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The paper discusses the role of interpretations, understood as multifunctions that preserve and reflect
logical consequence, as refinement witnesses in the generalsetting ofπ-institutions. This leads to
a smooth generalization of the “refinement by interpretation” approach, recently introduced by the
authors in more specific contexts. As a second, yet related contribution a basis is provided to build
up a refinement calculus of structured specifications in and across arbitraryπ-institutions.

1 Introduction

The expressionrefinement by interpretationwas coined in [MMB09b] to refer to an alternative approach
to refinement of equational specifications in which signature morphisms are replaced bylogical inter-
pretationsas refinement witnesses.

Intuitively, an interpretation is a logic translation which preserves and reflects meaning. Actually, it
is a central tool in the study of equivalent algebraic semantics (see,e.g., [Wój88, BP89, BP01, BR03,
Cze01]), a paradigmatic example being the interpretation of the classical propositional calculusinto the
equational theory of boolean algebras(cf. [BP01, Example 4.1.2]). Interestingly enough, and in the
more operational setting of formal software development, the notion of interpretation proved effective
to capture a number of transformations difficult to deal within classical terms. Examples include data
encapsulation and the decomposition of operations into atomic transactions [MMB09b].

A typical refinement pattern that is not easily captured by the classical approach concerns refinement
of a subset of operations into operations defined over more specialized sorts. This kind of transformation
induces the loss of the functional property on the operations’ component of signature morphisms. For
example, there is not a signature morphismσ to guide a refinement where a specification with operations
g : s′ → s and f : s′ → s is transformed into one with operationsg : s′ → snew and f : s′ → s, since
this translation naturally induces a mapσsort(s) = {s,snew} which violates the definition of signature
morphism.

The approach seems also promising in the context of new, emerging computing paradigms which
entail the need for more flexible approaches to what is taken as a valid transformation of specifications,
as in, for example, [BSR04]. Later, in [MMB09a], the whole framework was generalized from the
original equational setting to address deductive systems of arbitrary dimension. This made possible, for
example, to refine sentential into equational specifications and the latter into modal ones. Moreover, the
restriction to logics with finite consequence relations wasdropped which resulted in increased flexibility
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along the software development process. The interested reader is referred to both papers for a number of
illustrative examples.

On the other hand, the notion of an institution [GB92], proposed by J. Goguen and R. Burstall in the
late 1970s, has proven very successful in formalizing logical systems and their interrelations.

This paper aims at lifting the use of logic interpretations to witness refinement of specifications at
an institutional level. This is made in the context ofπ-institutions [FS88] which deal directly with
syntactic consequence relations rather than with semantical satisfaction, as in the original definition of an
institution [GB92]. π-institutions are particularly useful in formalizing deductive systems with varying
signatures, which are only indirectly handled by the methods of abstract algebraic logic, as in [BP01] on
which our first generalization [MMB09a] is based. In general, π-institutions provide a more operational
framework with no loss of expressiveness as any classical institution can be suitably translated.

Refinement by interpretation is proposed here at two different levels: amacrolevel relating different
π-institutions, and themicro level of specifications inside a particular, although arbitrary, π-institution.
The former discusses what is an interpretation of institutions and provides the envisaged generalization of
this approach to refinement of arbitrary deductive systems.The latter, on the other hand, corresponds to a
sort of local refinement witnessed by interpretations thought simply as multifunctions relating sentences
generated by different signatures within the same institution.

As a second, although related, contribution, the paper laysthe basis for a refinement-by-interpretation
calculus of structured specifications in an arbitrary (and across)π-institution(s). That both levels can be
addressed and related to each other comes to no surprise: a main outcome of institution theory is precisely
to provide what [AN94] describes aseffective mechanisms to manipulate theories in an analogous way
as our deductive calculi manipulate formulas.

The remainder of this paper is organized as follows.π-institutions and a notion of interpretation
between them are reviewed in section 2. Then, section 3 characterizes refinement by interpretation in
this context, whereas the local view is discussed in section4. The structure of a refinement calculus is
discussed in section 5. Section 6 concludes and highlights some pointers to related work.

2 π-institutions and interpretations

In broad terms, an institution consists of an arbitrary category Sign of signatures together with two
functorsSEN andMOD that give, respectively, for each signature, a set of sentences and a category
of models. For each signature, sentences and models are related via a satisfaction relation whose main
axiom formalizes the popular aphorismtruth is invariant under change of notation[Dia08]. Such a very
generic way to capture a logical system was originally motivated by quite pragmatic concerns: to provide
an abstract, language-independent framework for specificifying and reasoning about software systems,
in response to the explosion of specification logics. Several current specification formalisms, notably,
CAFEOBJ [DF02], CASL [MHST03] and HETS [MML07] were designed to take advantage of such a
general framework.

π-institutions, proposed by J. Fiadeiro and A. Sernadas in [FS88], fulfill a similar role, replacing
semantical satisfaction by a syntactic consequence relation à la Tarski. Therefore, aπ-institution intro-
duces, for each signature, a closure operator on the set of its sentences capturing logical consequence. As
remarked by G. Voutsadakis in [Vou03]π-institutionsmay be viewed as the natural generalization of the
notion of a deductive system on which a categorical theory ofalgebraizability, generalizing the theory
of [BP01] may be based. In the sequel we review the basic definition and adopt Voutsadakis’s notion of
interpretation to define refinement by interpretation in such a general setting.
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Definition 1 A π-institution I is a tuple〈Sign,SEN,(CΣ)Σ∈|Sign|〉 where

• Sign is a category of signatures and signature morphisms;

• SEN : Sign→ Set is a functor from the category of signatures to the category of small sets giving,
for eachΣ ∈ |Sign|, the setSEN(Σ) of Σ-sentences and mapping each f: Σ1 → Σ2 to asubstitution
SEN( f ) : SEN(Σ1)→ SEN(Σ2);

• for eachΣ ∈ |Sign|, CΣ : P(SEN(Σ)) → P(SEN(Σ)) is a mapping, calledΣ-closure, such that,
for all A,B⊆ SEN(Σ) andΣ1,Σ2 ∈ Sign;

(a) A⊆CΣ(A)

(b) CΣ(CΣ(A)) =CΣ(A)

(c) CΣ(A)⊆CΣ(B) for A⊆ B

(d) SEN( f )(CΣ1(A))⊆CΣ2(SEN( f )(A))

Note that theΣ-closure operator of aπ-institution is not required to be finitary.

Definition 2 A π-institution I′ = 〈Sign′,SEN′
,(C′

Σ)Σ∈|Sign′ |〉 is asub-π-institution of I = 〈Sign,SEN,
(CΣ)Σ∈|Sign|〉 if Sign′ is a sub-category of Sign and, for eachΣ ∈ |Sign′|, SEN′(Σ) ⊆ SEN(Σ) and the
Σ-closure C′Σ is the restriction of CΣ.

Roughly speaking, the notion of logical interpretation underlying [MMB09a] is that of [BP89]: a
multifunction (i.e., a set-valued function) relating formulas which preserves and reflects logical conse-
quence. Note that the expressive flexibility of interpretations comes precisely from their definition as
multifunctions. A corresponding definition, to be used in the sequel, was proposed, in the context of
π-institutions, in [Vou03]:

Definition 3 Given twoπ-institutions I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 and I′ = 〈Sign′,SEN′
,(C′

Σ)Σ∈|Sign′|〉,
a translation〈F,α〉 : I → I ′ consists of a functorF : Sign→ Sign′ together with a natural transformation
α : SEN→ P SEN′F.

A translation〈F,α〉 : I → I ′ is asemi-interpretationif, for all Σ ∈ |Sign|, Φ∪{φ} ⊆ SEN(Σ),

φ ∈CΣ(Φ) ⇒ αΣ(φ) ⊆C′
F(Σ)(αΣ(Φ)) (1)

It is an interpretationif,

φ ∈CΣ(Φ) ⇔ αΣ(φ) ⊆C′
F(Σ)(αΣ(Φ)) (2)

Finally, we say that a translation〈F,α〉 interprets aπ-institution I, if there is aπ-institution I0 =
〈Sign0

,SEN0
,(C0

Σ)Σ∈|Sign0|〉 for which〈F,α〉 is an interpretation.

Note that a translation depends only on the categories of signatures and the sentence functors in-
volved, but not on the family of closure operators. A translation is aself-translationif F is the identity
functorId. On the other hand, it is said to be afunctional translationif, for everyΣ∈ |Sign|, φ ∈ SEN(Σ),
|αΣ(φ)| = 1. Additionally, it is anidentity translation, if for everyΣ ∈ |Sign|, φ ∈ SEN(Σ),

αΣ(φ) = {φ} (3)



56 Refinement by interpretation inπ-institutions

3 Refining π-institutions by interpretation

In software development the process ofstepwise refinement[ST88b] encompasses a chain of successive
transformations of a specification

S0 ❀ S1 ❀ S2 ❀ · · ·❀ Sn−1 ❀ Sn

through which a complex design is produced by incrementallyadding details and reducing under-spe-
cification. This is done step-by-step until the class of models becomes restricted to such an extent that
a program can be easily manufactured. The discussion on whatcounts for a valid refinement step,
represented bySi ❀ Sj , is precisely the starting point of this line of research.

The minimal requirement to be placed on a refinement relation, besides being a pre-order to allow
stepwise construction, is preservation of logical consequence. In the framework ofπ-institutions this
corresponds to the following definition:

Definition 4 (Syntactic refinement) Let I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 and I′= 〈Sign′,SEN′
,(C′

Σ)Σ∈|Sign′|〉
be twoπ-institutions. I′ is a syntactic refinement of I if Sign is a sub-category of Sign′ and, for each
Σ ∈ |Sign|, SEN(Σ)⊆ SEN′(Σ) and CΣ(Φ)⊆C′

Σ(Φ) for Φ ⊆ SEN′(Σ).
Clearly, aπ-institution is a syntactic refinement of any of itsπ-sub-institutions. Refinement by interpre-
tation, on the other hand, goes a step further:

Definition 5 (Refinement by interpretation) Consider twoπ-institutions I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉
and I′ = 〈Sign′,SEN′

,(C′
Σ)Σ∈|Sign′ |〉 and let〈F,α〉 : I −→ I ′ be a translation. I′ is a refinement by inter-

pretationof I via 〈F,α〉, written as I❀〈F,α〉 I ′, if
• there is aπ-institution I0 = 〈Sign′,SEN′

,(C0
Σ)Σ∈Sign′〉 that interprets I under translation〈F,α〉;

• for all Σ ∈ |Sign|, Φ ⊆ SEN(Σ),

φ ∈CΣ(Φ) ⇒ αΣ(φ)⊆C′
F(Σ)(αΣ(Φ))

Clearly, a syntactic refinement is a refinement by interpretation for a self, identity, functional inter-
pretation, withF = Id. The following Lemma establishes an useful characterization of refinement via
interpretation:
Lemma 1 Let I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 and I′ = 〈Sign′,SEN′

,(CΣ)Σ∈|Sign′ |〉 be twoπ-institutions and
〈F,α〉 : I −→ I ′ a translation. Then, I❀〈F,α〉 I ′ if I ′ is a syntactic refinement of some interpretation of I
through〈F,α〉.

Proof. SupposeI ′ is a syntactic refinement of an arbitrary interpretationI0 of I along〈F,α〉. Clearly the
first condition in the definition of refinement by interpretation is met. For the second, letΣ ∈ Signand
Φ∪{φ} ⊆ SEN(Σ). Assumeφ ∈CΣ(Φ). Then

αΣ(φ)⊆C0
F(Σ)(αΣ(Φ))

because〈F,α〉 is an interpretation. On the other hand,I ′ being a syntactic refinement ofI0,

C0
F(Σ)(αΣ(Φ)) ⊆C′

F(Σ)(αΣ(Φ))

Thus,αΣ(φ) ⊆C′
F(Σ)(αΣ(Φ)).

✷

Definition 5 subsumes the corresponding notion introduced in [MMB09a] for k-dimensional deduc-
tive systems, because everyk-dimensional deductive system〈L ,⊢L 〉 over a countable set of variables
V, gives rise to a specificπ-institution IL = 〈SignL ,SenL ,(CLΣ)Σ∈|SignL |〉, built in [Vou02] as follows:
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(i) SignL is the one-object category with objectV. The identity morphism is the inclusioniV : V →
FmL (V), whereFmL (V) denotes the set of formulas constructed by recursion using variables
in V and connectives inL in the usual way. Compositiong · f is defined byg · f = g⋆ f , where
g⋆ : FmL (V)→ FmL (V) denotes the substitution uniquely extendingg to FmL (V).

(ii) SENL : SignS → Setmaps V toFmk
L
(V) and f : V →V to FmL (V) ( f ⋆)k : Fmk

L
(V)→ Fmk

L
(V).

It is easy to see thatSENS is indeed a functor.

(iii) Finally, CL is the standard closure operatorCV : P(FmL (V)) → P(FmL (V)) associated with
〈L ,⊢L 〉, i.e.,CV(Φ) = {φ ∈ Fmk

L
(V) : Φ ⊢S φ} for all Φ ⊆ Fmk

L
(V).

Example 1 Theπ-institution of modal logic S5G forms a (syntactic) refinement of the one for classical
propositional calculus (CPC). Actually, consider the modal signatureΣ = {→,∧,∨,¬,⊤,⊥, ✷}. Modal
logic K is defined as an extension of CPC by adding the axiom✷(p→ q)→ (✷p→✷q) and the inference
rule p

✷p. Logic S5G, on the other hand, enriches the signature of K with the symbol ✸, and K itself with
the axioms✷p → p, ✷p → ✷✷p and✸p → ✷✸p, cf. [BP01]. Hence, since the signature of both
systems contains the signature of CPC and their presentations extend that of CPC with extra axioms
and inference rules, we have CPC❀ K and CPC❀ S5G (actually, CPC❀ K ❀ S5G). Hence, through
these refinements, one may capture more complex, modally expressed requirements introduced along the
refinement process.

Given an interpretationτ : FmL (V) −→ P(FmL ′(V ′)) between two deductive systems〈L ,⊢L 〉
and〈L ′

,⊢L ′〉, let us define〈Fτ ,τ〉 as the translation betweenπ-institutionsIL andIL ′ , whereFτ is a
functor between single object categories, mapping, at the object level,V to V ′. As expected,

Lemma 2 An l-deductive system〈L ′
,⊢L ′〉 is an interpretation of a k-deductive system〈L ,⊢L 〉 through

an interpretationτ , iff 〈Fτ ,τ〉 interprets theπ-institution IL in IL ′ .

Proof. Assume〈L ,⊢L 〉 (respectively,〈L ′
,⊢L ′〉) are defined over a countable set of variablesV (re-

spectively,V ′). Being an interpretation between deductive systems,τ is a multifunctionτ : FmL (V)−→
P(FmL ′(V ′)) such that, for allΓ∪{φ} ⊆ FmL (V),

Γ ⊢L φ ⇔ τ(Γ) ⊢L ′ τ(φ) (4)

According to the construction ofIL , detailed above, this is equivalent to

φ ∈CV(Γ) ⇔ τ(φ)⊆CV′(τ(Γ)) (5)

✷

Hence, it is immediate to check that

Corollary 1 An l-deductive system〈L ′
,⊢L ′〉 is a refinement of a k-deductive system〈L ,⊢L 〉 through

an interpretationτ , iff theπ-institution IL ′ is a refinement of IL through〈Fτ ,τ〉.

As a final remark, note that, in a very precise sense, Definition 5 also covers the case of classical
institutions. Actually, aπ-institution corresponding to a classical one can always bedefined: for each
signatureΣ and set of formulasΨ, takeCΣ(Ψ) as the set of sentences satisfied in all models validating
Ψ.
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4 The local view

Having discussed refinement by interpretation ofπ-institutions, we address now the same sort of refine-
ment applied to specifications inside an arbitraryπ-institution. Such is thelocal view. Given an arbitrary
π-institution I = 〈Sign,SEN,(CΣ)Σ∈|Sign|〉, a basic, orflat specification is defined as

SP = 〈Σ,Φ〉

whereΣ ∈ |Sign| andΦ ⊆ SEN(Σ). Its meaning is the closure ofΦ, i.e.,CΣ(Φ). D. Sannella and A.
Tarlecki in [ST88a] define specification over an arbitrary institution along similar lines, but taking, as
semantic domain, classes of models instead of logical consequence relations.

As expected, any morphismσ : Σ −→ Σ′ in Signentails a notion oflocal refinement❀σ in I given
by

〈Σ,Φ〉❀σ 〈Σ′
,Φ′〉 if σ(Φ)⊆CΣ′(Φ′) (6)

For σ an inclusion, this may be regarded as a form of syntactic refinement.
Specifications may also be connected by interpretations which, again, correspond to multifunctions

preserving and reflecting consequence. Formally,

Definition 6 Let〈Σ,Φ〉 and〈Σ′
,Φ′〉 be two specifications over aπ-institution I= 〈Sign,SEN,(CΣ)Σ∈|Sign|〉

and i : SEN(Σ) −→ P(SEN(Σ′)) a multifunction fromSEN(Σ) to SEN(Σ′) . Then i is a(local) semi-
interpretationof 〈Σ,Φ〉 in 〈Σ′

,Φ′〉 if, for all φ ∈ SEN(Σ),

φ ∈CΣ(Φ) ⇒ i(φ) ⊆CΣ′(Φ′) (7)

It is a (local) interpretationof 〈Σ,Φ〉 in 〈Σ′
,Φ′〉 if,

φ ∈CΣ(Φ) ⇔ i(φ) ⊆CΣ′(Φ′) (8)

Finally, we say that i(locally) interprets〈Σ,Φ〉, if there is a specification〈Σ0
,Φ0〉 on which〈Σ,Φ〉 is

interpreted by i.

Adopting expression “φ is true inspecification〈Σ,Φ〉” to abbreviate the fact thatφ ∈CΣ(Φ), defini-
tion (8) can be read asφ is true in〈Σ,Φ〉 iff i(φ) is true in〈Σ′

,Φ′〉.

Definition 7 Let SP= 〈Σ,Φ〉 be a specification and i: SEN(Σ) −→ P(SEN(Σ′)) a translation which
interprets SP. A specification SP′ = 〈Σ′

,Φ′〉 refines SP via local interpretation i, written as SP❀i SP′, if
for all φ ∈ SEN(Σ),

φ ∈CΣ(Φ) ⇒ i(φ) ⊆CΣ′(Φ′) (9)

Given aσ : Σ → Σ′ ∈ Sign, SEN(σ) : SEN(Σ) → SEN(Σ′) induces a translation that maps each
φ ∈ SEN(Σ) into {SEN(σ)(φ)}. In the sequel we identify this translation simply withSEN(σ).

Definition 8 A signature morphismσ : Σ → Σ′ ∈ Sign isconservativeif for any Φ ⊆ SEN(Σ), SEN(σ)
interprets〈Σ,Φ〉 in SPσ = 〈Σ′

,SEN(σ)(Φ)〉.

Observe thatSEN(σ) is always a semi-interpretation fromSPto SPσ . Moreover, note that conservative-
ness is a stronger notion than that of interpretability.
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Theorem 1 Let σ : Σ → Σ′ ∈ Sign be a conservative signature morphism, SP= 〈Σ,Φ〉 a specification
over I andΦ′ ∈ SEN(Σ′). Then,

SEN(σ)(Φ)⊆CΣ′(Φ′) implies that SP❀SEN(σ) 〈Σ′
,Φ′〉 (10)

In practice, new specifications are built from old through application of a number of specification
constructors. As a minimum set we consider operators to jointwo specifications, to translate one into
another, and to derive one from another going backward alonga signature morphism. The following
definition characterizes along these lines a notion of structured specification in an arbitraryπ-institution.

Definition 9 Structured specifications over an arbitraryπ-institution I = 〈Sign,SEN,(CΣ)Σ∈|Sign|〉 are
defined inductively as follows, taking flat specifications asthe base case.

• For a signatureΣ, the union of specifications SP1 = 〈Σ,Φ1〉 and SP2 = 〈Σ,Φ2〉 is defined as

union(SP1,SP2) = 〈Σ,Φ1∪Φ2〉

• The translation of specification SP= 〈Σ,Φ〉 through a morphismσ : Σ → Σ′ in Sign is defined as

translate SPthrough σ = 〈Σ′
,SEN(σ)(Φ)〉

• The derivation of aΣ specification from SP′ = 〈Σ′
,Φ′〉 through a morphismσ : Σ → Σ′ in Sign is

defined as
derive SP′ through σ = 〈Σ,Ψ〉

whereΨ = {ψ | SEN(σ)(ψ) ∈CΣ′(Φ′)}.

Of course, it is desirable that refinement be preserved by horizontal composition of specifications. In
particular, refinement by interpretation should be preserved by all specification constructors in Definition
9. The result is non trivial. Forunion we have,

Lemma 3 Let i : SEN(Σ)−→ P(SEN(Σ′)) be a local interpretation, and SP1 = 〈Σ,Φ1〉, SP2 = 〈Σ,Φ2〉
specifications such that SP1❀i SP′1 and SP2❀i SP′2. If i interpretsunion(SP1,SP2), thenunion(SP1,SP2)❀i

union(SP′1,SP′2).

Proof. For all φ ∈ SEN(Σ), we reason

SP1 ❀i SP′1 ∧ SP2 ❀i SP′2

⇔ { definition}

φ ∈CΣ(Φ1)⇒ i(φ)⊆CΣ′(Φ′
1) ∧ φ ∈CΣ(Φ2)⇒ i(φ)⊆CΣ′(Φ′

2)

⇒ {CΣ,CΣ′ monotonic}

φ ∈ (CΣ(Φ1)∪CΣ(Φ2))⇒ i(φ) ⊆ (CΣ′(Φ′
1)∪CΣ′(Φ′

2))

⇔ { definition}

union(SP1,SP2)❀i union(SP′1,SP′2)

✷

The remaining cases are not straightforward. Actually, achieving compatibility entails the need for
imposing some non trivial conditions on morphisms.
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5 Towards a refinement calculus

Having defined refinement by interpretationacrossπ-institutions andinsidean arbitraryπ-institution,
this section sketches their interconnections. Our first step is to define how a specification in an institution
I translates toI ′ along an interpretation.

Definition 10 Let ρ = 〈F,α〉 : I −→ I ′ be a translation betweenπ-institutions I and I′ and SP= 〈Σ,Φ〉
a specification in I. The translation̂ρ(SP) of SP throughρ is defined by

ρ̂ 〈Σ,Φ〉 = 〈F(Σ),αΣ(Φ)〉 (11)

Next lemma answers the following question: is refinement by interpretation over arbitraryπ-institutions
preserved by the specification constructors?

Lemma 4 The definition of specification translation is structural over the specification constructors
given in definition 9, i.e.

ρ̂ (union(SP1,SP2)) = union(ρ̂(SP1), ρ̂(SP2))

ρ̂ (translate SPthrough σ) = translate ρ̂(SP) through F(σ)

ρ̂ (derive SP′ through σ) = derive ρ̂(SP′) through F(σ)

Proof. For the first case letSP1 = 〈Σ1,Φ1〉 andSP2 = 〈Σ2,Φ2〉. Then,

ρ̂ (union(SP1,SP2))

= { definition ofunion}

ρ̂ 〈Σ,Φ1∪Φ2〉

= { definition ofρ̂}

〈F(Σ),α(Φ1∪Φ2)〉

= { α is a natural transformation}

〈F(Σ),α(Φ1)∪α(Φ2)〉

= { definition ofunion}

union(〈F(Σ),α(Φ1)〉,〈F(Σ),α(Φ2)〉)

= { definition ofρ̂}

union(ρ̂(SP1), ρ̂(SP2))
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Consider now the second case (the third being similar):

ρ̂ (translate SPthrough σ)

= { definition oftranslate}

ρ̂ 〈Σ′
,σ(Φ)〉

= { definition of ρ̂}

〈F(Σ′),αΣ′(σ(Φ))〉

= { α is a natural transformation}

〈F(Σ′),P(σ)(αΣ(Φ))〉

= { definition oftranslate}

translate 〈F(Σ′),αΣ(Φ)〉 through F(σ)

= { definition of ρ̂}

translate ρ̂(SP) through F(σ)

Note a slight abuse of notation: the extension ofρ̂(SP) in the conclusion is actually through the powerset
extension ofF(σ).
✷

6 Conclusions and related work

In software development, one often has to resort to a number of different logical systems to capture
contrasting aspects of systems’ requirements and programming paradigms. This paper usesπ-institutions
to formalize arbitrary logical systems and lifts to such level a recently proposed [MMB09b, MMB09a]
approach to refinement based on logical interpretation.

Refinement by interpretation is formulated at both a global (i.e., acrossπ-institutions) and local
(i.e., between specifications inside an arbitraryπ-institution) level. The paper introduces a notion of
structured specification and shows that, at both levels, refinement by interpretation respects the proposed
specification constructors. Actually, the institutional setting not only makes it possible to go a step further
from [MMB09a] in generalizing the concept to arbitrary logics, but also provides a basis to build up a
refinement calculus of “institution-independent”, structured specifications.

We close the paper with a few remarks onrefinement by interpretationin itself and some pointers to
related work.

The idea of relaxing what counts as a valid refinement of an algebraic specification, by replacing
signature morphismsby logic interpretationsis, to the best of our knowledge, new. The piece of re-
search initiated with [MMB09b] up to the present paper was directly inspired by the second and third
author’s work on algebraic logic as reported, respectively, in [Mar06] and [Mad08], where the notion
of an interpretationplays a fundamental role (see,e.g., [BP89, BP01, BR03, Cze01]) and occurs in dif-
ferent variants. In particular, the notion ofconservative translationintensively studied by Feitosa and
Ottaviano [FD01] is the closest to our own approach.

Refinement by interpretation should also be related to the extensive work of Maibaum, Sadler and
Veloso in the 70’s and the 80’s, as documented, for example, in [MSV84, MVS85]. The authors resort
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to interpretations between theories and conservative extensions to define a syntactic notion of refinement
according to which a specificationSP′ refines a specificationSP if there is an interpretation ofSP′ into
a conservative extension ofSP. It is shown that these refinements can be vertically composed, therefore
entailing stepwise development. This notion is, however, somehow restrictive since it requires all maps
to be conservative, whereas in program development it is usually enough to guarantee that requirements
are preserved by the underlying translation. Moreover, in that approach the interpretation edge of a
refinement diagram needs to satisfy a number of extra properties.

Related work also appears in [FM93, Vou05] where interpretations between theories are studied, as
in the present paper, in the abstract framework ofπ-institutions. The first reference is a generalization of
the work of Maibaum and his collaborators, whereas the second generalizes toπ-institutions the abstract
algebraic logic treatment of algebraic semantics on sentential logics. Notions of interpretation between
institutions also appear in [Bor02] and [Tar95] under the designation ofinstitution representation. Dif-
ferently from the one used in this paper, borrowed from [Vou03], they are not defined as multifunctions.
The work of José Meseguer [Mes89] ongeneral logics, where a theory of interpretations between logical
systems is developed, should also be mentioned.

We believe this approach to refinement through logical interpretation has a real application potential,
namely to deal with specifications spanning through different specification logics. Particularly deserving
to be considered, but still requiring further investigation, are observational logic [BHK03], hidden logic
[Roş00, MP07] and behavioral logic [Hen97]. As remarked above, the study of refinement preservation
by horizontal composition remains a challenge and a topic ofcurrent research.

Other research topics arise concerns the ways in whichglobal and local levels interrelate. For ex-
ample, we are still studying to what extent a local refinementby interpretation of a specification in a
π-institution I , lifts to another local refinement of its translation induced by a global interpretation from
I to anotherπ-institution I ′.
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