
Software components as invariant-typed arrows

(Keynote Talk)

Luis S. Barbosa

HASLab - High Assurance Software Laboratory,
INESC TEC & Universidade do Minho, Portugal

lsb@di.uminho.pt

Abstract. Invariants are constraints on software components which res-
trict their behavior in some desirable way, but whose maintenance entails
some kind of proof obligation discharge. Such constraints may act not
only over the input and output domains, as in a purely functional setting,
but also over the underlying state space, as in the case of reactive com-
ponents. This talk introduces an approach for reasoning about invariants
which is both compositional and calculational: compositional because it
is based on rules which break the complexity of such proof obligations
across the structures involved; calculational because such rules are de-
rived thanks to an algebra of invariants encoded in the language of binary
relations. A main tool of this approach is the pointfree transform of the
predicate calculus, which opens the possibility of changing the underly-
ing mathematical space so as to enable agile algebraic calculation. The
development of a theory of invariant preservation requires a broad, but
uniform view of computational processes embodied in software compo-
nents able to take into account data persistence and continued interac-
tion. Such is the plan for this talk: we first introduce such processes as
arrows, and then invariants as their types.

1 Components as arrows

Probably the most elementary model of a computational process is that of a
function f : I −→ O, which specifies a transformation rule between two struc-
tures I and O. In a (metaphorical) sense, this may be dubbed as the ‘engineer’s
view’ of reality: here is a recipe to build gnus from gnats. Often, however, reality
is not so simple. For example, one may know how to produce ‘gnus’ from ‘gnats’
but not in all cases. This is expressed by observing the output of f in a more
refined context: O is replaced by O + 1 and f is said to be a partial function.
In other situations one may recognise that there is some context information
about ‘gnats’ that, for some reason, should be hidden from input. It may be the
case that such information is huge to be give as a parameter to f , or shared
by other functions as well. It might also be the case that building gnus would
eventually modify the environment, thus influencing latter production of more
‘gnus’. For U a denotation of such context information, the signature of f be-
comes f : I −→ (O × U)U . In both cases f can be typed as f : I −→ T O,



for T = Id + 1 and T = (Id × U)U , respectively, where, intuitively, T is a type
transformer providing a shape for the output of f . Technically, T is a functor
which, to facilitate composition and manipulation of such functions, is often re-
quired to be a monad. In this way, the ‘universe’ in which f : I −→ T O lives
and is reasoned about is the Kleisli category for T . In fact, monads in functional
programming offer a general technique to smoothly incorporate, and delimit,
‘computational effects’ of this kind without compromising the purely functional
semantics of such languages, in particular, referential transparency.

A function computed within a context is often referred to as ‘state-based’,
in the sense the word ‘state’ has in automata theory — the memory which both
constrains and is constrained by the execution of actions. In fact, the ‘nature’ of
f : I −→ (O×U)U as a ‘state-based function’ is made more explicit by rewriting
its signature as f : U −→ (O × U)I

This, in turn, may suggest an alternative model for computations, which
(again in a metaphorical sense) one may dub as the ‘natural scientist’s view’.
Instead of a recipe to build ‘gnus’ from ‘gnats’, the simple awareness that there
exist gnus and gnats and that their evolution can be observed. That observation
may entail some form of interference is well known, even from Physics, and thus
the underlying notion of computation is not necessarily a passive one.

The able ‘natural scientist’ will equip herself with the right ‘lens’ — that is, a
tool to observe with, which necessarily entails a particular shape for observation.
Similarly, the engineer will resort to a ‘tool box’ emphasizing the possibility of at
least some (essentially finite) things being not only observed, but actually built.
In summary,

an observation structure: universe
c−→ ©_© universe

an assembly process:
eee

artifact
a−→ artifact

Assembly processes are specified in a similar (but dual) way to observation
structures. Note that in the picture ‘artifact’ has replaced ‘universe’, to stress
that one is now dealing with ‘culture’ (as opposed to ‘nature’) and, what is far
more relevant, that the arrow has been reversed. Formally, both ‘lenses’ and
‘toolboxes’ are functors. And, therefore, an observation structure is a ©_©-

coalgebra, and an assembly process is a
eee

-algebra.
Algebras and coalgebras for a functor [13] provide abstract models of essen-

tially construction (or data-oriented) and observation (or behaviour -oriented)
computational processes, respectively. Construction compatibility and indistin-
guishability under observation emerge as the basic notions of equivalence which,
moreover, are characterized in a way which is parametric on the particular ‘tool-
box’ or ‘lens’ used, respectively. Algebraic compatibility and bisimilarity acquire
a shape, which is the source of abstraction such models are proud of. Moreover, it
is well known that, if ‘toolboxs’ or ‘lens’ are ‘smooth enough’, there exist canon-
ical representations of all ‘artifacts’ or ‘behaviours into an initial (respectively,
final) algebra (respectively, coalgebra).



Both assembly and observation processes, as discussed above, can be modeled
by functions, or more generally, by arrows in a suitable category, between the
universes-of-interest. Both aspects can be combined in a single arrow

emm
U

d−→ ©_© U

formally known as a dialgebra. Initially defined in [14], their theory was devel-
oped in [15, 1] and later by [16] in the style of universal algebra. In Computer
Science, dialgebras were firstly used in [7] to deal with data types in a purely
categorical way and more recently in [11], as a generalization of both algebras
and coalgebras. In [12], they are used to specify systems whose states may have
an algebraic structure, i.e., as models of evolving algebras [6].

Dialgebras (d : FU −→ GU) generalize many interesting computational
structures, among which algebras (a : FU −→ U) and coalgebras (c : U −→
G U) as the simplest instantiations. A basic example is provided by transition
systems with specified initial states. If the transition shape is given by G , functor
Id + 1 introduces initial states as constants. This makes possible, for example,
to introduce initial states on models of automata, as in d : Q + 1 −→ QIn × 2.
Another example are components whose services may have a non deterministic
output. If functor F captures an algebraic signature, d : FU −→ P(U) caters for
non deterministic outcomes.

2 Invariants as types

If dialgebras provide a very general model for computational processes regarded
as arrows between the universes-of-interest, one has also to be precise on what
such ‘universes’ really are. A key observation is that, along their lifetime, com-
puter systems are expected to maintain a certain number of properties on which
depend their consistency and data integrity. On the other hand, they are subject
to the permanent stress of ever changing business rules, which materialise into
(either static or dynamic) properties of the underlying code.

Both integrity constraints and domain business rules are examples of inva-
riant properties. The word ‘invariant’ captures the idea that such desirable prop-
erties are to be maintained invariant, that is, unharmed across all transactions
which are embodied in the system’s functionality.

Invariants are ubiquitous in systems design. Actually, they take several forms
and are defined not only over the input and output domains, as in a purely
functional setting, but also over the underlying state space, as in imperative
programming or reactive systems design. Software evolution and reconfiguration,
on the other hand, entails the need for invariant checking whenever running
code is upgraded or even dynamically reconfigured. While testing is the most
widely used technique for such purpose, it is highly costly and does not ensure
correctness. Ideally, one should be able to formally verify that the new invariants
are enforced without running the (new) code at all.



This calls for a general theory of invariant preservation upon which one could
base such an extended static checking mechanism. This talk sums up a number
of steps towards such a theory which is both

– compositional : based on rules which break the complexity of the relevant
proof obligations across the structures involved

– calculational : amenable to agile algebraic manipulation

Our starting point is the explicit use of relational techniques, a body of knowledge
often referred to as the algebra of programming [5]. In particular an invariant
P ⊆ X is represented as a binary relation y ΦP x ≡ y = x ∧ x ∈ P , which is
called coreflexive because it is a fragment of the identity relation, i.e., ΦP ⊆ id.
Notice this is one of the standard ways of encoding a set as a binary relation.
Since predicates and coreflexives are in one to one correspondence, we will use
uppercase Greek letters to denote such coreflexives and will refer to them as
‘invariants’ with no further explanation.

Then, we resort to such relations to model types for arrows representing
computational processes. Actually, if one regards invariants as types, the com-
putational processes they type are arrows:

FΦP
d // GΦP (1)

where FΦ and GΦ represent invariant Φ placed in a context abstracted by func-
tors F and G , in the sense discussed above.

Typing computational processes (modelled as dialgebras) by invariants en-
codes a proof obligation. Actually the meaning of arrow (1) is

d · FΦP ⊆ GΦP · d (2)

which is computed as the relational counterpart to the following first-order for-
mula 〈∀ u :: u ∈ F(P ) ⇒ d(u) ∈ G(P )〉.

The intuition behind this move is that a dialgebra typed by a predicate is a
structure for which such a predicate is to be maintained along its evolution. We
will show how this can generalised in the context of a category whose objects
are predicates and arrows encode proof obligations, cf,

– for general functions: Φ
f // Ψ

– for reactive processes modelled as dialgebras FΦ
d // GΦ

– for imperative programs: Φpre
R // Φpost corresponding to Hoare triples

{post}R{pre}. This requires a generalization of the invariant calculus to
relations, to capture the calculus of weakest pre-conditions.

In each case, a calculus of invariants’ proof obligation discharge is developed,
generalising our previous work. References [2, 8, 3, 9] provide a roadmap through
our research on (coalgebraic) calculi for components-as-arrows. Most results on
typing such arrows by predicates first appeared in [4], with further developments
in [10].



Acknowlegments.

Long time collaboration with J. N. Oliveira (Minho), Alexandra Silva (Nijmegen)
and Manuel A. Martins (Aveiro), is deeply acknowledged. This work is funded by
ERDF - European Regional Development Fund through the COMPETE Pro-
gramme (operational programme for competitiveness) and by National Funds
through the FCT - the Portuguese Foundation for Science and Technology within
project FCOMP-01-0124-FEDER-010047.

References

1. Jiŕı Adámek. Limits and colimits in generalized algebraic categories. Czechoslovak
Mathematical Journal, 26:55–64, 1976.

2. L. S. Barbosa. Towards a Calculus of State-based Software Components. Journal
of Universal Computer Science, 9(8):891–909, August 2003.

3. L. S. Barbosa and J. N. Oliveira. Transposing partial components: an exercise on
coalgebraic refinement. Theor. Comp. Sci., 365(1-2):2–22, 2006.

4. L. S. Barbosa, J. N. Oliveira, and A. M. Silva. Calculating invariants as coreflexive
bisimulations. In J. Meseguer and G. Rosu, editors, Proc. 12th Inter. Conf. on
Algebraic Methodology and Software Technology, AMAST, pages 83–99. Springer
Lect. Notes Comp. Sci. (5140), 2008.

5. R. Bird and O. Moor. The Algebra of Programming. Series in Computer Science.
Prentice Hall, 1997.

6. E. Börger and R. Stärk. Abstract state machines: A method for high-level system
design and analysis. Springer-Verlag, 2003.

7. Tatsuya Hagino. A typed lambda calculus with categorical type constructors. In
Category Theory and Computer Science, pages 140–157, 1987.

8. Sun Meng and L. S. Barbosa. Components as coalgebras: The refinement dimen-
sion. Theor. Comp. Sci., 351:276–294, 2005.

9. Sun Meng and L. S. Barbosa. Towards the introduction of qos information in a
component model. In S. Y. Shin, S. Ossowski, M. Schumacher, M. J. Palakal,
and C.-C. Hung, editors, Proceedings of the 2010 ACM Symposium on Applied
Computing, Sierre, Switzerland, pages 2045–2046. ACM, 2010.

10. J. N. Oliveira. Extended static checking by calculation using the pointfree trans-
form. In Ana Bove, Lúıs Soares Barbosa, Alberto Pardo, and Jorge Sousa Pinto,
editors, Language Engineering and Rigorous Software Development, Inter.l Ler-
Net ALFA Summer School 2008, Piriapolis, Uruguay, Revised Tutorial Lectures,
volume 5520 of Lecture Notes in Computer Science, pages 195–251. Springer, 2009.

11. Erik Poll and Jan Zwanenburg. From algebras and coalgebras to dialgebras. In
CMCS ’01, volume 44 of ENTCS, pages 1–19. Elsevier, 2001.

12. Horst Reichel. Unifying adt– and evolving algebra specifications. EATCS Bulletin,
59:112–126, 1996.

13. J. Rutten. Universal coalgebra: a theory of systems. Theoretical Computer Science,
249:3–80, 2000.

14. V. Trnková and P. Goralćık. On products in generalized algebraic categories.
Commentationes Mathematicae Universitatis Carolinae, 1:49–89, 1972.

15. Věra Trnková. On descriptive classification of set-functors. I. Commentat. Math.
Univ. Carol., 12:143–174, 1971.

16. G Voutsadakis. Universal dialgebra: Unifying universal algebra and coalgebra. Far
East Journal of Mathematical Sciences, 44(1), 2010.


