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Proess Caluli �a la Bird-MeertensLu��s S. Barbosa 1Departamento de Inform�atiaUniversidade do MinhoBraga, PortugalAbstratThis paper is an attempt to apply the reasoning priniples and alulational styleunderlying the so-alled Bird-Meertens formalism to the design of proess aluli,parametrized by a behaviour model. In partiular, basially equational and point-free proofs of proess properties are given, relying on the universal haraterisationof anamorphisms and therefore avoiding the expliit onstrution of bisimulations.The developed aluli an be diretly implemented on a funtional language sup-porting oindutive types, whih provides a onvenient way to prototype proessesand assess alternative design deisions.1 IntrodutionIt is well known that initial algebras and �nal oalgebras provide abstratdesriptions of a variety of phenomena in programming, in partiular of dataand behavioural strutures, respetively. Both initiality and �nality, as uni-versal properties, entail de�nitional and proof priniples, i.e., a basis for thedevelopment of program aluli diretly based on (atually driven by) typespei�ations. Moreover, suh properties an be turned into programmingombinators and used, not only to alulate programs, but also to programwith. In funtional programming the role of suh universals | ombined withthe `alulational' style entailed by ategory theory | has been fundamentalto a whole disipline of algorithm derivation and transformation. This anbe traed bak to the so-alled Bird-Meertens formalism [5,6℄ and the foun-dational work of T. Hagino [8℄. Sine then, the area has known a remarkableprogress, as witnessed by the vast bibliography published both on theory andappliations | see [12,13,4℄, among many others referenes.This paper reports on an attempt to apply the same reasoning priniplesand alulational style to the design of proess aluli, relying on the represen-tation of proesses as inhabitants of oindutive types, i.e., �nal oalgebras for1 Email: lsb�di.uminho.ptThis is a preliminary version. The �nal version will be published inEletroni Notes in Theoretial Computer SieneURL: www.elsevier.nl/loate/ents



Barbosasuitable Set endofuntors. Final semantis for proesses is an ative researharea, namely after Azel's landmark paper [1℄. Our emphasis is, however,atually plaed on the design side: we intend to show how proess alulian be developed and their laws proved along the lines one gets used to in(data-oriented) program aluli. Although only the `�ne grain' observationalequivalene entailed by (strit) bisimulation is onsidered in the sequel, webelieve that the proposed approah has a number of advantages:� First of all it provides a uniform treatment of proesses and other om-putational strutures, e.g., data strutures, both represented as ategorialtypes for funtors apturing signatures of, respetively, observers and on-strutors. Plaing data and behaviour at a similar level onveys the ideathat proess models an be hosen and spei�ed aording to a given ap-pliation area, in the same way that a suitable data struture is de�ned tomeet a partiular engineering problem. Moreover, proesses and data be-ome expressible in programming languages supporting ategorial types,suh as Charity [7℄, providing a onvenient way to prototype proesses andompare alternative design deisions. This builds on the author previouswork on omponent algebras [3℄.� Proofs are arried out in a purely alulational (basially equational andpointfree) style, therefore irumventing the expliit onstrution of bisim-ulations used in most of the literature on proess aluli. In partiular, a`onditional fusion' result is proved to handle onditional laws.� Finally the approah is independent of any partiular proess alulus andmakes expliit the di�erent ingredients present in the design of any suhaluli. In partiular strutural aspets of the underlying behaviour model(e.g., the dihotomies suh as ative vs reative, deterministi vs non de-terministi) beome learly separated from the interation struture whihde�nes the synhronisation disipline.
2 PreliminariesAnamorphisms.Tehnially, the approah skethed here amounts to the systemati use ofthe universal property of anamorphisms. Reall that, for a funtor T, a T-anamorphism is the unique T-omorphism to the �nal oalgebra !T : �T �!T �T from any other oalgebra hU; pi. Also alled the oindutive extensionof p [17℄, it is written, in the tradition of [13℄, as [(p)℄T or, simply, [(p)℄, andsatis�es the following universal property:k = [(p)℄T , !T � k = T k � p (1)2



Barbosafrom whih other laws are easily derived, e.g.:!T � [(p)℄ = T [(p)℄ � p (2)[(!T)℄ = id�T (3)[(p)℄ � h = [(q)℄ if p � h = T h � q (4)In the ontext of the Bird-Meertens formalism equations (2) to (4) are seenas instanes of a anellation, reetion and fusion result, respetively.Invariants.In order to derive onditional laws (setion 4) we shall resort to the notionof a p-invariant, i.e., a prediate � over the arrier of a T-oalgebra p losedunder the p dynamis. Following [11℄, � is an invariant if, as a set, it satis�es� � ep �, where ep � denotes the set of all states whose immediate suessors,under p, if any, satisfy �. ep is, in fat, a modal ombinator whih orrespondsto the familiar (weak) next operator in modal logis 2 . [11℄ introdues ade�nition of ep in terms of a lifting operation ( )T : PX �! PTX de�nedindutively on the struture of (extended polynomial) funtors (see [9℄ forthe omplete piture). Formally, ep � = fu 2 U j p u 2 (�)Tg. The in�niteextension of ep haraterise the (future) `box' operator relative to a oalgebrap. This is denoted in [11℄ by �p, where �p is de�ned as the greatest �x point of�x : � \ ep x. Informally, �p � reads `� holds now and in all suessor states'.3 Proess Struture and Combinators.Proesses.In designing a proess alulus, its operational semantis is usually givenin terms of a transition relation a�! over proesses, indexed by a set At of a-tions 3 , witnessing the olletion of ations in whih a proess gets ommittedand the resulting `ontinuations', i.e., the behaviours subsequently exhibited.A �rst basi design deision onerns the de�nition of what should be under-stood by suh a olletion. As a rule it is de�ned as a set, in order to expressnon determinism. Other, more restritive, possibilities onsider a sequene oreven just a single ontinuation, modelling, respetively, `ordered' non deter-minism or determinism. In general, this underlying behaviour model an berepresented by a funtor B .2 The transition system de�ned by p is the struture upon whih the operator is interpreted.In fat, it has been reently reognised by a number of authors (notably in [15℄ and [11℄)that a modal language assoiated to a T-oalgebra is determined by its shape, as reordedin T.3 This set will later be equipped with further struture to support partiular interationdisiplines. For the moment just assume that ations are generated from a set L of labels,i.e., a set of formal names. The embedding L ,! At will usually be left impliit.3



BarbosaAn orthogonal deision onerns the intended interpretation of the transi-tion relation, whih is usually left impliit or underspei�ed in proess aluli.We may, however, distinguish between� An `ative' interpretation, in whih a transition p a�! q is informallyharaterised as `p evolves to q by performing an ation a', both q and abeing solely determined by p.� A `reative' interpretation, informally reading `p reats to an external stim-ulus a by evolving to q'.Proesses will then be taken as inhabitants of the arrier of the �nal oalgebra! : � �! T �, with T de�ned as B (At� Id), in the �rst ase, and (B Id)At, inthe seond. To illustrate the proposed approah to the development of proessaluli, we shall fous on a partiular ase where B is the �nite powersetfuntor and the `ative' interpretation is adopted. The transition relation, forthis ase, is given by p a�! q i� ha; qi 2 ! p. Although this orrespondsto the main trend in the literature, some alternatives will be onsidered insetion 5.The restrition to the �nite powerset avoids ardinality problems and as-sures the existene of a �nal oalgebra for T. This means, of ourse, we shalldeal only with image-�nite proesses, a not too severe restrition in pratiewhih may be partially irumvented by a suitable de�nition of the strutureof At 4 .Dynami Combinators.The ornerstone in the design of a proess aluli is the judiious seletionof a (hopefully small) set of proess ombinators. In [14℄, R. Milner lassi�esthem into two distint groups. The �rst group onsists of all ombinatorswhih persist through ation, i.e., whih are present before and after a transi-tion ours. They are alled stati and used to set up proess' arhitetures,speifying how their omponents are linked and whih parts of their interfaeare publi or private. Dynami ombinators, on the other hand, are `on-sumed' on ation ourrene, disappearing from the expression representingthe proess ontinuation. In this paragraph the usual Cs dynami ombina-tors | i.e., ination, pre�x and non-deterministi hoie | are de�ned asoperators on the �nal universe of proesses onsidered above. Notie that,being non reursive, they have a diret (oindutive) de�nition whih dependssolely on the hosen proess struture. Therefore, the inative proess is rep-resented as a onstant nil : 1 �! � upon whih no relevant observation anbe made. Pre�x gives rise to an At-indexed family of operators a: : � �! �,with a 2 At. Finally, the possible ations of the non deterministi hoie oftwo proesses p and q orresponds to the olletion of all ations allowed for4 For instane, by taking At as hannel names through whih data ows, whih orre-sponds losely to `Cs with value passing' [14℄. Therefore, only the set of hannels, and notthe messages (seen as pairs hannel/data), must remain �nite.4



Barbosap and q. Therefore, the operator + : � � � �! � an only be de�ned over aproess struture in whih observations form a olletion. Formally,ination ! � nil = ;pre�x ! � a: = sing � labelahoie ! � + = [ � (! � !)where sing = �x : fxg and labela = �x : ha; xi.Clearly, struture h�; +; nili forms an Abelian idempotent monoid, a fatthat an be proved by simple equational reasoning, resorting to the orre-sponding properties of set union. Moreover, �nality turns ! into an isomor-phism and therefore, to prove e = e0 it is enough to show that ! �e = ! �e0. Toillustrate the proposed proof style, onsider the proof of a partiularly simpleresult: + assoiativity, i.e., + � (+� id) = + � (id�+) � a 5 .Proof.! � + � (+� id) = [ � (! � !) � (+� id) f de�nition g= [ � (! � +� !) f funtoriality g= [ � (([ � (! � !))� ! f de�nition g= [ � ([ � id) � ((! � !) � !) f funtoriality g= [ � ([ � id) � ((! � !) � !) � aÆ � a f a is isomorphism g= [ � ([ � id) � aÆ � (! � (! � !)) � a f a naturality g= [ � (id� [) � (! � (! � !)) � a f [ assoiativity g= [ � (! � ([ � (! � !)) � a f funtoriality g= [ � (! � ! � +) � a f de�nition g= [ � (! � !) � (id�+) � a f funtoriality g= ! � + � (id� +) � a f de�nition g2Interleaving and Restrition.Persistene through ation ourrene justi�es the reursive de�nition ofstati ombinators. This means that they arise as anamorphisms generatedby suitable `gene' oalgebras. Both interleaving and restrition are examplesof stati ombinators, whih, moreover, depend only on the proess struture.We shall onsider them in �rst plae.5 In the sequel, proess properties are stated pointfree, for whih we shall resort to standardnatural isomorphisms in Set. In partiular, assoiativity, ommutativity and produt leftand right units, will be denoted by a : (A�B)�C �! A� (B �C), s : A�B �! B �A,r : 1 � A �! A and l : A � 1 �! A, respetively. The onverse of an isomorphism i iswritten as iÆ. 5



BarbosaAlthough interleaving, a binary operator 9 : ��� �! �, is not onsideredas a ombinator in most proess aluli, it represents the simplest form of`parallel' aggregation in the sense that it is independent of any partiularinteration disipline. The following de�nition aptures the intuition that theobservations over the interleaving of two proesses orrespond to all possibleinterleavings of the observations of its arguments. Thus, 9 = [(�9)℄, where 6�9 = � � � M
// (� � �)� (� � �)(!�id)�(id�!)

// (P(At � �)� �)� (� � P(At� �))�r��l
//P(At� (� � �))� P(At� (� � �)) [

//P(At� (� � �))The restrition ombinator nK, for eah subset K � L, forbids the ourreneof ations in K. Formally, nK = [(�nK )℄ where�nK = � !
// P(At� �) �lterK

// P(At� �)where �lterK = �s : ft 2 sj �1 t =2 Kg.The interleaving ombinator also forms (with nil), an Abelian monoid. Re-strition, on the other hand, is idempotent and ommutes with both hoieand interleaving. As one ould expet, the ornerstone in the proofs of equa-tions involving stati ombinators, is the appliation of the fusion law (4).This is illustrated below in the proof of 9 ommutativity.Proof. By de�nition 9 � s = 9 is equivalent to [(�9)℄ � s = [(�9)℄, whih, byfusion, is implied by �9 � s = P(id� s) � �9. Then,�9 � s= [ �(�r � �l) � ((! � id)� (id� !)) � M � s f de�nition g= [ �(�r � �l) � ((! � id)� (id� !)) � (s� s) � M f M nat g= [ �(�r � �l) � (s� s) � ((id� !)� (! � id)) � M f s� s nat g= [ �(�r � s� �l � s) � ((id� !)� (! � id)) � M f funtor g= [ �(P(id� s) � �l � P(id� s) � �r) � ((id� !)� (! � id)) � M f �r vs �l g= [ �(P(id� s)� P(id� s)) � (�l � �r) � ((id� !)� (! � id)) � M f funtor g= P(id� s) � [ � (�l � �r) � ((id� !)� (! � id)) � M f [ nat g= P(id� s) � [ � s � (�l � �r) � ((id� !)� (! � id)) � M f [ omm g= P(id� s) � [ � (�r � �l) � ((! � id)� (id� !)) � s � M f s nat g= P(id� s) � [ � (�r � �l) � ((! � id)� (id� !)) � M f s �M = M g= P(id� s) � �9 f de�nition g26 Morphisms �r : P(At�X) � C �! P(At� (X � C)) and �l : C � P(At�X) �!P(At� (C �X)) stand for, respetively, the right and left strength assoiated to funtorP(At� Id). 6



Barbosa4 Interation and Parallel CompositionInteration Strutures.Proess ombinators introdued so far depend solely on the proess stru-ture, as reorded in the shape of the funtor. To speify interation, however,there is a need to introdue some struture in the set At of ations. There-fore, we de�ne the interation struture underlying a proess alulus as anAbelian positive monoid hAt; �; 1i with a zero element 0. It is assumed thatneither 0 nor 1 belong to the set L of labels. The intuition is that � determinesthe interation disipline whereas 0 represents the absene of interation: forall a 2 At, a�0 = 0. On the other hand, a positive monoid entails a�a0 = 1i� a = a0 = 1. Notie that the role of both 0 and 1 is essentially tehnial inthe desription of the interation disipline. In some situations 1 may be seenas an idle ation, but its role, in the general ase, is to equip the behaviourfuntor with a monadi struture, whih would not be the ase if At werede�ned simply as an Abelian semigroup 7 .A basi example of an interation struture aptures ation o-ourrene.Therefore, � is de�ned as a�b = ha; bi, for all a; b 2 At di�erent from 0 and1. Cs [14℄ synhronisation disipline provides another example. In this asethe set L of labels arries an involutive operation represented by an horizontalbar as in a, for a 2 L. Any two ations a and a are alled omplementary. Aspeial ation � =2 L is introdued to represent the result of a synhronisationbetween a pair of omplementary ations. Therefore, the result of � is �whenever applied to a pair of omplementary ations and 0 in all other ases,exept, obviously, if one of the arguments is 1 8 .One an interation struture is �xed, any homomorphism f : At �! Atlifts to a renaming ombinator [f ℄ between proesses de�ned as [f ℄ = [(�[f ℄)℄,where �[f ℄ = � !
// P(At� �)P(f�id)

// P(At� �)Conditional Laws.The basi properties of renaming, namely that it preserves identity andomposition of homomorphisms, extends along pre�x and ommutes with7 The struture is similar to what is alled a synhronisation algebra in [18℄ apart fromsome minor details. In partiular, Winskel synhronisation algebras arry a spei� onstant? to denote asynhronous ourrene and � does not neessarily possess a unit. The monoidstruture, however, allows for a more uniform haraterisation of behaviour models. On theother hand, the de�nition of parallel omposition below, in terms of synhronous produtand interleaving, avoids the need for introduing ?.8 For the Cs ase we follow the standard notational onvention under whih omplementsare onsidered impliitly. In partiular, a restrition ombinator nK , for K � L is inter-preted as nK[K . Similarly, the parameter f of a renaming (see below), spei�es only the`ation' part although it also implies that if f a = b then f a = b. Also, as � is introduedas a onstant in At, f being a homomorphism fores f � = � .7



Barbosaboth hoie and interleaving, are proved in the style illustrated above, alwaysavoiding the expliit onstrution of bisimulations. Often, however, proessequalities hold just if some `side onditions' are ful�lled. Let us study howsuh laws are derived in our framework starting with a very simple example.Let f = fb=ag be substitution of a by b, i.e., a homomorphism over At whihis the identity in all ations but a. In several ases, but not in all, we mayonlude that renaming with f has no e�et. Can this be expressed on ageneral law? A simple alulation yields[f ℄ = id� f de�nition g[(�[f ℄)℄ = [(!)℄( f fusion g�[f ℄ � id = P(id� id) � !� f identity g�[f ℄ = !Clearly, the last equality holds only if a does not show up as an ation inthe immediate ontinuations of the proess being renamed. This ondition isformally expressed by the following prediate:� = =; � \ �(P�1 � ! � sing � a) � lÆ (5)Note, however, that � is stated as a loal ondition on the immediate on-tinuations of any proess andidate to satisfy the given equality. Therefore,it annot be diretly taken as a suÆient ondition for [f ℄ = id. In fat, toproeed, prediate � has to be made into an invariant in the sense of [11℄.This is justi�ed by the following result.Theorem 4.1 Let � and � be T-oalgebras and � a prediate on the arrierof �. Then the following `onditional' fusion law holds(� ) (� � h = T h � �)) ) (�� � ) ([(�)℄T � h = [(�)℄T))Proof. Let X be the arrier of � and i� the embedding of the subset of Xlassi�ed by �, i.e., ��i� = true�!. Reall also that any �-invariant � indues asuboalgebra � 0. Consequently, i� beomes a omorphism from � 0 to �. Then8



Barbosa� ) (� � h = T h � �)� f i� de�nition g� � h � i� = T h � � � i�) f �� � � � g� � h � i�� � = T h � � � i�� �� f i�� � is a omorphism from �0 to �g� � h � i�� � = T h � T i�� � � � 0� f funtorialityg� � h � i�� � = T (h � i�� �) � � 0� f fusion law (4)g[(�)℄T � h � i�� � = [(� 0)℄T� f i�� � being a omorphism implies [(�0)℄T = [(�)℄T � i�� �g[(�)℄T � h � i�� � = [(�)℄T � i�� �� f i� de�nition g�� � ) ([(�)℄T � h = [(�)℄T)Notie the proof would work if �� � is replaed by any other �-invariantontained in �. As �� � is the greatest suh invariant, it provides the most`generous' ondition. 2
Deriving the Condition.Applying the previous theorem to the ase under onsideration, leads to[fb=ag℄ = id ( �! � (6)with � given by (5). Now reall that �! � is de�ned as the greatest �xpointof � = �x : � \ e! x. Looking at prediates as sets, � is a funtion over aomplete lattie | hP�;�i | whose monotony is easily proved by indutionon the funtor struture. Therefore, a onrete representation for �! � anbe omputed, by the Knaster-Tarski theorem [16℄, as the union of all post-�xpoints of �, i.e., �! � = [fs 2 P�j s � � \ e! sg9



BarbosaBeing a post-�xpoint means, for eah s above that, for any proess p,p 2 s) p 2 � ^ p 2 e! s� p 2 � ^ p 2 fx 2 �j ! x 2 (s)P(At�Id)g� p 2 � ^ p 2 fx 2 �j ! x 2 f 2 P(At� �)j 8t : t 2 ) t 2 (s)At�Idgg� p 2 � ^ p 2 fx 2 �j ! x 2 f 2 P(At� �)j 8t : t 2 ) �2 t 2 sgg� p 2 � ^ p 2 fx 2 �j (P�2 � !) x 2 sgSeen as a set, prediate (5) is given by � = fx 2 �j (P�1 � !) x \ fag = ;g.Therefore,�! � = [fs 2 P�j x 2 s ) ((P�1 � !) x \ fag = ;) ^ ((P�2 � !) x 2 s))gor, in words, the set of all proesses whose derivations never exhibit an ationa. In Cs, the set of all labels, seen as ations, in whih a proess p anommit itself, i.e., that appear in at least one derivation of p, is alled thesort of p and denoted by L (p). [14℄ provides a syntati riterion to omputea majoring approximation of L (p) by indution on the proess expression. Asemanti de�nition an, however, be given asL (p) = (P�1 �[ �Pp) �p true (7)where, again, the embedding of L in At is left impliit. Law (6) may then berewritten as 9 [fb=ag℄ = id ( =2a �L (8)Parallel.The next stati operator onsidered here is synhronous produt, modellingthe simultaneous exeution of its two arguments. In eah step the resultingation is determined by the interation struture for the alulus. Formally,
 = [(�
)℄ where�
 = � � � (!�!)
// P(At� �)� P(At� �) sel�Ær

// P(At� (� � �))where sel = �lterf0g �lters out all synhronisation failures. Notie how intera-tion is atered by Ær | the distributive law for the strong monad P(At� Id) 10 .Ær is the Kleisli omposition of the left and the right strengths. This, on its9 Going pointwise and notiing that, by onvention, the parameter of the Cs renamingoperator represents `oations' impliitly, we end up with the familiar Cs law p [fb=ag℄ =p ( a; a =2 L (p). Funtion =2a is de�ned as �x : a =2 x.10 Notie that the monoidal struture in At extends funtor P(At� Id) to a strong monad.10



Barbosaturn, involves the appliation of the monad multipliation to `atten' the resultand this, for a monoid monad, requires the suitable appliation of the under-lying monoidal operation, whih, in our ase, �xes the interation disipline.In fat,ÆrP(At�Id) = �P(At�Id) � P(id� �P(At�Id)r ) � �P(At�Id)l= P((� � id) � aÆ) �[ �P�Pl � P(id� �P(At�Id)r ) � �P(At�Id)li.e., going pointwise,ÆrP(At�Id) h1; 2i = fha0�a; hp; p0iij ha; pi 2 1 ^ ha0; p0i 2 2gFinally, parallel omposition arises as a ombination of interleaving andsynhronous produt, in the sense that the evolution of p j q, for proesses pand q, onsists of all possible derivations of p and q plus the ones assoiatedto the synhronisations allowed by the partiular interation struture for thealulus. This annot be ahieved by a simple omposition of the orrespond-ing ombinators 9 and 
: it has to be performed at the `genes' level for 9and 
. Formally, j = [(�j)℄, where�j = � � � M
// (� � �)� (� � �) [�(�9��
)

//P(At� (� � �))Synhronous produt is ommutative, assoiative and has nil as a zero element.Furthermore, it distributes over hoie and, onditionally, over restrition andrenaming. On the other hand, as expeted, the j ombinator shares someproperties that are ommon to both 9 and 
. In partiular, it gives rise, withnil, to an Abelian monoid and distributes along renaming and restrition inertain ases. However, it laks a zero element and does not distribute throughhoie. Notie that the veri�ation of suh properties `re-uses' the proofs ofthe orresponding results for 9 and 
.Two Proofs.This paragraph is onerned with the proof of restrition distributivity over
 and j, illustrating two important points in our approah: the derivation ofside onditions along a proof and proof re-use. The proofs rely on the followingimmediate onsequene of law (1): to prove the equality � =  it is enoughto show that both ! � � = T� � � and ! �  = T � � hold.Consider, then, the derivation of the following property:nK �
 = 
 � (nK � nK) ( uniform restrition (9)Proof. We proeed by unfolding the omposite of ! with both sides of theequation. Therefore, 11



Barbosa! �
 � (nK � nK)= f omorphism, de�nitiongP(id�
) � sel � Ær � (! � !) � (nK � nK)= f funtorialitygP(id�
) � sel � Ær � (! � nK � ! � nK)= f omorphism, funtorialitygP(id�
) � sel � Ær � (P(id� nK)� P(id� nK)) � (�nK � �nK )= f Ær naturalitygP(id�
) � sel � P(id� (nK � nK)) � Ær � (�nK � �nK )= f sel de�nition, funtorialitygP(id�
 � (nK � nK)) � sel � Ær � (�nK � �nK )Next a similar alulation is done for !�nK �
, trying to arrive at an expressionP(id� (nK �
)) � �, with � = sel � Ær � (�nK � �nK ) as above.! � nK �
= f omorphism, de�nitiongP(id� nK) � �lterK � ! �
= f omorphismgP(id� nK) � �lterK � P(id�
) � �
= f de�nitiongP(id� nK) � �lterK � P(id�
) � sel � Ær � (! � !)= f �lterK naturalitygP(id� nK) � P(id�
) � �lterK � sel � Ær � (! � !)?= f ? gP(id� nK) � P(id�
) � sel � Ær � (�lterK � �lterK) � (! � !)= f funtoriality gP(id� (nK �
)) � sel � Ær � (�lterK � ! � �lterK � !)= f de�nitiongP(id� (nK �
)) � sel � Ær � (�nK � �nK )We have sueeded only partially: the step marked with a ? does not hold uni-versally. We are then left with the task of establishing under what onditions,if any, the following equality holds:�lterK � sel � Ær = sel � Ær � (�lterK � �lterK)Unfolding the de�nitions of the funtions involved and going pointwise for a12



Barbosawhile, we get( �lterK � sel �Ær) h1; 2i == (�lterK � sel) fha0�a; hp; p0iij ha; pi 2 1 ^ ha0; p0i 2 2g= �lterK fha0�a; hp; p0iij ha; pi 2 1 ^ ha0; p0i 2 2 ^ a0�a 6= 0g= fha0�a; hp; p0iij ha; pi 2 1 ^ ha0; p0i 2 2 ^ a0�a 6= 0 ^ a0�a =2 KgOn the other hand,( sel � Ær �(�lterK � �lterK)) h1; 2i == (sel � Ær) hfha; pi 2 1j a =2 Kg; fha0; p0i 2 2j a0 =2 Kgi= sel fha0�a; hp; p0iij ha; pi 2 1 ^ ha0; p0i 2 2 ^ a; a0 =2 Kg= fha0�a; hp; p0iij ha; pi 2 1 ^ ha0; p0i 2 2 ^ a; a0 =2 K ^ a0�a 6= 0gClearly the two sets an be identi�ed i�, for all possible a and a0, suh thata0�a 6= 0, a0�a =2 K � a; a0 =2 K. Therefore, step ? is only possible if theexpression sope is restrited to pairs of proesses satisfying the followingprediate:� hp; qi = 8a2(P�1�!) p;a02(P�1�!) q : a�a0 6= 0 ) (a�a0 =2 K � a; a0 =2 K) (10)whih is lifted to the invariant uniform restrition = �� �. 2As expeted, a similar result holds for parallel omposition.Proof. The attempt to prove nK� j= j �(nK � nK), proeeds by reduing theomposite of ! with both sides of the equation to identify a ommon oalgebra�0. Thus,! � nK� j= f double appliation of omorphism and de�nitiongP(id� nK) � �lterK � P(id� j) � [ � (�9 � �
) � M= f �lterK naturalitygP(id� nK) � P(id� j) � �lterK � [ � (�9 � �
) � M= f [ naturality, funtorialitygP(id� (nK� j)) � [ � (�lterK � �9 � �lterK � �
) � M= f reusing the proof of (9) and a similar result for 9gP(id� (nK� j) � [ � (([ � (�r � �l) � ((�nK � id)� (id� �nK )) �M)� sel � Ær � (�nK � �nK )) � MSimilarly, it is shown that !� j �(nK�nK) = P(id� (j �(nK � nK))) ��0, where�0 = [ � (([ � (�r� �l) � ((�nK � id)� (id��nK )) �M)� sel �Ær � (�nK ��nK )) �M13



Barbosais the ommon oalgebra. We are, thus, almost ready to onlude. Notie,however, that, on reusing the proof of law (9) in the last step of this derivation,we must also take into aount the prediate whih onstrains the substitutionmade. Clearly, prediate (10) ats again as a loal ondition to validate thederivation here. We may then onlude the validity of the law, subjeted tothe restrition given by uniform restrition0 = ��0 �. 2We may ask what form suh invariants take given a partiular interationstruture. For example, in the Cs ase, the result of � does not belong to L| � has only three possible results under Cs interation disipline: � , 1 and0. Therefore, as K � L, ondition a0�a =2 K holds for any K and � beomes8a2(P�1�!) p;a02(P�1�!) q : a�a0 6= 0 ) (a�a0 =2 K � a; a0 =2 K)� f Cs interation struture g8a2P(�1�!) p;a02(P�1�!) q : (a�a0 = � _ a�a0 = 1) ) a; a0 =2 K� f a�a0 = 1 i� a = a0 = 1 g8a2(P�1�!) p;a02(P�1�!) q : a�a0 = � ) a; a0 =2 K� f a�a0 = � i� a0 = ag8a2(P�1�!) p;a02(P�1�!) q : a0 = a ) a; a0 =2 K� f rearrangingg(P�1 � !) p \ (P�1 � !) q \ (K [K) = ;where the overbar notation stands here for the lifting of the involutive Csomplement operation to sets of ations. Now note that, although bothinvariants are derived from the same loal ondition (10), they stand forthe losure of � under di�erent oalgebras and are, onsequently, distint.In fat, the number of derivations that have to be onsidered under � ismuh greater in the seond ase. In partiular, uniform restrition does notonsider on�gurations representing interleavings. For example, if one ofthe proesses exhausts after n steps, the ondition on the ations is not re-quired to hold after that. On the other hand, in uniform restrition0, � islosed wrt the transitions on �0, whih inlude both interleavings and syn-hronisations. Therefore, and realling the notion of sort, we onlude thatuniform restrition0 � L (p) \ L (p) \ (K [ K) = ; arriving to the followingfamiliar Cs presentation of this result(p j q)nK = pnK j qnK ( L (p) \ L (p) \ (K [K) = ;This disussion illustrates our laim that suh an approah to proess al-uli allows us to `disover' the appropriate restritions a law is onstrainedby, instead of `postulating' them and verifying their suitability. It also makesexpliit that suh onditions are essentially dependent only on the alulusinteration struture. Consider, for example, what would happen to the lawat hands if a Csp-like interation disipline is hosen instead. In Csp [10℄ only14



Barbosaequally named ations synhronise, leading to the following de�nition of �:a�a = a , a�1 = 1�a = a and a�b = 0 in all other asesTherefore, the ondition a�a0 6= 0 ) (a�a0 =2 K � a; a0 =2 K) beomestrivially true and the law holds without any side ondition.Another Example.A similar situation ours when studying the distribution of renaming overparallel. In an attempt to proof [f ℄� j= j �([f ℄ � [f ℄), appliation of theorem4.1 makes the following loal ondition to pop out (see [2℄ for the ompletederivation):� hp; qi = 8a2(P�1�!) p;a02(P�1�!) q : a�a0 6= 0 � fa �fa0 6= 0Under the Cs interation disipline, a�a0 6= 0 implies that a�a0 = 1 or a�a0 =� . Hene, when does the equivalene a�a0 6= 0 � fa �fa0 6= 0 hold? Clearlythe impliation from left to right holds trivially beause f is a homomorphismon the interation struture:a�a0 = ?) f Leibniz gf (a�a0) = f ?� f f is an At-homomorphism gfa �fa0 = ?when ? stands for either 1 or � . The impliation in the opposite diretion,however, reads fa �fa0 = ? ) a�a0 = ?whih, f being an At-homomorphism, is equivalent tof (a�a0) = f ? ) a�a0 = ?again for ? standing for either 1 or � . This holds only if f is mono. Thus, forthe Cs ase, the generated invariant requires the injetivity of f or, at least,of its restrition to the relevant proess sorts. The resulting law is usuallywritten in Cs as(p j q)[f ℄ = p[f ℄ j q[f ℄ ( f restrited to L (p j q) [ L (p j q) is mono5 Variants and ConlusionsBehaviour Monads.In the introdution to this paper we have remarked that the approahto proess aluli design skethed here ould ope with a variety of partiu-15



Barbosalar ases beause the emphasis was plaed on the ommon underlying stru-tures rather than on the distintive partiularities. A �rst soure of generiityhas already been introdued by separating the behaviour from the interationstrutures. Note that all the proess ombinators introdued are either in-dependent of any partiular interation disipline or parametrized by it. Weshall now briey examine what happens if the behaviour struture itself ishanged. Reall that proesses were de�ned as inhabitants of the arrier ofthe �nal oalgebra for T = B (At� Id) where B was taken as the �nite pow-erset funtor. Next we have shown that, assuming a ommutative monoidalstruture over At, the behaviour model aptured by P(At� Id) is a strongAbelian monad. The de�nitions of some ombinators build upon this | inpartiular synhronous produt basially relies on the monad distribution lawÆr. Commutativity of 
, and onsequently of j, depends on the monoid un-derlying the interation struture being itself Abelian. Therefore, a �rst lineof enquire followed below onsists of replaing B by di�erent monads and ex-trating a orrespondent family of aluli still parametrized by the interationstruture.The simplest ase takes B as the identity Id. The result is, of ourse, auniverse of deterministi (and perpetual) proesses. A further elaboration ofthis replaes Id by Id + 1, entailing a alulus for deterministi but partialproesses in the sense that the derivation of a `dead' state is always possible.Suh a alulus is far less expressive than the one previously disussed. In fatderivations do not form any kind of olletion and, therefore, non determin-ism is ruled out. Similarly, ombinators whih explore non determinism, laka ounterpart here. Suh is the ase of hoie, interleaving and, as a gener-alisation of the later, parallel. On the other hand, the omposition of Id + 1with the monoidal monad generated by At is still a strong Abelian monad,and therefore synhronous produt is still de�nable. Ination and pre�x, forpartial proesses, are de�ned as ! �nil = �2 and ! �a: = �1 � labela, respetively.On the other hand, produt, restrition and renaming an be de�ned in arather generi way as anamorphisms whose `genes' are parametrized by themonad B :�[f ℄ = � !
//B (At� �) B (f�id)

// B (At� �)�nK = � !
//B (At� �) �lterKB

// B (At� �)�
 = � � � (!�!)
// B (At� �)� B (At� �) ÆrB (At�Id)

// B (At� (� � �))selB
// B (At� (� � �))where ÆrB (At�Id) is the distribution law assoiated to the omposed monadB (At � Id), therefore enapsulating the � operation on ations. On theother hand, selB and �lterKB explore the B struture in order to rule outsynhronisation failures, in the �rst ase, and to perform the ation restritionin the seond. For B = At + 1, �lterK Id+1 = ((=2K ��1) ! �1; �2�!) + id is16



Barbosaexpressed by a onditional, whereas, for B = P, suh onditional was iteratedover a set. Notie that =2K is de�ned as �a : a =2 K and, again, selId+1 =�lterf0gId+1. Finally, notie that when B is non ommutative, whih is the aseof, e.g., B X = X?, not only is ommutativity lost for several ombinators,but also two non bisimilar versions of 
 emerge, based, respetively, in Ær andÆl, as equation Ær = Æl holds only for ommutative monads.Reative Proesses.Up to this point we have assumed an `ative' interpretation of proesses.Similarly, an universe for reative proesses may be spei�ed as a �nal oalge-bra ! for TX = (B X)At, where B aptures, as usual, the behaviour stru-ture. Notie that in this paragraph the overbar notation is used to refer tothe transpose of a morphism under the urry/unurry isomorphism. Let usrevisit briey the proess ombinators in this new setting, taking again B asthe �nite powerset monad.The de�nitions of ination, pre�x and hoie follow losely the ones alreadyonsidered for `ative' proesses, reeting, however, the fat that At appearsnow as an exponent. Notie, for example, how pre�xing a proess p by anation a results in a new proess whih is blind for every stimulus di�erentfrom a. Formally, ! � nil = ;�!! � a: = ((=a ��2) ! sing � �1; ;�!)! � + = [ � (! � !) � pdlwhere pdl : (X�Y )�Z �! (X�Y )� (Y �Z) is de�ned as h�1� id; �2� idi.For any K 2 L and renaming homomorphism f , restrition and renamingare given by nK = [(�K)℄ and [f ℄ = [(�f )℄, where �K = ((=2K ��2) ! !; ;�!)and �f = ! � (id � f). Notie that both f and the restrition set K at byonstraining the set of meaningful stimuli, thus before the e�etive derivationis omputed. Under the `ative' interpretation their e�et was de�ned overthe (previously omputed) derivations.The synhronous produt is de�ned, in this setting, as 
 = [(�
)℄, where,�
 = � � � (!�!)
//P�At � P�At prod

// P(P� � P�)At(PÆrP)At
//PP(� � �)At [At

//P(� � �)Atwhereprod hd1; d2i = �a : (a = 0 ! ;; fhd1 a1; d2 a2ij 8a1;a22At : a = a1�a2g)Reall that in the `ative' ase, interation was neatly aptured by the dis-tribution law for the P(At� Id) monad, whih is no longer the ase here.17



BarbosaThis entails the need to introdue funtion prod, whih, additionally, �ltersout synhronisation failures. On the other hand, the de�nition of the inter-leaving ombinator orresponds to the one for the `ative' ase, but for thereplaement of set union by merge where merge hd1; d2i = �a: d1 a [ d2 a.Thus, 9 = [(�9)℄ with�9 = � � � M
// (� � �)� (� � �)(!�id)�(id�!)

// (P�At � �)� (� � P�At)�r��l
// P(� � �)At � P(� � �)At merge

//P(� � �)Atwhere, of ourse, the right and left strengths are relative to the (PId)At monad.The same observation applies to parallel omposition, whih arises, one again,as a ombination of produt and interleaving at the `genes' level. The basiproperties of this model of reative proesses are essentially the properties ofthe orresponding alulus of `ative' proesses. The proof style is also similar,although alulation resorts now heavily to the properties of exponentiation(see [2℄).Proess Languages and Prototyping.One advantage of thinking about proesses as inhabitants of (oindutive)types is the possibility of developing prototypes for proess aluli in fun-tional languages supporting suh types. One a prototype implementation ofa partiular alulus is developed, proesses an be de�ned in the languageand their exeution traed. Furthermore, to deal with reursive proesses,a language of proess expressions has to be de�ned allowing for guarded o-urrenes of proess variables as valid terms. As expeted, a term languagefor proesses, over a set of labels, is de�ned as an indutive type. The set ofterms is then taken as the arrier of a B (At�Id)-oalgebra, whose oindutiveextension (i.e., the assoiated anamorphism) provides an interpreter for thealulus. Moreover, proess environments have to be introdued to ollet allthe proess de�ning equations relevant to ondut experiments on a partiu-lar network of proesses. The environment ats as ontext information for theinterpreter whih is, onsequently, rede�ned as a strong anamorphism. Suha strategy is used by the author, in [2℄, to develop Charity implementationsof interpreters for elementary proess aluli parametri on the interationstruture.Referenes[1℄ P. Azel. Final universes of proesses. In Brooks et al, editor, Pro. Math.Foundations of Programming Semantis. Springer Let. Notes Comp. Si. (802),1993.[2℄ L. S. Barbosa. Components as Coalgebras. PhD thesis, Universidade do Minho(submitted), 2000. 18
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