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Pro
ess Cal
uli �a la Bird-MeertensLu��s S. Barbosa 1Departamento de Inform�ati
aUniversidade do MinhoBraga, PortugalAbstra
tThis paper is an attempt to apply the reasoning prin
iples and 
al
ulational styleunderlying the so-
alled Bird-Meertens formalism to the design of pro
ess 
al
uli,parametrized by a behaviour model. In parti
ular, basi
ally equational and point-free proofs of pro
ess properties are given, relying on the universal 
hara
terisationof anamorphisms and therefore avoiding the expli
it 
onstru
tion of bisimulations.The developed 
al
uli 
an be dire
tly implemented on a fun
tional language sup-porting 
oindu
tive types, whi
h provides a 
onvenient way to prototype pro
essesand assess alternative design de
isions.1 Introdu
tionIt is well known that initial algebras and �nal 
oalgebras provide abstra
tdes
riptions of a variety of phenomena in programming, in parti
ular of dataand behavioural stru
tures, respe
tively. Both initiality and �nality, as uni-versal properties, entail de�nitional and proof prin
iples, i.e., a basis for thedevelopment of program 
al
uli dire
tly based on (a
tually driven by) typespe
i�
ations. Moreover, su
h properties 
an be turned into programming
ombinators and used, not only to 
al
ulate programs, but also to programwith. In fun
tional programming the role of su
h universals | 
ombined withthe `
al
ulational' style entailed by 
ategory theory | has been fundamentalto a whole dis
ipline of algorithm derivation and transformation. This 
anbe tra
ed ba
k to the so-
alled Bird-Meertens formalism [5,6℄ and the foun-dational work of T. Hagino [8℄. Sin
e then, the area has known a remarkableprogress, as witnessed by the vast bibliography published both on theory andappli
ations | see [12,13,4℄, among many others referen
es.This paper reports on an attempt to apply the same reasoning prin
iplesand 
al
ulational style to the design of pro
ess 
al
uli, relying on the represen-tation of pro
esses as inhabitants of 
oindu
tive types, i.e., �nal 
oalgebras for1 Email: lsb�di.uminho.ptThis is a preliminary version. The �nal version will be published inEle
troni
 Notes in Theoreti
al Computer S
ien
eURL: www.elsevier.nl/lo
ate/ent
s



Barbosasuitable Set endofun
tors. Final semanti
s for pro
esses is an a
tive resear
harea, namely after A
zel's landmark paper [1℄. Our emphasis is, however,a
tually pla
ed on the design side: we intend to show how pro
ess 
al
uli
an be developed and their laws proved along the lines one gets used to in(data-oriented) program 
al
uli. Although only the `�ne grain' observationalequivalen
e entailed by (stri
t) bisimulation is 
onsidered in the sequel, webelieve that the proposed approa
h has a number of advantages:� First of all it provides a uniform treatment of pro
esses and other 
om-putational stru
tures, e.g., data stru
tures, both represented as 
ategori
altypes for fun
tors 
apturing signatures of, respe
tively, observers and 
on-stru
tors. Pla
ing data and behaviour at a similar level 
onveys the ideathat pro
ess models 
an be 
hosen and spe
i�ed a

ording to a given ap-pli
ation area, in the same way that a suitable data stru
ture is de�ned tomeet a parti
ular engineering problem. Moreover, pro
esses and data be-
ome expressible in programming languages supporting 
ategori
al types,su
h as Charity [7℄, providing a 
onvenient way to prototype pro
esses and
ompare alternative design de
isions. This builds on the author previouswork on 
omponent algebras [3℄.� Proofs are 
arried out in a purely 
al
ulational (basi
ally equational andpointfree) style, therefore 
ir
umventing the expli
it 
onstru
tion of bisim-ulations used in most of the literature on pro
ess 
al
uli. In parti
ular, a`
onditional fusion' result is proved to handle 
onditional laws.� Finally the approa
h is independent of any parti
ular pro
ess 
al
ulus andmakes expli
it the di�erent ingredients present in the design of any su
h
al
uli. In parti
ular stru
tural aspe
ts of the underlying behaviour model(e.g., the di
hotomies su
h as a
tive vs rea
tive, deterministi
 vs non de-terministi
) be
ome 
learly separated from the intera
tion stru
ture whi
hde�nes the syn
hronisation dis
ipline.
2 PreliminariesAnamorphisms.Te
hni
ally, the approa
h sket
hed here amounts to the systemati
 use ofthe universal property of anamorphisms. Re
all that, for a fun
tor T, a T-anamorphism is the unique T-
omorphism to the �nal 
oalgebra !T : �T �!T �T from any other 
oalgebra hU; pi. Also 
alled the 
oindu
tive extensionof p [17℄, it is written, in the tradition of [13℄, as [(p)℄T or, simply, [(p)℄, andsatis�es the following universal property:k = [(p)℄T , !T � k = T k � p (1)2



Barbosafrom whi
h other laws are easily derived, e.g.:!T � [(p)℄ = T [(p)℄ � p (2)[(!T)℄ = id�T (3)[(p)℄ � h = [(q)℄ if p � h = T h � q (4)In the 
ontext of the Bird-Meertens formalism equations (2) to (4) are seenas instan
es of a 
an
ellation, re
e
tion and fusion result, respe
tively.Invariants.In order to derive 
onditional laws (se
tion 4) we shall resort to the notionof a p-invariant, i.e., a predi
ate � over the 
arrier of a T-
oalgebra p 
losedunder the p dynami
s. Following [11℄, � is an invariant if, as a set, it satis�es� � ep �, where ep � denotes the set of all states whose immediate su

essors,under p, if any, satisfy �. ep is, in fa
t, a modal 
ombinator whi
h 
orrespondsto the familiar (weak) next operator in modal logi
s 2 . [11℄ introdu
es ade�nition of ep in terms of a lifting operation ( )T : PX �! PTX de�nedindu
tively on the stru
ture of (extended polynomial) fun
tors (see [9℄ forthe 
omplete pi
ture). Formally, ep � = fu 2 U j p u 2 (�)Tg. The in�niteextension of ep 
hara
terise the (future) `box' operator relative to a 
oalgebrap. This is denoted in [11℄ by �p, where �p is de�ned as the greatest �x point of�x : � \ ep x. Informally, �p � reads `� holds now and in all su

essor states'.3 Pro
ess Stru
ture and Combinators.Pro
esses.In designing a pro
ess 
al
ulus, its operational semanti
s is usually givenin terms of a transition relation a�! over pro
esses, indexed by a set A
t of a
-tions 3 , witnessing the 
olle
tion of a
tions in whi
h a pro
ess gets 
ommittedand the resulting `
ontinuations', i.e., the behaviours subsequently exhibited.A �rst basi
 design de
ision 
on
erns the de�nition of what should be under-stood by su
h a 
olle
tion. As a rule it is de�ned as a set, in order to expressnon determinism. Other, more restri
tive, possibilities 
onsider a sequen
e oreven just a single 
ontinuation, modelling, respe
tively, `ordered' non deter-minism or determinism. In general, this underlying behaviour model 
an berepresented by a fun
tor B .2 The transition system de�ned by p is the stru
ture upon whi
h the operator is interpreted.In fa
t, it has been re
ently re
ognised by a number of authors (notably in [15℄ and [11℄)that a modal language asso
iated to a T-
oalgebra is determined by its shape, as re
ordedin T.3 This set will later be equipped with further stru
ture to support parti
ular intera
tiondis
iplines. For the moment just assume that a
tions are generated from a set L of labels,i.e., a set of formal names. The embedding L ,! A
t will usually be left impli
it.3



BarbosaAn orthogonal de
ision 
on
erns the intended interpretation of the transi-tion relation, whi
h is usually left impli
it or underspe
i�ed in pro
ess 
al
uli.We may, however, distinguish between� An `a
tive' interpretation, in whi
h a transition p a�! q is informally
hara
terised as `p evolves to q by performing an a
tion a', both q and abeing solely determined by p.� A `rea
tive' interpretation, informally reading `p rea
ts to an external stim-ulus a by evolving to q'.Pro
esses will then be taken as inhabitants of the 
arrier of the �nal 
oalgebra! : � �! T �, with T de�ned as B (A
t� Id), in the �rst 
ase, and (B Id)A
t, inthe se
ond. To illustrate the proposed approa
h to the development of pro
ess
al
uli, we shall fo
us on a parti
ular 
ase where B is the �nite powersetfun
tor and the `a
tive' interpretation is adopted. The transition relation, forthis 
ase, is given by p a�! q i� ha; qi 2 ! p. Although this 
orrespondsto the main trend in the literature, some alternatives will be 
onsidered inse
tion 5.The restri
tion to the �nite powerset avoids 
ardinality problems and as-sures the existen
e of a �nal 
oalgebra for T. This means, of 
ourse, we shalldeal only with image-�nite pro
esses, a not too severe restri
tion in pra
ti
ewhi
h may be partially 
ir
umvented by a suitable de�nition of the stru
tureof A
t 4 .Dynami
 Combinators.The 
ornerstone in the design of a pro
ess 
al
uli is the judi
ious sele
tionof a (hopefully small) set of pro
ess 
ombinators. In [14℄, R. Milner 
lassi�esthem into two distin
t groups. The �rst group 
onsists of all 
ombinatorswhi
h persist through a
tion, i.e., whi
h are present before and after a transi-tion o

urs. They are 
alled stati
 and used to set up pro
ess' ar
hite
tures,spe
ifying how their 
omponents are linked and whi
h parts of their interfa
eare publi
 or private. Dynami
 
ombinators, on the other hand, are `
on-sumed' on a
tion o

urren
e, disappearing from the expression representingthe pro
ess 
ontinuation. In this paragraph the usual C
s dynami
 
ombina-tors | i.e., ina
tion, pre�x and non-deterministi
 
hoi
e | are de�ned asoperators on the �nal universe of pro
esses 
onsidered above. Noti
e that,being non re
ursive, they have a dire
t (
oindu
tive) de�nition whi
h dependssolely on the 
hosen pro
ess stru
ture. Therefore, the ina
tive pro
ess is rep-resented as a 
onstant nil : 1 �! � upon whi
h no relevant observation 
anbe made. Pre�x gives rise to an A
t-indexed family of operators a: : � �! �,with a 2 A
t. Finally, the possible a
tions of the non deterministi
 
hoi
e oftwo pro
esses p and q 
orresponds to the 
olle
tion of all a
tions allowed for4 For instan
e, by taking A
t as 
hannel names through whi
h data 
ows, whi
h 
orre-sponds 
losely to `C
s with value passing' [14℄. Therefore, only the set of 
hannels, and notthe messages (seen as pairs 
hannel/data), must remain �nite.4



Barbosap and q. Therefore, the operator + : � � � �! � 
an only be de�ned over apro
ess stru
ture in whi
h observations form a 
olle
tion. Formally,ina
tion ! � nil = ;pre�x ! � a: = sing � labela
hoi
e ! � + = [ � (! � !)where sing = �x : fxg and labela = �x : ha; xi.Clearly, stru
ture h�; +; nili forms an Abelian idempotent monoid, a fa
tthat 
an be proved by simple equational reasoning, resorting to the 
orre-sponding properties of set union. Moreover, �nality turns ! into an isomor-phism and therefore, to prove e = e0 it is enough to show that ! �e = ! �e0. Toillustrate the proposed proof style, 
onsider the proof of a parti
ularly simpleresult: + asso
iativity, i.e., + � (+� id) = + � (id�+) � a 5 .Proof.! � + � (+� id) = [ � (! � !) � (+� id) f de�nition g= [ � (! � +� !) f fun
toriality g= [ � (([ � (! � !))� ! f de�nition g= [ � ([ � id) � ((! � !) � !) f fun
toriality g= [ � ([ � id) � ((! � !) � !) � aÆ � a f a is isomorphism g= [ � ([ � id) � aÆ � (! � (! � !)) � a f a naturality g= [ � (id� [) � (! � (! � !)) � a f [ asso
iativity g= [ � (! � ([ � (! � !)) � a f fun
toriality g= [ � (! � ! � +) � a f de�nition g= [ � (! � !) � (id�+) � a f fun
toriality g= ! � + � (id� +) � a f de�nition g2Interleaving and Restri
tion.Persisten
e through a
tion o

urren
e justi�es the re
ursive de�nition ofstati
 
ombinators. This means that they arise as anamorphisms generatedby suitable `gene' 
oalgebras. Both interleaving and restri
tion are examplesof stati
 
ombinators, whi
h, moreover, depend only on the pro
ess stru
ture.We shall 
onsider them in �rst pla
e.5 In the sequel, pro
ess properties are stated pointfree, for whi
h we shall resort to standardnatural isomorphisms in Set. In parti
ular, asso
iativity, 
ommutativity and produ
t leftand right units, will be denoted by a : (A�B)�C �! A� (B �C), s : A�B �! B �A,r : 1 � A �! A and l : A � 1 �! A, respe
tively. The 
onverse of an isomorphism i iswritten as iÆ. 5



BarbosaAlthough interleaving, a binary operator 9 : ��� �! �, is not 
onsideredas a 
ombinator in most pro
ess 
al
uli, it represents the simplest form of`parallel' aggregation in the sense that it is independent of any parti
ularintera
tion dis
ipline. The following de�nition 
aptures the intuition that theobservations over the interleaving of two pro
esses 
orrespond to all possibleinterleavings of the observations of its arguments. Thus, 9 = [(�9)℄, where 6�9 = � � � M
// (� � �)� (� � �)(!�id)�(id�!)

// (P(A
t � �)� �)� (� � P(A
t� �))�r��l
//P(A
t� (� � �))� P(A
t� (� � �)) [

//P(A
t� (� � �))The restri
tion 
ombinator nK, for ea
h subset K � L, forbids the o

urren
eof a
tions in K. Formally, nK = [(�nK )℄ where�nK = � !
// P(A
t� �) �lterK

// P(A
t� �)where �lterK = �s : ft 2 sj �1 t =2 Kg.The interleaving 
ombinator also forms (with nil), an Abelian monoid. Re-stri
tion, on the other hand, is idempotent and 
ommutes with both 
hoi
eand interleaving. As one 
ould expe
t, the 
ornerstone in the proofs of equa-tions involving stati
 
ombinators, is the appli
ation of the fusion law (4).This is illustrated below in the proof of 9 
ommutativity.Proof. By de�nition 9 � s = 9 is equivalent to [(�9)℄ � s = [(�9)℄, whi
h, byfusion, is implied by �9 � s = P(id� s) � �9. Then,�9 � s= [ �(�r � �l) � ((! � id)� (id� !)) � M � s f de�nition g= [ �(�r � �l) � ((! � id)� (id� !)) � (s� s) � M f M nat g= [ �(�r � �l) � (s� s) � ((id� !)� (! � id)) � M f s� s nat g= [ �(�r � s� �l � s) � ((id� !)� (! � id)) � M f fun
tor g= [ �(P(id� s) � �l � P(id� s) � �r) � ((id� !)� (! � id)) � M f �r vs �l g= [ �(P(id� s)� P(id� s)) � (�l � �r) � ((id� !)� (! � id)) � M f fun
tor g= P(id� s) � [ � (�l � �r) � ((id� !)� (! � id)) � M f [ nat g= P(id� s) � [ � s � (�l � �r) � ((id� !)� (! � id)) � M f [ 
omm g= P(id� s) � [ � (�r � �l) � ((! � id)� (id� !)) � s � M f s nat g= P(id� s) � [ � (�r � �l) � ((! � id)� (id� !)) � M f s �M = M g= P(id� s) � �9 f de�nition g26 Morphisms �r : P(A
t�X) � C �! P(A
t� (X � C)) and �l : C � P(A
t�X) �!P(A
t� (C �X)) stand for, respe
tively, the right and left strength asso
iated to fun
torP(A
t� Id). 6



Barbosa4 Intera
tion and Parallel CompositionIntera
tion Stru
tures.Pro
ess 
ombinators introdu
ed so far depend solely on the pro
ess stru
-ture, as re
orded in the shape of the fun
tor. To spe
ify intera
tion, however,there is a need to introdu
e some stru
ture in the set A
t of a
tions. There-fore, we de�ne the intera
tion stru
ture underlying a pro
ess 
al
ulus as anAbelian positive monoid hA
t; �; 1i with a zero element 0. It is assumed thatneither 0 nor 1 belong to the set L of labels. The intuition is that � determinesthe intera
tion dis
ipline whereas 0 represents the absen
e of intera
tion: forall a 2 A
t, a�0 = 0. On the other hand, a positive monoid entails a�a0 = 1i� a = a0 = 1. Noti
e that the role of both 0 and 1 is essentially te
hni
al inthe des
ription of the intera
tion dis
ipline. In some situations 1 may be seenas an idle a
tion, but its role, in the general 
ase, is to equip the behaviourfun
tor with a monadi
 stru
ture, whi
h would not be the 
ase if A
t werede�ned simply as an Abelian semigroup 7 .A basi
 example of an intera
tion stru
ture 
aptures a
tion 
o-o

urren
e.Therefore, � is de�ned as a�b = ha; bi, for all a; b 2 A
t di�erent from 0 and1. C
s [14℄ syn
hronisation dis
ipline provides another example. In this 
asethe set L of labels 
arries an involutive operation represented by an horizontalbar as in a, for a 2 L. Any two a
tions a and a are 
alled 
omplementary. Aspe
ial a
tion � =2 L is introdu
ed to represent the result of a syn
hronisationbetween a pair of 
omplementary a
tions. Therefore, the result of � is �whenever applied to a pair of 
omplementary a
tions and 0 in all other 
ases,ex
ept, obviously, if one of the arguments is 1 8 .On
e an intera
tion stru
ture is �xed, any homomorphism f : A
t �! A
tlifts to a renaming 
ombinator [f ℄ between pro
esses de�ned as [f ℄ = [(�[f ℄)℄,where �[f ℄ = � !
// P(A
t� �)P(f�id)

// P(A
t� �)Conditional Laws.The basi
 properties of renaming, namely that it preserves identity and
omposition of homomorphisms, extends along pre�x and 
ommutes with7 The stru
ture is similar to what is 
alled a syn
hronisation algebra in [18℄ apart fromsome minor details. In parti
ular, Winskel syn
hronisation algebras 
arry a spe
i�
 
onstant? to denote asyn
hronous o

urren
e and � does not ne
essarily possess a unit. The monoidstru
ture, however, allows for a more uniform 
hara
terisation of behaviour models. On theother hand, the de�nition of parallel 
omposition below, in terms of syn
hronous produ
tand interleaving, avoids the need for introdu
ing ?.8 For the C
s 
ase we follow the standard notational 
onvention under whi
h 
omplementsare 
onsidered impli
itly. In parti
ular, a restri
tion 
ombinator nK , for K � L is inter-preted as nK[K . Similarly, the parameter f of a renaming (see below), spe
i�es only the`a
tion' part although it also implies that if f a = b then f a = b. Also, as � is introdu
edas a 
onstant in A
t, f being a homomorphism for
es f � = � .7



Barbosaboth 
hoi
e and interleaving, are proved in the style illustrated above, alwaysavoiding the expli
it 
onstru
tion of bisimulations. Often, however, pro
essequalities hold just if some `side 
onditions' are ful�lled. Let us study howsu
h laws are derived in our framework starting with a very simple example.Let f = fb=ag be substitution of a by b, i.e., a homomorphism over A
t whi
his the identity in all a
tions but a. In several 
ases, but not in all, we may
on
lude that renaming with f has no e�e
t. Can this be expressed on ageneral law? A simple 
al
ulation yields[f ℄ = id� f de�nition g[(�[f ℄)℄ = [(!)℄( f fusion g�[f ℄ � id = P(id� id) � !� f identity g�[f ℄ = !Clearly, the last equality holds only if a does not show up as an a
tion inthe immediate 
ontinuations of the pro
ess being renamed. This 
ondition isformally expressed by the following predi
ate:� = =; � \ �(P�1 � ! � sing � a) � lÆ (5)Note, however, that � is stated as a lo
al 
ondition on the immediate 
on-tinuations of any pro
ess 
andidate to satisfy the given equality. Therefore,it 
annot be dire
tly taken as a suÆ
ient 
ondition for [f ℄ = id. In fa
t, topro
eed, predi
ate � has to be made into an invariant in the sense of [11℄.This is justi�ed by the following result.Theorem 4.1 Let � and � be T-
oalgebras and � a predi
ate on the 
arrierof �. Then the following `
onditional' fusion law holds(� ) (� � h = T h � �)) ) (�� � ) ([(�)℄T � h = [(�)℄T))Proof. Let X be the 
arrier of � and i� the embedding of the subset of X
lassi�ed by �, i.e., ��i� = true�!. Re
all also that any �-invariant � indu
es asub
oalgebra � 0. Consequently, i� be
omes a 
omorphism from � 0 to �. Then8



Barbosa� ) (� � h = T h � �)� f i� de�nition g� � h � i� = T h � � � i�) f �� � � � g� � h � i�� � = T h � � � i�� �� f i�� � is a 
omorphism from �0 to �g� � h � i�� � = T h � T i�� � � � 0� f fun
torialityg� � h � i�� � = T (h � i�� �) � � 0� f fusion law (4)g[(�)℄T � h � i�� � = [(� 0)℄T� f i�� � being a 
omorphism implies [(�0)℄T = [(�)℄T � i�� �g[(�)℄T � h � i�� � = [(�)℄T � i�� �� f i� de�nition g�� � ) ([(�)℄T � h = [(�)℄T)Noti
e the proof would work if �� � is repla
ed by any other �-invariant
ontained in �. As �� � is the greatest su
h invariant, it provides the most`generous' 
ondition. 2
Deriving the Condition.Applying the previous theorem to the 
ase under 
onsideration, leads to[fb=ag℄ = id ( �! � (6)with � given by (5). Now re
all that �! � is de�ned as the greatest �xpointof � = �x : � \ e! x. Looking at predi
ates as sets, � is a fun
tion over a
omplete latti
e | hP�;�i | whose monotony is easily proved by indu
tionon the fun
tor stru
ture. Therefore, a 
on
rete representation for �! � 
anbe 
omputed, by the Knaster-Tarski theorem [16℄, as the union of all post-�xpoints of �, i.e., �! � = [fs 2 P�j s � � \ e! sg9



BarbosaBeing a post-�xpoint means, for ea
h s above that, for any pro
ess p,p 2 s) p 2 � ^ p 2 e! s� p 2 � ^ p 2 fx 2 �j ! x 2 (s)P(A
t�Id)g� p 2 � ^ p 2 fx 2 �j ! x 2 f
 2 P(A
t� �)j 8t : t 2 
) t 2 (s)A
t�Idgg� p 2 � ^ p 2 fx 2 �j ! x 2 f
 2 P(A
t� �)j 8t : t 2 
) �2 t 2 sgg� p 2 � ^ p 2 fx 2 �j (P�2 � !) x 2 sgSeen as a set, predi
ate (5) is given by � = fx 2 �j (P�1 � !) x \ fag = ;g.Therefore,�! � = [fs 2 P�j x 2 s ) ((P�1 � !) x \ fag = ;) ^ ((P�2 � !) x 2 s))gor, in words, the set of all pro
esses whose derivations never exhibit an a
tiona. In C
s, the set of all labels, seen as a
tions, in whi
h a pro
ess p 
an
ommit itself, i.e., that appear in at least one derivation of p, is 
alled thesort of p and denoted by L (p). [14℄ provides a synta
ti
 
riterion to 
omputea majoring approximation of L (p) by indu
tion on the pro
ess expression. Asemanti
 de�nition 
an, however, be given asL (p) = (P�1 �[ �Pp) �p true (7)where, again, the embedding of L in A
t is left impli
it. Law (6) may then berewritten as 9 [fb=ag℄ = id ( =2a �L (8)Parallel.The next stati
 operator 
onsidered here is syn
hronous produ
t, modellingthe simultaneous exe
ution of its two arguments. In ea
h step the resultinga
tion is determined by the intera
tion stru
ture for the 
al
ulus. Formally,
 = [(�
)℄ where�
 = � � � (!�!)
// P(A
t� �)� P(A
t� �) sel�Ær

// P(A
t� (� � �))where sel = �lterf0g �lters out all syn
hronisation failures. Noti
e how intera
-tion is 
atered by Ær | the distributive law for the strong monad P(A
t� Id) 10 .Ær is the Kleisli 
omposition of the left and the right strengths. This, on its9 Going pointwise and noti
ing that, by 
onvention, the parameter of the C
s renamingoperator represents `
oa
tions' impli
itly, we end up with the familiar C
s law p [fb=ag℄ =p ( a; a =2 L (p). Fun
tion =2a is de�ned as �x : a =2 x.10 Noti
e that the monoidal stru
ture in A
t extends fun
tor P(A
t� Id) to a strong monad.10



Barbosaturn, involves the appli
ation of the monad multipli
ation to `
atten' the resultand this, for a monoid monad, requires the suitable appli
ation of the under-lying monoidal operation, whi
h, in our 
ase, �xes the intera
tion dis
ipline.In fa
t,ÆrP(A
t�Id) = �P(A
t�Id) � P(id� �P(A
t�Id)r ) � �P(A
t�Id)l= P((� � id) � aÆ) �[ �P�Pl � P(id� �P(A
t�Id)r ) � �P(A
t�Id)li.e., going pointwise,ÆrP(A
t�Id) h
1; 
2i = fha0�a; hp; p0iij ha; pi 2 
1 ^ ha0; p0i 2 
2gFinally, parallel 
omposition arises as a 
ombination of interleaving andsyn
hronous produ
t, in the sense that the evolution of p j q, for pro
esses pand q, 
onsists of all possible derivations of p and q plus the ones asso
iatedto the syn
hronisations allowed by the parti
ular intera
tion stru
ture for the
al
ulus. This 
annot be a
hieved by a simple 
omposition of the 
orrespond-ing 
ombinators 9 and 
: it has to be performed at the `genes' level for 9and 
. Formally, j = [(�j)℄, where�j = � � � M
// (� � �)� (� � �) [�(�9��
)

//P(A
t� (� � �))Syn
hronous produ
t is 
ommutative, asso
iative and has nil as a zero element.Furthermore, it distributes over 
hoi
e and, 
onditionally, over restri
tion andrenaming. On the other hand, as expe
ted, the j 
ombinator shares someproperties that are 
ommon to both 9 and 
. In parti
ular, it gives rise, withnil, to an Abelian monoid and distributes along renaming and restri
tion in
ertain 
ases. However, it la
ks a zero element and does not distribute through
hoi
e. Noti
e that the veri�
ation of su
h properties `re-uses' the proofs ofthe 
orresponding results for 9 and 
.Two Proofs.This paragraph is 
on
erned with the proof of restri
tion distributivity over
 and j, illustrating two important points in our approa
h: the derivation ofside 
onditions along a proof and proof re-use. The proofs rely on the followingimmediate 
onsequen
e of law (1): to prove the equality � =  it is enoughto show that both ! � � = T� � � and ! �  = T � � hold.Consider, then, the derivation of the following property:nK �
 = 
 � (nK � nK) ( uniform restri
tion (9)Proof. We pro
eed by unfolding the 
omposite of ! with both sides of theequation. Therefore, 11



Barbosa! �
 � (nK � nK)= f 
omorphism, de�nitiongP(id�
) � sel � Ær � (! � !) � (nK � nK)= f fun
torialitygP(id�
) � sel � Ær � (! � nK � ! � nK)= f 
omorphism, fun
torialitygP(id�
) � sel � Ær � (P(id� nK)� P(id� nK)) � (�nK � �nK )= f Ær naturalitygP(id�
) � sel � P(id� (nK � nK)) � Ær � (�nK � �nK )= f sel de�nition, fun
torialitygP(id�
 � (nK � nK)) � sel � Ær � (�nK � �nK )Next a similar 
al
ulation is done for !�nK �
, trying to arrive at an expressionP(id� (nK �
)) � �, with � = sel � Ær � (�nK � �nK ) as above.! � nK �
= f 
omorphism, de�nitiongP(id� nK) � �lterK � ! �
= f 
omorphismgP(id� nK) � �lterK � P(id�
) � �
= f de�nitiongP(id� nK) � �lterK � P(id�
) � sel � Ær � (! � !)= f �lterK naturalitygP(id� nK) � P(id�
) � �lterK � sel � Ær � (! � !)?= f ? gP(id� nK) � P(id�
) � sel � Ær � (�lterK � �lterK) � (! � !)= f fun
toriality gP(id� (nK �
)) � sel � Ær � (�lterK � ! � �lterK � !)= f de�nitiongP(id� (nK �
)) � sel � Ær � (�nK � �nK )We have su

eeded only partially: the step marked with a ? does not hold uni-versally. We are then left with the task of establishing under what 
onditions,if any, the following equality holds:�lterK � sel � Ær = sel � Ær � (�lterK � �lterK)Unfolding the de�nitions of the fun
tions involved and going pointwise for a12



Barbosawhile, we get( �lterK � sel �Ær) h
1; 
2i == (�lterK � sel) fha0�a; hp; p0iij ha; pi 2 
1 ^ ha0; p0i 2 
2g= �lterK fha0�a; hp; p0iij ha; pi 2 
1 ^ ha0; p0i 2 
2 ^ a0�a 6= 0g= fha0�a; hp; p0iij ha; pi 2 
1 ^ ha0; p0i 2 
2 ^ a0�a 6= 0 ^ a0�a =2 KgOn the other hand,( sel � Ær �(�lterK � �lterK)) h
1; 
2i == (sel � Ær) hfha; pi 2 
1j a =2 Kg; fha0; p0i 2 
2j a0 =2 Kgi= sel fha0�a; hp; p0iij ha; pi 2 
1 ^ ha0; p0i 2 
2 ^ a; a0 =2 Kg= fha0�a; hp; p0iij ha; pi 2 
1 ^ ha0; p0i 2 
2 ^ a; a0 =2 K ^ a0�a 6= 0gClearly the two sets 
an be identi�ed i�, for all possible a and a0, su
h thata0�a 6= 0, a0�a =2 K � a; a0 =2 K. Therefore, step ? is only possible if theexpression s
ope is restri
ted to pairs of pro
esses satisfying the followingpredi
ate:� hp; qi = 8a2(P�1�!) p;a02(P�1�!) q : a�a0 6= 0 ) (a�a0 =2 K � a; a0 =2 K) (10)whi
h is lifted to the invariant uniform restri
tion = �� �. 2As expe
ted, a similar result holds for parallel 
omposition.Proof. The attempt to prove nK� j= j �(nK � nK), pro
eeds by redu
ing the
omposite of ! with both sides of the equation to identify a 
ommon 
oalgebra�0. Thus,! � nK� j= f double appli
ation of 
omorphism and de�nitiongP(id� nK) � �lterK � P(id� j) � [ � (�9 � �
) � M= f �lterK naturalitygP(id� nK) � P(id� j) � �lterK � [ � (�9 � �
) � M= f [ naturality, fun
torialitygP(id� (nK� j)) � [ � (�lterK � �9 � �lterK � �
) � M= f reusing the proof of (9) and a similar result for 9gP(id� (nK� j) � [ � (([ � (�r � �l) � ((�nK � id)� (id� �nK )) �M)� sel � Ær � (�nK � �nK )) � MSimilarly, it is shown that !� j �(nK�nK) = P(id� (j �(nK � nK))) ��0, where�0 = [ � (([ � (�r� �l) � ((�nK � id)� (id��nK )) �M)� sel �Ær � (�nK ��nK )) �M13



Barbosais the 
ommon 
oalgebra. We are, thus, almost ready to 
on
lude. Noti
e,however, that, on reusing the proof of law (9) in the last step of this derivation,we must also take into a

ount the predi
ate whi
h 
onstrains the substitutionmade. Clearly, predi
ate (10) a
ts again as a lo
al 
ondition to validate thederivation here. We may then 
on
lude the validity of the law, subje
ted tothe restri
tion given by uniform restri
tion0 = ��0 �. 2We may ask what form su
h invariants take given a parti
ular intera
tionstru
ture. For example, in the C
s 
ase, the result of � does not belong to L| � has only three possible results under C
s intera
tion dis
ipline: � , 1 and0. Therefore, as K � L, 
ondition a0�a =2 K holds for any K and � be
omes8a2(P�1�!) p;a02(P�1�!) q : a�a0 6= 0 ) (a�a0 =2 K � a; a0 =2 K)� f C
s intera
tion stru
ture g8a2P(�1�!) p;a02(P�1�!) q : (a�a0 = � _ a�a0 = 1) ) a; a0 =2 K� f a�a0 = 1 i� a = a0 = 1 g8a2(P�1�!) p;a02(P�1�!) q : a�a0 = � ) a; a0 =2 K� f a�a0 = � i� a0 = ag8a2(P�1�!) p;a02(P�1�!) q : a0 = a ) a; a0 =2 K� f rearrangingg(P�1 � !) p \ (P�1 � !) q \ (K [K) = ;where the overbar notation stands here for the lifting of the involutive C
s
omplement operation to sets of a
tions. Now note that, although bothinvariants are derived from the same lo
al 
ondition (10), they stand forthe 
losure of � under di�erent 
oalgebras and are, 
onsequently, distin
t.In fa
t, the number of derivations that have to be 
onsidered under � ismu
h greater in the se
ond 
ase. In parti
ular, uniform restri
tion does not
onsider 
on�gurations representing interleavings. For example, if one ofthe pro
esses exhausts after n steps, the 
ondition on the a
tions is not re-quired to hold after that. On the other hand, in uniform restri
tion0, � is
losed wrt the transitions on �0, whi
h in
lude both interleavings and syn-
hronisations. Therefore, and re
alling the notion of sort, we 
on
lude thatuniform restri
tion0 � L (p) \ L (p) \ (K [ K) = ; arriving to the followingfamiliar C
s presentation of this result(p j q)nK = pnK j qnK ( L (p) \ L (p) \ (K [K) = ;This dis
ussion illustrates our 
laim that su
h an approa
h to pro
ess 
al-
uli allows us to `dis
over' the appropriate restri
tions a law is 
onstrainedby, instead of `postulating' them and verifying their suitability. It also makesexpli
it that su
h 
onditions are essentially dependent only on the 
al
ulusintera
tion stru
ture. Consider, for example, what would happen to the lawat hands if a Csp-like intera
tion dis
ipline is 
hosen instead. In Csp [10℄ only14



Barbosaequally named a
tions syn
hronise, leading to the following de�nition of �:a�a = a , a�1 = 1�a = a and a�b = 0 in all other 
asesTherefore, the 
ondition a�a0 6= 0 ) (a�a0 =2 K � a; a0 =2 K) be
omestrivially true and the law holds without any side 
ondition.Another Example.A similar situation o

urs when studying the distribution of renaming overparallel. In an attempt to proof [f ℄� j= j �([f ℄ � [f ℄), appli
ation of theorem4.1 makes the following lo
al 
ondition to pop out (see [2℄ for the 
ompletederivation):� hp; qi = 8a2(P�1�!) p;a02(P�1�!) q : a�a0 6= 0 � fa �fa0 6= 0Under the C
s intera
tion dis
ipline, a�a0 6= 0 implies that a�a0 = 1 or a�a0 =� . Hen
e, when does the equivalen
e a�a0 6= 0 � fa �fa0 6= 0 hold? Clearlythe impli
ation from left to right holds trivially be
ause f is a homomorphismon the intera
tion stru
ture:a�a0 = ?) f Leibniz gf (a�a0) = f ?� f f is an A
t-homomorphism gfa �fa0 = ?when ? stands for either 1 or � . The impli
ation in the opposite dire
tion,however, reads fa �fa0 = ? ) a�a0 = ?whi
h, f being an A
t-homomorphism, is equivalent tof (a�a0) = f ? ) a�a0 = ?again for ? standing for either 1 or � . This holds only if f is mono. Thus, forthe C
s 
ase, the generated invariant requires the inje
tivity of f or, at least,of its restri
tion to the relevant pro
ess sorts. The resulting law is usuallywritten in C
s as(p j q)[f ℄ = p[f ℄ j q[f ℄ ( f restri
ted to L (p j q) [ L (p j q) is mono5 Variants and Con
lusionsBehaviour Monads.In the introdu
tion to this paper we have remarked that the approa
hto pro
ess 
al
uli design sket
hed here 
ould 
ope with a variety of parti
u-15



Barbosalar 
ases be
ause the emphasis was pla
ed on the 
ommon underlying stru
-tures rather than on the distin
tive parti
ularities. A �rst sour
e of generi
ityhas already been introdu
ed by separating the behaviour from the intera
tionstru
tures. Note that all the pro
ess 
ombinators introdu
ed are either in-dependent of any parti
ular intera
tion dis
ipline or parametrized by it. Weshall now brie
y examine what happens if the behaviour stru
ture itself is
hanged. Re
all that pro
esses were de�ned as inhabitants of the 
arrier ofthe �nal 
oalgebra for T = B (A
t� Id) where B was taken as the �nite pow-erset fun
tor. Next we have shown that, assuming a 
ommutative monoidalstru
ture over A
t, the behaviour model 
aptured by P(A
t� Id) is a strongAbelian monad. The de�nitions of some 
ombinators build upon this | inparti
ular syn
hronous produ
t basi
ally relies on the monad distribution lawÆr. Commutativity of 
, and 
onsequently of j, depends on the monoid un-derlying the intera
tion stru
ture being itself Abelian. Therefore, a �rst lineof enquire followed below 
onsists of repla
ing B by di�erent monads and ex-tra
ting a 
orrespondent family of 
al
uli still parametrized by the intera
tionstru
ture.The simplest 
ase takes B as the identity Id. The result is, of 
ourse, auniverse of deterministi
 (and perpetual) pro
esses. A further elaboration ofthis repla
es Id by Id + 1, entailing a 
al
ulus for deterministi
 but partialpro
esses in the sense that the derivation of a `dead' state is always possible.Su
h a 
al
ulus is far less expressive than the one previously dis
ussed. In fa
tderivations do not form any kind of 
olle
tion and, therefore, non determin-ism is ruled out. Similarly, 
ombinators whi
h explore non determinism, la
ka 
ounterpart here. Su
h is the 
ase of 
hoi
e, interleaving and, as a gener-alisation of the later, parallel. On the other hand, the 
omposition of Id + 1with the monoidal monad generated by A
t is still a strong Abelian monad,and therefore syn
hronous produ
t is still de�nable. Ina
tion and pre�x, forpartial pro
esses, are de�ned as ! �nil = �2 and ! �a: = �1 � labela, respe
tively.On the other hand, produ
t, restri
tion and renaming 
an be de�ned in arather generi
 way as anamorphisms whose `genes' are parametrized by themonad B :�[f ℄ = � !
//B (A
t� �) B (f�id)

// B (A
t� �)�nK = � !
//B (A
t� �) �lterKB

// B (A
t� �)�
 = � � � (!�!)
// B (A
t� �)� B (A
t� �) ÆrB (A
t�Id)

// B (A
t� (� � �))selB
// B (A
t� (� � �))where ÆrB (A
t�Id) is the distribution law asso
iated to the 
omposed monadB (A
t � Id), therefore en
apsulating the � operation on a
tions. On theother hand, selB and �lterKB explore the B stru
ture in order to rule outsyn
hronisation failures, in the �rst 
ase, and to perform the a
tion restri
tionin the se
ond. For B = A
t + 1, �lterK Id+1 = ((=2K ��1) ! �1; �2�!) + id is16



Barbosaexpressed by a 
onditional, whereas, for B = P, su
h 
onditional was iteratedover a set. Noti
e that =2K is de�ned as �a : a =2 K and, again, selId+1 =�lterf0gId+1. Finally, noti
e that when B is non 
ommutative, whi
h is the 
aseof, e.g., B X = X?, not only is 
ommutativity lost for several 
ombinators,but also two non bisimilar versions of 
 emerge, based, respe
tively, in Ær andÆl, as equation Ær = Æl holds only for 
ommutative monads.Rea
tive Pro
esses.Up to this point we have assumed an `a
tive' interpretation of pro
esses.Similarly, an universe for rea
tive pro
esses may be spe
i�ed as a �nal 
oalge-bra ! for TX = (B X)A
t, where B 
aptures, as usual, the behaviour stru
-ture. Noti
e that in this paragraph the overbar notation is used to refer tothe transpose of a morphism under the 
urry/un
urry isomorphism. Let usrevisit brie
y the pro
ess 
ombinators in this new setting, taking again B asthe �nite powerset monad.The de�nitions of ina
tion, pre�x and 
hoi
e follow 
losely the ones already
onsidered for `a
tive' pro
esses, re
e
ting, however, the fa
t that A
t appearsnow as an exponent. Noti
e, for example, how pre�xing a pro
ess p by ana
tion a results in a new pro
ess whi
h is blind for every stimulus di�erentfrom a. Formally, ! � nil = ;�!! � a: = ((=a ��2) ! sing � �1; ;�!)! � + = [ � (! � !) � pdlwhere pdl : (X�Y )�Z �! (X�Y )� (Y �Z) is de�ned as h�1� id; �2� idi.For any K 2 L and renaming homomorphism f , restri
tion and renamingare given by nK = [(�K)℄ and [f ℄ = [(�f )℄, where �K = ((=2K ��2) ! !; ;�!)and �f = ! � (id � f). Noti
e that both f and the restri
tion set K a
t by
onstraining the set of meaningful stimuli, thus before the e�e
tive derivationis 
omputed. Under the `a
tive' interpretation their e�e
t was de�ned overthe (previously 
omputed) derivations.The syn
hronous produ
t is de�ned, in this setting, as 
 = [(�
)℄, where,�
 = � � � (!�!)
//P�A
t � P�A
t prod

// P(P� � P�)A
t(PÆrP)A
t
//PP(� � �)A
t [A
t

//P(� � �)A
twhereprod hd1; d2i = �a : (a = 0 ! ;; fhd1 a1; d2 a2ij 8a1;a22A
t : a = a1�a2g)Re
all that in the `a
tive' 
ase, intera
tion was neatly 
aptured by the dis-tribution law for the P(A
t� Id) monad, whi
h is no longer the 
ase here.17



BarbosaThis entails the need to introdu
e fun
tion prod, whi
h, additionally, �ltersout syn
hronisation failures. On the other hand, the de�nition of the inter-leaving 
ombinator 
orresponds to the one for the `a
tive' 
ase, but for therepla
ement of set union by merge where merge hd1; d2i = �a: d1 a [ d2 a.Thus, 9 = [(�9)℄ with�9 = � � � M
// (� � �)� (� � �)(!�id)�(id�!)

// (P�A
t � �)� (� � P�A
t)�r��l
// P(� � �)A
t � P(� � �)A
t merge

//P(� � �)A
twhere, of 
ourse, the right and left strengths are relative to the (PId)A
t monad.The same observation applies to parallel 
omposition, whi
h arises, on
e again,as a 
ombination of produ
t and interleaving at the `genes' level. The basi
properties of this model of rea
tive pro
esses are essentially the properties ofthe 
orresponding 
al
ulus of `a
tive' pro
esses. The proof style is also similar,although 
al
ulation resorts now heavily to the properties of exponentiation(see [2℄).Pro
ess Languages and Prototyping.One advantage of thinking about pro
esses as inhabitants of (
oindu
tive)types is the possibility of developing prototypes for pro
ess 
al
uli in fun
-tional languages supporting su
h types. On
e a prototype implementation ofa parti
ular 
al
ulus is developed, pro
esses 
an be de�ned in the languageand their exe
ution tra
ed. Furthermore, to deal with re
ursive pro
esses,a language of pro
ess expressions has to be de�ned allowing for guarded o
-
urren
es of pro
ess variables as valid terms. As expe
ted, a term languagefor pro
esses, over a set of labels, is de�ned as an indu
tive type. The set ofterms is then taken as the 
arrier of a B (A
t�Id)-
oalgebra, whose 
oindu
tiveextension (i.e., the asso
iated anamorphism) provides an interpreter for the
al
ulus. Moreover, pro
ess environments have to be introdu
ed to 
olle
t allthe pro
ess de�ning equations relevant to 
ondu
t experiments on a parti
u-lar network of pro
esses. The environment a
ts as 
ontext information for theinterpreter whi
h is, 
onsequently, rede�ned as a strong anamorphism. Su
ha strategy is used by the author, in [2℄, to develop Charity implementationsof interpreters for elementary pro
ess 
al
uli parametri
 on the intera
tionstru
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