Institutions
	2.2 The Method
	2.3 Examples

	3 Hybridisation at Work
	3.1 First-Order Encodings
	3.2 Implementation in the Hets Platform
	3.3 An Example
	3.4 From Boilerplates to mathcalHCASL Specifications

	4 An Application to the Design of a Specification Course
	5 A Glimpse of a Course Session
	6 A Step Ahead: The Power of Quantification
	6.1 Introducing Full Quantification
	6.2 Effects and Dynamic Modalities

	7 Concluding
	References

