
ar
X

iv
:1

50
7.

03
21

9v
1

 [
cs

.L
O

]
 1

2
Ju

l 2
01

5

Continuity as a computational effect

Renato Nevesa, Lúıs S. Barbosaa, Dirk Hofmannb, Manuel A. Martinsb

a INESC TEC (HASLab) & Universidade do Minho, Portugal
rjneves@inescporto.pt,lsb@di.uminho.pt

bCIDMA - Dep. of Mathematics, Universidade de Aveiro, Portugal
{dirk,martins}@ua.pt

Abstract

The original purpose of component–based development was to provide tech-
niques to master complex software, through composition, reuse and parametri-
sation. However, such systems are rapidly moving towards a level in which
software becomes prevalently intertwined with (continuous) physical processes.
A possible way to accommodate the latter in component calculi relies on a suit-
able encoding of continuous behaviour as (yet another) computational effect.

This paper introduces such an encoding through a monad which, in the
compositional development of hybrid systems, may play a role similar to the
one played by the 1+, powerset, and distribution monads in the characterisation
of partial, non deterministic and probabilistic components, respectively. This
monad and its Kleisli category provide a setting in which the effects of continuity
over (different forms of) composition can be suitably studied.

Keywords: Monads, components, hybrid systems, control theory

1. Introduction

Motivation and objectives. Component-based software development is
often explained through a visual metaphor: a palette of computational units,
and a blank canvas in which they are dropped and interconnected by drawing
wires abstracting different composition and synchronisation mechanisms. More
and more, however, components are not limited to traditional information pro-
cessing units, but encapsulate some form of interaction with physical processes.
The resulting systems, referred to as hybrid [1], exhibit a complex dynamics
in which loci of computation, coordination, and control of physical processes
interact, become mutually constrained, and cooperate to achieve specific goals.

One way of looking at components, proposed in [2], emphasises an observa-
tional semantics, through a signature of observers and methods, making them
amenable to a coalgebraic characterisation as (generalisations of) abstract Mealy
machines. The resulting calculus is parametric on whatever behavioural model
underlies a component specification. This captures, for example, partial, non
deterministic or probabilistic evolution of a component’s dynamics by encod-
ing such behavioural effects as strong monads [3] — a pervasive mathematical

Preprint submitted to Journal of Logical and Algebraic Methods in ProgrammingJuly 14, 2015

http://arxiv.org/abs/1507.03219v1

structure with surprising applications in different areas of Computer Science
(see e.g. [4, 5, 6, 7, 8]).

Indeed, each monad captures a specific behaviour, which becomes reflected
in the corresponding component calculus. For example, the maybe monad (1+)
introduces partial components; the powerset (P) monad non-deterministic ones;
and the distribution monad (D) brings (discrete) probabilistic evolution into
the scene. Can continuous behaviour, prevalent in hybrid systems and control
theory, be encoded in a similar way, as (yet another) computational effect? Such
is the question addressed here.

The use of monads to structure the denotational semantics of programming
languages was proposed in the 80’s, by E. Moggi [9, 4]. Later the concept
was introduced in programming practice by P. Wadler [5], entailing a rigorous
style of combining purely functional programs that mimic impure (side-)effects.
The key idea is that monads permit to encode in abstract terms several kinds
of computational effects, such as exceptions, state updating, nondeterminism
or continuations. Such effects are represented by a type constructor (i.e., an
endofunctor in a suitable category)M so that computations producing values of
type O are regarded as terms of type MO. In this way, values and computations
are explicitly distinguished and programs can be thought of as arrows I →
MO representing the computation of values of type O from values of type I,
while producing some effect described by M. Or, putting it in a different way,
output values arise encapsulated (or embedded) in the effect specified by M.
As a generalised monoid, a monad comes equipped with an identity and an
associative multiplication which, from a computational point of view, builds a
(trivial) computation from a value, and captures the flattening of nested effects,
respectively. Furthermore, if M is strong [5] additional machinery is available
to distribute the computations effect over context.

The paper introduces a strong monadH that subsumes continuous behaviour
and briefly explores its Kleisli category as the mathematical space in which
the underlying behaviour can be isolated and its effect over different forms
of composition studied. Again this parallels the role that the categories of
partial functions, relations and stochastic matrices have as reasoning universes
for component composition under the behavioural model provided, respectively,
by monads 1+, P and D [10, 11]. Similarly, this work may pave the way to the
development of a calculus of hybrid components.

Document structure. After a brief detour on preliminaries and nota-
tion in Section 2, the continuous-evolution monad H is introduced in Section 3.
Section 4 explores the corresponding Kleisli category KlH, characterising com-
position and some (co)limits. Finally, related work and possible future research
directions are discussed in Section 5. Most of the proofs adopt a pointfree style
in the spirit of the Bird-Meertens formalism [12].

2

f : X → Y, g : Y → Z

g · f : X → Z
(·)

f : X × Y → Z

λf : X → ZY
(λ)

f : X → Y1, g : X → Y2

〈f, g〉 : X → Y1 × Y2

(×)
f : X1 → Y, g : X2 → Y

[f, g] : X1 +X2 → Y
(+)

f : X → Y,A ⊆ X

fA : A → Y
(↓l)

f : X → Y, img f ⊆ B

fB : X → B
(↓r)

with fA = f · ι (for ι : A →֒ X) with ι · fB = f (for ι : B →֒ Y)

Figure 1: Continuity rules in Top.

2. Preliminaries

As usual, we qualify as continuous a system whose output, for any given
input, is a (continuous) evolution over time; i.e., an arrow typed as

I →
⋃

d∈[0,∞]

O[0,d]

where I, O are input and output universes, respectively, O[0,d] the space of con-
tinuous functions from [0, d] to O (the evolutions), and [0, d] a specific duration.
This suggests the category Top of topological spaces and continuous functions
as a suitable working environment for developing the envisaged results.

In the sequel, if the context is clear, a topological space will be denoted
by its underlying set. Also, assume that spaces X × Y , X + Y correspond to
the canonical product and coproduct of X,Y , respectively, and that for any
X ⊆ Y , X has the subspace topology induced by Y . Finally, whenever Y is
core-compact, space XY denotes the exponential topology [13]. Top is complete
and cocomplete, so we will often resort to isomorphisms αl : (X × Y) × Z ∼=
X × (Y × Z), and sw : X × Y ∼= Y ×X . Finally, Top provides a set of useful
rules for showing continuity; Figure 1 sums up the ones used in the paper. Note
that in rule (λ), Y must be core-compact [13] so that the evaluation function
ev : XY × Y → X is defined.

Notation. Universal arrows X → 1 to the final object in Top will be
denoted by !, and a function constantly yielding a value x by x. Given two
functions f, g : X → Y , and a predicate p, we introduce a conditional expression
f ⊳ p ⊲ g : X → Y , defined by

(f ⊳ p ⊲ g) x =

{

f x if p x

g x otherwise

3

The continuous functions minimum f : R × (R + 1) → R and truncated sub-
traction ⊖ : R × (R + 1) → R play a key role in the sequel. They are defined
as

r f (i1 s) = (π1 ⊳ (≤) ⊲ π2) (r, s) r ⊖ (i1 s) = ((−) ⊳ (>) ⊲ 0) (r, s)

r f (i2 ⋆) = r r ⊖ (i2 ⋆) = 0

where ≤, > are the usual ordering relations over the reals, and 1 introduces
infinity. Finally, note also the continuous function evr : XY × (Y +1) → (Y +1)
defined as evr(f, i1 y) = i1 · f y and evr(f, i2 ⋆) = i2 ⋆

3. H: A monad for continuous evolution

As mentioned above, continuous systems can be regarded as arrows of type

I →
⋃

d∈[0,∞]

O[0,d]

In order to define them in Top it is necessary to equip the target object with a
suitable topology. However, since there is not a canonical topology able to relate
functions with different domains, we consider that all evolutions have domain
R0. This is possible when one notices that [0, d] is a retract of R0 through the
minimum function (the retraction)

fd : R0 → [0, d]

Diagrammatically,

[0, d]
fq

// X

R0

fd

aa❉❉❉❉❉❉❉❉ f

??⑦⑦⑦⑦⑦⑦⑦⑦

Thus, each evolution f : [0, d] → X becomes f · fd : R0 → X . It is also
important to take duration of evolutions into account. So the definition of
continuous system becomes

I → OR0 ×D

where D = R0 + 1, and for each evolution f ∈ OR0 , f = f · fd. Note that,
due to the topological coproduct in D, ‘similar’ systems always execute for a
similar period of time, which renders impossible one to execute forever and not
the other.

Definition 1. H : Top → Top is a mapping such that, for any objects X,Y ∈
|Top| and any continuous function g : X → Y ,

HX = { (f, d) ∈ XR0 ×D | f ·fd = f }

Hg = g ·× id

4

To see that the image of Hg is contained in HY , note that f = f ·fd entails
g · f = g · f ·fd. Morever, since (g .) : XR0 → Y R0 is continuous, Hg also is.

Theorem 1. H is a functor.

Proof. Functoriality follows from the equation

H g =
(

(- ×D) · (-)R0 g
)

· ι

for any continuous function g : X → Y .

The crucial step now is to equip H with a monad structure

η : Id → H, µ : H2 → H

First,

Definition 2. Consider continuous functions π1 : X×R0 → X, i1 ·0 : X → D.
Then, define ηX = 〈λπ1, i1 · 0〉

Lemma 1. η is a natural transformation, i.e. ηX is continuous for any space
X ∈ Top, and the diagram below commutes

X
h //

ηX

��

Y

ηY

��

HX
Hh

// HY

for any continuous function h : X → Y .

Proof. Function ηX is continuous because

π1 : X × R0 → X

λπ1 : X → XR0

(λ)

〈λπ1, i1 · 0 〉 : X → XR0 ×D
(×)

〈λπ1, i1 · 0 〉 : X → HX
(↓r)

Then, diagram

x
✤ h //

❴

ηX

��

h x❴

ηY

��

(x, i1 0)
✤

h ·×id
// (h x, i1 0)

commutes because h · x = h x.

The definition of µ is more demanding.

5

Definition 3. Define the continuous function g : H2X × R0 → XR0 such that

g = π1 · ev · (id× (f · sw)) · αr

(

(HX)R0 ×D
)

× R0

αr

−−−−−→ (HX)R0 × (D × R0)
id×sw

−−−−−→

(HX)R0 × (R0 ×D)
id×f

−−−−−→ (HX)R0 × R0

ev

−−−−−→

HX
π1

−−−−−→ XR0

and function h : H2X × R0 → R0

h = ⊖ · sw · (π2 × id)

H2X × R0

π2×id

−−−−−→ D × R0

sw

−−−−−→ R0 ×D
⊖

−−−−−→ R0

Finally, define fl1 = λ(ev · 〈g, h〉). In pointwise notation, fl1 is defined as
fl1(f, d) = ev · 〈π1 · f · fd,⊖d〉, which, since f = f · fd, leads to fl1(f, d) =
ev · 〈π1 · f,⊖d〉 Then, define function fl2 : H2X → D given as

fl2 = (+) · 〈[π2, i2] · evr, π2〉

H2X
π2

−−−−−→ D

H2X
evr

−−−−−→ HX + 1
[π2,i2]

−−−−−→ D

Thus, fl2 (f, d) = (π2 · f d ⊳ (d 6∈ 1) ⊲ i2 ⋆) + d. Finally, we define for any
X ∈ Top, µX = 〈fl1, f l2〉.

Intuitively, operation µX ‘concatenates’ functions; for example, given a pair
(f, d), µX concatenates function π1·f - 0 : [0, d] → X with π1·fd - : [0, d′] → X ,
and sums the corresponding durations.

Lemma 2. µ is a natural tranformation.

H2X
H2h //

µX

��

H2Y

µY

��

HX
Hh

// HY

Proof. First we show that µX is continuous for any space X ∈ Top. To do this,
note that f, g are continuous and therefore

g : H2X × R0 → XR0

〈g, h〉 : H2X × R0 → XR0 × R0

(×)

ev · 〈g, h〉 : H2X × R0 → X
(·)

fl1 : H2X → XR0

(λ)

6

since fl1, f l2 are continuous we have

fl1 : H
2X → XR0

〈fl1, f l2〉 : H
2X → XR0 ×D

(×)

〈fl1, f l2〉 : H
2X → HX

(↓r)

Hence, it remains to prove that the naturality square commutes.

Hh · µX = µY ·H2h

≡ { Definition of H, µ }

(

h ·×id
)

· 〈fl1, f l2〉 = 〈fl1, f l2〉 ·
(

Hh ·×id
)

≡ { Absorption × }

〈(h·) · fl1, f l2〉 = 〈fl1, f l2〉 ·
(

Hh ·×id
)

≡ { Equality × }

{

(h·) · fl1 = fl1 ·
(

Hh ·×id
)

fl2 = fl2 ·
(

Hh ·×id
)

which leads to the cases below,

fl1 ·
(

Hh ·×id
)

(f, d)

= { Application, definition of fl1 }

ev · 〈π1 ·Hh · f,⊖d〉

= { Natural π1 }

ev · 〈(h·) · π1 · f,⊖d〉

= { Definition of composition }

h · ev · 〈π1 · f,⊖d〉

= { Definition of fl1 }

(h·) · fl1(f, d)

fl2 · (Hh ·×id)

= { Definition of fl2 }

(+) · 〈[π2, i2] · evr, π2〉 · (Hh ·×id)

= { Fusion ×, natural π2 }

(+) · 〈[π2, i2] · evr · (Hh ·×id), π2〉

7

= { Definition of composition }

(+) · 〈[π2, i2] · (Hh+ id) · evr, π2〉

= { Absorption +, definition of H }

(+) · 〈[π2 · (h ·×id), i2] · evr, π2〉

= { Natural π2 }

(+) · 〈[π2, i2] · evr, π2〉

= { Definition of fl2 }

fl2

Theorem 2. The diagram below commutes.

H
ηH //

1H
 ❇

❇❇
❇❇

❇❇
❇ H2

µ

��

H
Hη

oo

1H
~~⑤⑤
⑤⑤
⑤⑤
⑤⑤

H

Proof. Start with the triangle in the left

id = µX · ηHX

≡ { Definition of µ }

id = 〈fl1, f l2〉 · ηHX

≡ { Reflection ×, Equality × }

{

π1 = fl1 · ηHX

π2 = fl2 · ηHX

Unfolding both cases yields,

fl1 · ηHX (f, d)

= { Application }

fl1 ((f, d), 0)

= { Definition of fl1 }

ev · 〈π1 · (f, d),⊖0〉

= { Definition of constant }

f ·⊖0

= { x− 0 = x }

f

8

and then,

fl2 · ηHX

= { Definition of fl2 }

(+) · 〈[π2, i2] · evr, π2〉 · ηHX

= { Fusion ×, cancellation × }

(+) · 〈[π2, i2] · evr · ηHX , i1 · 0〉

= { x+ 0 = x }

[π2, i2] · evr · ηHX

= { i1 = evr · ηHX }

[π2, i2] · i1

= { Cancellation + }

π2

Now, consider the right triangle

id = µX ·HηX

≡ { Definition of µ }

id = 〈fl1, f l2〉 ·HηX

≡ { Reflection ×, Equality × }

{

π1 = fl1 ·HηX

π2 = fl2 ·HηX

which leads to,

fl1 ·HηX (f, d)

= { Application }

fl1 (ηX · f, d)

= { Definition of fl1 }

ev · 〈π1 · ηX · f,⊖d〉

= { ηX · f = (f - , i1 · 0) , Cancellation × }

ev · 〈f - ,⊖d〉

= { Definition of constant }

f

9

fl2 ·HηX

= { Definition of fl2, fusion × }

(+) · 〈[π2, i2] · evr ·HηX , π2 ·HηX〉

= { evr ·HηX = (ηX + id) · evr , natural π2 }

(+) · 〈[π2, i2] · (ηX + id) · evr, π2〉

= { Absorption + }

(+) · 〈[π2 · ηX , i2] · evr, π2〉

= { Cancellation + }

(+) · 〈[i1 · 0, i2] · evr, π2〉

= { 0 + x = x, i2 ⋆ = (i2 ⋆) + (i2 ⋆) }

π2

The following two lemmas are required to prove that 〈H, η, µ〉 is ‘associative’.

Lemma 3. The following equation holds

ev · 〈fl1 · f,⊖d〉 = ev · 〈π1 · ev · 〈π1 · f,⊖d〉,⊖d′ ·⊖d〉

Proof.

ev · 〈fl1 · f,⊖d〉 x

= { Application }

fl1(f x) (x⊖ d)

= { Application (let π1 · f x = f ′, π2 · f x = d′) }

ev · 〈π1 · f
′,⊖d′〉(x ⊖ d)

= { Application }

π1 · f
′ (x⊖ d) ((x ⊖ d)⊖ d′)

= { Definition of ⊖d′ ,⊖d }

ev · 〈π1 · f
′
·⊖d,⊖d′ ·⊖d〉 x

= { Definition of f ′ }

ev · 〈π1 · (π1 · f x) ·⊖d,⊖d′ ·⊖d〉 x

= { Definition of product }

ev · 〈π1 · ev · 〈π1 · f,⊖d〉,⊖d′ ·⊖d〉 x

10

Lemma 4. The following equation holds

(+) · 〈[π2, i2] · evr · µHX , [π2, i2] · evr〉 = [π2, i2] · evr · (µX ·×id)

Proof.

(+) · 〈[π2, i2] · evr · µHX , [π2, i2] · evr〉 (f, d)

= { Application (let fl2(f, d) = d2) }

π2

(

fl1(f, d) d2
)

+ π2(f d) ⊳ (d 6∈ 1, d2 6∈ 1) ⊲ i2 ⋆

= { If d2 6∈ 1 then fl1(f, d) d2 = π1 · f d π2(f d) }

π2

(

π1 · f d π2(f d)
)

+ π2(f d) ⊳ (d 6∈ 1, d2 6∈ 1) ⊲ i2 ⋆

= { fl2(f, d) 6∈ 1 ≡ d 6∈ 1, π2(f d) 6∈ 1 (let π2(f d) = d′) }

(

π2(π1 · f d d′) + d′ ⊳ (d′ 6∈ 1) ⊲ i2 ⋆
)

⊳ (d 6∈ 1) ⊲ i2 ⋆

= { Definition of fl2 }

fl2 · f d ⊳ (d 6∈ 1) ⊲ i2 ⋆

= { Cancellation × }

π2 · µX · f d ⊳ (d 6∈ 1) ⊲ i2 ⋆

= { Definitions of evr and [π2, i2] }

[π2, i2] · evr · (µX ·×id) (f, d)

Finally,

Theorem 3. The diagram below commutes.

H3 µH
//

Hµ

��

H2

µ

��

H2
µ

// H

Proof. First,

µX ·HµX = µX · µHX

≡ { Definition of µ }

〈fl1, f l2〉 ·HµX = 〈fl1, f l2〉 · µHX

≡ { Fusion ×, Equality × }

{

fl1 ·HµX = fl1 · µHX

fl2 ·HµX = fl2 · µHX

11

Then,

fl1 · µHX(f, d)

= { Definition of fl1 }

ev · 〈π1 · (fl1(f, d)),⊖e〉

= { Definition of fl1 }

ev · 〈π1 · ev · 〈π1 · f,⊖d〉,⊖e〉

= { Definition of ⊖e }

ev · 〈π1 · ev · 〈π1 · f,⊖d〉,⊖d′ ·⊖d〉

= { Lemma 3 }

ev · 〈fl1 · f,⊖d〉

= { Cancellation × }

ev · 〈π1 · µX · f,⊖d〉

= { Definition of fl1 }

fl1(µX · f, d)

= { Definition of H }

fl1 ·HµX (f, d)

and

fl2 · µHX

= { Definition of fl2, fusion × }

(+) · 〈[π2, i2] · evr · µX , π2 · µHX〉

= { Definition of µHX }

(+) · 〈[π2, i2] · evr · µHX , f l2〉

= { Definition of fl2 }

(+) · 〈[π2, i2] · evr · µHX , (+) · 〈[π2, i2] · evr, π2〉〉

= { (+) is associative }

(+) · 〈(+) · 〈[π2, i2] · evr · µHX , [π2, i2] · evr〉, π2〉

= { Lemma 4 }

(+) · 〈[π2, i2] · evr · (µX ·×id), π2〉

= { Natural π2, fusion × }

(+) · 〈[π2, i2] · evr, π2〉 · (µX ·×id)

= { Definition fl2 }

12

fl2 · (µX ·×id)

= { Definition H }

fl2 ·HµX

which concludes the proof.

4. . . . And its Kleisli category (Kl H)

As mentioned above, the Kleisli category for H (Kl H) provides the right
setting to study the requirements placed by continuity over different forms of
composition; actually, the envisaged component calculus is essentially its calcu-
lus. For future reference, let us recall its definition:

Definition 4. Category KlH is defined as follows

• |KlH| = |Top|,

• for any objects X,Y ∈ |KlH|,

HomKl H(X,Y) = HomTop(X,HY)

• for any space X ∈ |KlH|, ηX is its identity

• and, given two KlH arrows c1 : X → HY , c2 : Y → HZ their (sequential)
composition, denoted by c2 • c1, is equal to

µZ ·Hc2 · c1

In order to explore its structure, consider two arrows c1 : I → HK, c2 : K →
HO. Then, denoting π1 · c by fc, for a continuous system c : I → HO, compute

π1 · (c2 • c1) x

= { Definition of sequential composition }

π1 · µZ ·Hc2 · c1 x

= { Cancellation × }

fl1 ·Hc2 · c1 x

= { Definition of H, let π2 · c1 x = d }

fl1 (c2 · (fc1 x), d)

= { Application }

ev · 〈π1 · c2 · (fc1 x),⊖d〉

= { Notation }

ev · 〈fc2 · (fc1 x),⊖d〉

13

Thus,

ev · 〈fc2 · (fc1 x),⊖d〉 t

= { Application }

fc2(fc1 x t) (t⊖ d)

= { (fc1 x) · fd = fc1 x }

fc2
(

fc1 x (tf d)
)

(t⊖ d)

The last expression suggests a distinction between passive and active systems,
which we formalise as follows. Consider a system c : I → HI; it leads to the
arrow

initc = I
c

−−−−−→ HI
π1

−−−−−→ IR0

ev·〈id,0〉

−−−−−→ I

We say that arrow c is passive if initc = id (i.e. fc x 0 = x), active otherwise.
The reason for this nomenclature will become clear in the following exercises.

Recall that

π1 · (c2 • c1) x t = fc2
(

fc1 x (t f d)
)

(t⊖ d)

if c2 is passive, the previous equation is equivalent to

π1 · (c2 • c1) x t = fc1 x t ⊳ (t ≤ d) ⊲ fc2(fc1 x d) (t − d)

This means that for the duration of fc1 x, c2 • c1 x evolves according first to
c1, and then, on its termination, to c2. Clearly, this is the expected behaviour
according to the definition of operation µ which, as discussed in the previous
section, ‘concatenates’ functions. The intuition about c2 being active is also
clear: until duration [0, d] is completed, c2 ‘alters’ the evolution of c1; then it
proceeds according to its own evolution fc2(fc1 x d). This is illustrated in the
following example.

Example 1. Suppose the temperature of a room is to be regulated according to
the following discipline: starting at 10 ◦C, seek to reach and maintain 20 ◦C, but
in no case surpass 20.5 ◦C. To realise such a system, three elementary compo-
nents have to work together: c1 to raise the temperature to 20 ◦C, component c2
to maintain a given temperature, and component c3 to ensure the temperature
never goes over 20.5 ◦C. Formally,

c1 x = ((x+ -), 20⊖ x)

c2 x = (x+ (sin -), ∞)

c3 x = (x ⊳ (x ≤ 20.5) ⊲ 20.5 , 0)

In a first try one may compose c2, c1 into c2 • c1. This results in a component
able to read the current temperature, raise it to 20 ◦C, and then keep it stable,
as exemplified by the plot below.

14

0 5 10 15 20 25 30
10

15

20

25

x

y

c2 • c1 10

If, however, temperatures over 20.5 ◦C occur, composition c3 • c2 • c1 puts
the system back into the right track as illustrated in the following plot.

0 5 10 15 20 25 30
10

15

20

25

x

y

c3 • c2 • c1 10

The example above hints at another interesting property.

Theorem 4. Consider two arrows c1 : I → HO, c2 : O → HO. If c2 is passive
and π2 · c1 x = ⋆, then

f(c2 • c1) x = fc1 x

Proof.

f(c2 • c1) x

= { Notation }

π1 · (c2 • c1) x

= { Definition of sequential composition }

fc2(fc1 x -) (- ⊖∞)

= { Definition of ⊖ }

15

fc2(fc1 x -) 0

= { c2 is passive }

fc1 x

Corollary 1. If c2 is passive and img π2 · c1 ⊆ 1, then c2 • c1 = c1.

This means that if evolutions of the first component always exhibit an infinite
duration, the second one, if passive, will never have the chance to execute.

(Co)limits are a main tool to build ‘new’ arrows from old, which in the case of
KlH translates to new forms of (continuous) component composition. Actually,
coproducts are very easy to find through the canonical adjunction between Top

and KlH,

Top

F

))

⊥ KlH

G

ii

which means that KlH inherits the colimits of Top through F . One important
colimit is the coproduct; in KlH it is inherited as follows: given two components

X

c1
·

❅❅
❅❅

❅❅
❅❅

Y

c2
·

⑦⑦
⑦⑦

��⑦⑦
⑦⑦

Z

define component [c1, c2] : X + Y → HZ such that

X
ηX+Y ·i1

·
//

c1
·

PP
PP

PP
P

''P
PP

PP
PP

X + Y

[c1,c2]·

��

Y
ηX+Y ·i2

·
oo

c2
·
♥♥
♥♥
♥♥
♥

ww♥♥
♥♥
♥♥
♥

Z

i.e.

c1 = [c1, c2] • (ηX+Y · i1)

c2 = [c1, c2] • (ηX+Y · i2)

Intuitively, [c1, c2] behaves as c1 whenever inputX is chosen, and as c2 otherwise.
Next, we explore the possibility of parallel evolutions. First note that the

following pullback exists in Top.

16

I
〈c1,c2〉

%%

c1

,,

c2

!!

HK ×H1 HO
π2 //

π1

��

HO

H!

��

HK
H!

// H1

and that HK ×H1 HO ∼= H(K ×O). In particular,

γ = (i × id) · 〈π1 × π1, π2 · π2〉

HK ×H1 HO
〈π1×π1,π2·π2〉

−−−−−→ (KR0 ×OR0)×D
i×id

−−−−−→ H(K ×O)

where i is the iso

KR0 ×OR0 ∼= (K ×O)R0

Moreover,

Lemma 5. The following equations hold

Hπ1 · γ = π1

Hπ2 · γ = π2

Proof.

Hπ1 · γ((f, d), (g, d))

= { Application }

Hπ1(〈f, g〉, d)

= { Application }

(π1 · 〈f, g〉, d)

= { Cancellation × }

(f, d)

= { Definition of π1 }

π1((f, d), (g, d))

A similar proof establishes the other equation.

Lemma 6. Arrow 〈Hπ1,Hπ2〉 : H(K ×O) → HK ×HO is mono.

Proof. Consider two arrows f, g : I → H(K ×O) and assume that

〈Hπ1,Hπ2〉 · f = 〈Hπ1,Hπ2〉 · g

17

Then,

〈Hπ1,Hπ2〉 · f = 〈Hπ1,Hπ2〉 · g

⇒ { Leibniz }

γ · 〈Hπ1,Hπ2〉 · f = γ · 〈Hπ1,Hπ2〉 · g

≡ { γ · 〈Hπ1,Hπ2〉 = id }

f = g

Such intuitions lead to the following property,

Theorem 5. The following pullback exists in KlH.

I
γ·〈c1,c2〉
·

""

c1
·

++

c2
·

��

K ×O
ηO·π2

·
//

ηK ·π1 ·

��

O

η1·!·

��

K
η1·!
·

// 1

Proof. First, we show that the inner square commutes

(η1·!) • (ηK · π1)

= { Definition of • and H is a functor }

µ1 ·Hη1 ·H! · ηK · π1

= { Monadic laws }

H! · ηK · π1

= { Definition of 〈H, η, µ〉 }

(! ·×id) · 〈(), 0〉 · π1

= { Absorption × }

〈! · (), 0〉 · π1

= { Definition of ! and constant }

〈! · (), 0〉 · π2

= { Absorption ×, definition of 〈H, η, µ〉 }

H! · ηO · π2

= { Monadic laws }

18

µ1 ·Hη1 ·H! · ηO · π2

= { H is a functor, Definition of • }

(η1·!) • (ηO · π2)

The left triangle commutes because (the proof for the right one is analogous):

(ηK · π1) • γ · 〈c1, c2〉

= { Definition of • and H is a functor }

µK ·HηK ·Hπ1 · γ · 〈c1, c2〉

= { Monadic laws }

Hπ1 · γ · 〈c1, c2〉

= { Lemma 5 }

π1 · 〈c1, c2〉

= { Cancellation × }

c1

Finally, we need to prove uniqueness, i.e. that arrow γ · 〈c1, c2〉 is the only that
makes the triangles commute. So assume there is an arrow f such that

(ηK · π1) • f = c1 ∧ (ηK · π2) • f = c2

≡ { Transitivity (twice) }

(ηK · π1) • f = (ηK · π1) • γ · 〈c1, c2〉 ∧

(ηO · π2) • f = (ηO · π2) • γ · 〈c1, c2〉

≡ { Definition of • (4 ×), H is a functor (4 ×) }

µK ·HηK ·Hπ1 · f = µK ·HηK ·Hπ1 · γ · 〈c1, c2〉 ∧

µO ·HηO ·Hπ2 · f = µO ·HηO ·Hπ2 · γ · 〈c1, c2〉

≡ { Monadic laws (twice) }

Hπ1 · f = Hπ1 · γ · 〈c1, c2〉 ∧

Hπ2 · f = Hπ2 · γ · 〈c1, c2〉

≡ { Equality ×, Fusion × (twice) }

〈Hπ1,Hπ2〉 · f = 〈Hπ1,Hπ2〉 · γ · 〈c1, c2〉

⇒ { 〈Hπ1,Hπ2〉 is mono (Lemma 6) }

f = γ · 〈c1, c2〉

The theorem asserts the existence of products whenever, for the same input,
the duration of evolutions coincide. It also says that whenever two components

19

are compatible – in the sense that similar inputs always produce evolutions with
equal duration – a new component can be defined representing their parallel
composition. This actually brings parallelism up front, and, moreover, makes
possible to combine evolutions, as illustrated in the following example.

Example 2. Consider two signal generators, c1, c2 such that

c1 x = (x+ (sin -), 20)

c2 x = (x+ sin (3 ∗ -), 20)

For input 0, their parallel evolution γ · 〈c1, c2〉 0 (denoted in the sequel by
〈c1, c2〉

H 0) is as follows

0 5 10 15 20

−2

0

2

x

y

〈c1, c2〉
H 0

Moreover, we can combine signals. For example, to add incoming signals,
take the active component c3, formally defined as

c3(x, y) = (x+ y, 0)

For input 0, the system c3 • 〈c1, c2〉
H yields the plot below

0 5 10 15 20

−2

0

2

x

y

c3 • 〈c1, c2〉
H 0

20

We close this section further investigating the structure of monad H. We
start by defining a tensorial strength for monad H — which turns out to be an
essential mechanism for the generation of a calculus for hybrid components.

Definition 5. Define the function f1 : HX × Y → (X × Y)R0 such that

f1 = i · (π1 × λπ1)

HX × Y
(π1×λπ1)

−−−−−→ XR0 × Y R0

i

−−−−−→ (X × Y)R0

and function f2 : HX × Y → D such that f2 = π2 · π1. Then, denote function
〈f1, f2〉 : HX × Y → H(X × Y) by symbol τr.

Theorem 6. H is strong.

Proof. We will show that τr corresponds to the uniform characterisation of right
tensorial strength (which entails that H is strong).

τr
(

(f, d), y)

= { Application }

(〈f, y〉, d)

= { Definition of constant }

((, y) · f, d)

= { Definition of H }

H(, y) (f, d)

The monad H, however, fails commutativity, i.e. equation

τr • τl = τl • τr

does not hold, as shown in the following counter–example.

Example 3. Recall Example 2; it introduced two signal generators, formally
defined as

c1 x = (x+ (sin -), 20)

c2 x = (x+ sin (3 ∗ -), 20)

Thus, we have

21

0 10 20 30 40

−2

0

2

x

y

τr • τl · 〈c1, c2〉 0

0 10 20 30 40

−2

0

2

x

y

τl • τr · 〈c1, c2〉 0

Indeed, the example above shows that τr • τl 6= τl • τr. Nonetheless, the
plots illustrate an interesting behaviour: τr • τl · 〈c1, c2〉 means “first let the
component in the left to act, then the one in the right”; and conversely for
τl • τr · 〈c1, c2〉. Moreover, note that each component ‘waits’ for the other by
stalling its evolution, which seems to introduce a mechanism for synchronisation.

5. Conclusions and future work

Software systems are becoming prevalently intertwined with (continuous)
physical processes. This renders their rigorous design (and analysis) a difficult
challenge that calls for a wide, uniform framework where ‘Continuous’ Mathe-
matics and Computer Science must work together.

As a first step towards a calculus of hybrid components, in the spirit of [2],
this paper showed how continuous behaviour can be encoded in the form of a
strong topological monad. The paper further explored the corresponding Kleisli
category where the effects of continuity over different forms of composition can
be isolated and studied.

22

Related work. During the last two decades, a few categorial models for
hybrid systems were proposed. For example, document [14] introduced an in-
stitution – in essence, a categorial rendering of logic – for hybrid systems and
provided basic forms of composition such as free aggregation (i.e. parallelism
without interaction) and interconnection where some attributes and events are
shared between two systems. Around the same time, Jacobs [15] suggested a
coalgebraic framework where hybrid systems are viewed as coalgebras equipped
with a monoid action: coalgebras define the discrete transitions, and monoid
actions the continuous evolutions. Some years later Haghverdi et. al [16] pro-
vided an interesting formalisation of hybrid systems using a conceptual frame-
work which is closer to the coalgebraic perspective. In fact, their objective in
the paper was to give appropriate notions of bisimulation both for dynamical
and hybrid systems. Composition mechanisms, however, were not studied.

The monad introduced in this paper captures the typical continuous be-
haviour of hybrid systems. Actually, there is a close relationship between the
work reported here and Peter Höfner’s algebra of hybrid systems [17]: the lat-
ter’s main operator and its laws are embedded in the (sequential) composition
of Kl H, in particular when restricted to passive systems. Moreover, the alge-
bra possesses secondary operators, used for synchronisation purposes, that can
also be found in the structure of Kl H. As already mentioned, our approach,
and differently from Höfner’s calculus, is structured around a monad that en-
codes continuous evolution; this brings a number of canonical constructions and
smooths the integration with other behavioural effects, such as non determinism
or probabilistic evolution.

Future work. Our current research investigates how hybrid behaviour can
be rendered by arrows typed as 〈c, p〉 : S× I → S×HO, where c : S× I → S is
a discrete arrow (S comes equipped with the discrete topology) and p : S× I →
HO is a continuous system. This paves the way to extending the component
calculus in [2] to hybrid systems.

A second research line concerns the development of a taxonomy of continuous
systems ‘living’ inKlH. Topologies can be useful to elicit a number of important
properties of hybrid systems, as Stauner showed more than a decade ago [18].
For instance, the notion of stability, essential in control theory, is very simple
to formulate in Kl H: a system is called stable when small input variations
originate small variations in the output. In Kl H this essentially means that
the input space is not equipped with the discrete topology.

Acknowledgements This work is funded by ERDF - European Regional
Development Fund, through the COMPETE Programme, and by National Funds
through FCT within project FCOMP-01-0124-FEDER-028923. The first author
is also sponsored by FCT grant SFRH/BD/52234/2013.

23

References

[1] P. Tabuada, Verification and Control of Hybrid Systems - A Symbolic Ap-
proach, Springer, 2009.

[2] L. S. Barbosa, Towards a calculus of state-based software components,
Journal of Universal Computer Science 9 (2003) 891–909.

[3] A. Kock, Strong functors and monoidal monads, Archiv der Mathematik
23 (1) (1972) 113–120.

[4] E. Moggi, Notions of computation and monads, Information and computa-
tion 93 (1) (1991) 55–92.

[5] P. Wadler, Monads for functional programming, in: Advanced Functional
Programming, Springer, 1995, pp. 24–52.

[6] S. Marlow, R. Newton, S. L. P. Jones,
A monad for deterministic parallelism, in: Proceedings of the 4th
ACM SIGPLAN Symposium on Haskell, Haskell 2011, Tokyo, Japan, 22
September 2011, 2011, pp. 71–82. doi:10.1145/2034675.2034685.
URL http://doi.acm.org/10.1145/2034675.2034685

[7] E.-E. Doberkat, Stochastic Coalgebraic Logic, Monographs in Theoretical
Computer Science. An EATCS Series, Springer, 2009.

[8] I. Hasuo, B. Jacobs, A. Sokolova, Generic trace theory,
Electr. Notes Theor. Comput. Sci. 164 (1) (2006) 47–65.
doi:10.1016/j.entcs.2006.06.004.
URL http://dx.doi.org/10.1016/j.entcs.2006.06.004

[9] E. Moggi, Computational lambda-calculus and monads, in: Proceedings of
the Logic in Computer Science Conference, 1989.

[10] L. S. Barbosa, J. N. Oliveira, Transposing partial components: an exercise
on coalgebraic refinement, Theor. Comp. Sci. 365 (1-2) (2006) 2–22.

[11] J. N. Oliveira, Preparing relational algebra for ”just good enough” hardware,
in: P. Höfner, P. Jipsen, W. Kahl, M. E. Müller (Eds.), Relational and
Algebraic Methods in Computer Science - 14th International Conference,
RAMiCS 2014, Marienstatt, Germany, April 28-May 1, 2014. Proceedings,
Vol. 8428 of Lecture Notes in Computer Science, Springer, 2014, pp.
119–138. doi:10.1007/978-3-319-06251-8_8.
URL http://dx.doi.org/10.1007/978-3-319-06251-8_8

[12] R. Bird, O. de Moor, The Algebra of Programming, Prentice-Hall, 1996.
URL http://www.cs.ox.ac.uk/publications/books/algebra/

[13] M. Escardó, R. Heckmann, Topologies on spaces of continuous functions,
in: Topology Proceedings, Vol. 26, 2001, pp. 545–564.

24

http://doi.acm.org/10.1145/2034675.2034685
http://dx.doi.org/10.1145/2034675.2034685
http://doi.acm.org/10.1145/2034675.2034685
http://dx.doi.org/10.1016/j.entcs.2006.06.004
http://dx.doi.org/10.1016/j.entcs.2006.06.004
http://dx.doi.org/10.1016/j.entcs.2006.06.004
http://dx.doi.org/10.1007/978-3-319-06251-8_8
http://dx.doi.org/10.1007/978-3-319-06251-8_8
http://dx.doi.org/10.1007/978-3-319-06251-8_8
http://www.cs.ox.ac.uk/publications/books/algebra/
http://www.cs.ox.ac.uk/publications/books/algebra/

[14] H. Lourenço, A. Sernadas, An institution of hybrid systems, in:
D. Bert, C. Choppy, P. Mosses (Eds.), Recent Trends in Al-
gebraic Development Techniques, Vol. 1827 of Lecture Notes in
Computer Science, Springer Berlin Heidelberg, 2000, pp. 219–236.
doi:10.1007/978-3-540-44616-3_13.
URL http://dx.doi.org/10.1007/978-3-540-44616-3_13

[15] B. Jacobs, Object-oriented hybrid systems of coalgebras plus monoid actions,
Theoretical Computer Science 239 (1) (2000) 41 – 95.
doi:http://dx.doi.org/10.1016/S0304-3975(99)00213-3.
URL http://www.sciencedirect.com/science/article/pii/S0304397599002133

[16] E. Haghverdi, P. Tabuada, G. J. Pappas,
Bisimulation relations for dynamical, control, and hybrid systems, Theor.
Comput. Sci. 342 (2-3) (2005) 229–261. doi:10.1016/j.tcs.2005.03.045.
URL http://dx.doi.org/10.1016/j.tcs.2005.03.045

[17] P. Höfner, Algebraic calculi for hybrid systems, Ph.D. thesis, University of
Augsburg (2009).

[18] T. Stauner, Systematic development of hybrid systems, Ph.D. thesis, TU
München (2001).

25

http://dx.doi.org/10.1007/978-3-540-44616-3_13
http://dx.doi.org/10.1007/978-3-540-44616-3_13
http://dx.doi.org/10.1007/978-3-540-44616-3_13
http://www.sciencedirect.com/science/article/pii/S0304397599002133
http://dx.doi.org/http://dx.doi.org/10.1016/S0304-3975(99)00213-3
http://www.sciencedirect.com/science/article/pii/S0304397599002133
http://dx.doi.org/10.1016/j.tcs.2005.03.045
http://dx.doi.org/10.1016/j.tcs.2005.03.045
http://dx.doi.org/10.1016/j.tcs.2005.03.045

	1 Introduction
	2 Preliminaries
	3 H: A monad for continuous evolution
	4 …And its Kleisli category (Kl H)
	5 Conclusions and future work

