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Abstract Software components, arising, typically, in systems’ analysis and design, are
characterized by a public interface and a private encapsulated state. They persist
(and evolve) in time, according to some behavioural patterns. This paper is an
exercise in modeling such components as coalgebras for some kinds of endo-
functors on

�����
, capturing both (interface) types and behavioural aspects. The

construction of component categories, cofibred over the interface space, emerges
by generalizing the usual notion of a coalgebra morphism. A collection of com-
position operators as well as a generic notion of bisimilarity, are discussed.
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1. INTRODUCTION
���	��
�	����������
����

Words like component or process are so semantically over-
loaded that their use is often a risk. What is understood by a software compo-
nent in this paper is a specification of a state-based module, eventually acting
as a building block of larger, often distributed, systems. Typically, a component
encapsulates a number of services through a public interface which provides
a limited access to the state space. Furthermore, it is intended to persist and
evolve in time. Components arise, typically, as specification units in systems’
analysis and design, namely in the so-called model oriented specification meth-
ods, such as ���� [11] or � [19]. However, it is often difficult to identify and
reason about their composition mechanisms and underlying behavioural pat-
terns. This is due firstly to the presence of internal state spaces that cannot be
discarded and, secondly, to the possibility of interaction proceeding during the
overall computation.

This paper suggests coalgebra theory [16, 10, 20] as a suitable framework
to approach such issues. This relatively new field has been recognized as a
natural setting to deal with state-based dynamic systems where observations
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and their patterns seem far more relevant than data construction. In particular,
coalgebraic methods have been used to approach the semantics of concurrent
systems [17] and the specification of object oriented programs [15, 8].

Although adopting a model-oriented approach to specification, instead of
the axiomatic setting common to the above mentioned references, our contri-
bution has a similar motivation. In particular, we discuss how software com-
ponents can be modeled as coalgebras for a class of functors parametrized by
a monad which captures particular behaviour paradigms (such as partiality or
non determinism). The shape of the functor, determined by the application in
mind, entails a suitable notion of bisimilarity. Finally, some composition op-
erators are defined in a way which is independent of the chosen behavioural
paradigm. Such operators have some resemblance with variants of parallel
composition and renaming found in process algebras (see e.g., [7, 12]). How-
ever, the presence of (eventually structured) input and output and their trans-
formations, which plays a minor role on process algebra, is fully handled here.
Presented as an exercise in coalgebraic modeling, this paper is divided in three
main sections discussing, respectively, how software components can be spec-
ified, compared and composed. The notation used and the notion of a monad
are briefly reviewed in the next two paragraphs.

�	����
� ������
����
Some elementary category theory will be used throughout

the paper to establish our results. The notation is hopefully clear and standard.�����
, the category of sets and set-theoretic functions, will be regarded as the

underlying working universe. We denote the composition of arrows � and 	
by ��
�	 . The identity on an object � is denoted by ���� (or simply � if no
confusion with the object � arises). All binary operators associate to the left.

The product of two objects � and � is denoted by ����� and its sum by
����� . The left (resp. right) projection of a binary product is denoted by ���
(resp. ��� ) and the arrow into a binary product induced by the universal property
of products (usually called the split of � and 	 ) by ��� �!	#" . Dually the left (resp.
right) injection of a binary sum is $ � (resp. $%� ) and the arrow out of a binary sum
induced by the sum’s universal property is denoted by &'� �!	)( (pronounced either
� or 	 ). The unique arrow to (resp. from) a final (resp. initial) object * (resp.+
) is denoted by ,-� (resp. ./� ). Finally 01�324�65879�:�;� is the diagonal arrow,

natural in A, given by �<��=�>�?����@" . The dual codiagonal A1�B2��C�D�E5 7 �
is defined as & ��=�>�?����F( . Subscripts will be omitted wherever implicit in the
context.

Associativity, commutativity, right and left distributivity are represented by
the following isomorphisms, natural in � , � and G . HI2KJ<���L�NMO�PGQ587
�R�OJ<�L�KGSM , TO24�U�V��5 79�L�1� , W8X12YGZ�[J<�\�]�NM15 7^J�GZ�V�]M?�_J�G`�1�aM and
W8b�2 J<�c�c�NMd�1Ge587fJ<�R�1GSMg�aJ<���1GhM . Their inverses are, respectively, H�i , T�i ,
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W8X i and W8b i . A useful derived isomorphism is �a2 J<� �1�NM �;GB5 7^J<� �;GhM4�1� ,
defined as H i 
=J<����Z�>T M�
 H .

The exponential � � represents the arrows from � to � , with ��� ��� � 24� � �
� 587 � as the evaluation morphism. The transpose of an arrow � 21G �
� 5 7 � is denoted by �L2=G 5 7 � � . A partial map from � to � is written
as ��� � .

Functor composition will be denoted by juxtaposition and the identity func-
tor on

�����
by 	�
 . For the constant functor on an object � , which maps every

object to � and every morphism to the identity on � , we will write simply � .
Given two functors � and  , �L2������� denotes a natural transformation � .

� � ��
 ��� ��� � Monads play an essential role in the paper as a way to encode
in abstract terms different kinds of behavioural effects. Given a monad � ,
its unit and multiplication are represented by the natural transformations �D2
	�
���� � and �E2�������� � , respectively. Notice that � and � act as
an identity and a multiplication, respectively, and therefore a monad is the
categorical counterpart of a monoid in

�����
. Thinking of � as the encapsulation

of a behavioural effect, ��� represents the the minimal such structure whereby
a value  "!$# is embedded in ��# . On the other hand, � is a flatenning
operation, providing a way to view a � -effect of a � -effect as still a � -effect.

The composition of arrows ��2&%N5 7'��( and 	 2)(3587��+* is given by

	-,\�.�/%
0

// ��(
132

// ���+*
4

// �+*

This form of composition is associative, with � � , for each � , acting as an
identity, originating, for each � , its Kleisli category.

A monad is strong if it comes equipped with a natural transformation 5)6
1 2

�E� 57��� �NJ8	�
 � 5OM , called a right strength verifying some coherence
conditions [5]. Dually, a left strength is given by 5�9

1 2=5C�:�;���'�NJ 5 �<	�
YM
obeying similar conditions. It is well known [13] that in a distributive category
strength can be defined for every regular functor. A pointwise definition reads
5&6
1= � > �@?d�BA "C��� =ED >�
F�NJHGJILKB� =ED >a�MIL�BA "?M�? . It has the effect of distributing

the free variable values in the context along the monad.
The Kleisli composition of 5N6 and 5O9 gives rise to a correspondence P&6 = � Q 2

�R%:�S��(e587 �_J@%:�T( M natural in % and ( , given by 5N6 = � Q ,U5O9 1 = � Q . Or,
dually, P&9 = � Q �V5&9 = � Q ,+5O6 = � 1 Q . Such transformations specify how the monad
distributes over product. Whenever they coincide, the monad is said to be
commutative.
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2. MODELING
� ��� 
 �������	��
 � � � Think of an endofunctor in

�����
as the specification of

an uniform transformation of sets and functions preserving composition and
identities. It is well known that the signature of a set of constructors of a data
structure � can be represented as a functor. Furthermore, the data structure
itself arises as a map K2���� 587�� which specifies how values of � are built
using the available constructors. There are, however, several phenomena in
programming practice that are hardly definable (or even simply not definable)
in terms of a complete set of constructors. They do possess an observable be-
haviour, but their internal configurations remain hidden and should therefore
be identified if not distinguishable by observation. This is the case not only of
the state based components we want to consider in this paper, but also of ob-
jects in object-oriented programming frameworks or of infinite data structures.
All of them are difficult to express in a purely algebraic way, but find their way
in the dual paradigm of coalgebra theory.

The slogan is “reverse the arrows”: a � -coalgebra is simply a map � 2
# 5 7�� # . One way to look at this notion is as a transition structure, of shape
� , defined on a set # , called the carrier or the state space of � . The shape of
� expresses the way the state is (partially) accessed, through observers, and,
on the other hand, how it evolves, through actions. � specifies a signature of
actions and observers over the carrier of � , but omits its constructors. As a
consequence equality has to be replaced by bisimilarity (i.e., indistinguishabil-
ity with respect to the observation structure provided by � ) and coinduction
replaces induction as a proof principle.

�	��� 
 ��� 
 ������ � � ��� 
 �������	�	
 � � � Our first concern is precisely the
shape of � . In fact, different definitions of � give rise to different models for
components. One that seems to cover a broad range of cases is

�
1
� *��

=��
�C�NJ 5B� *hM =

where the sets % , % � and * , * � are, respectively, the input and output observa-
tion universes which ensure the flow of data. Each � -coalgebra � over carrier
# is written as split �  "!#� #$!)" , where  %!�2)#:� % � 587 * � is the observer, attribute
or output function, and #$!L2�# �:%35 7 �_J # �C*hM stands for the coalgebra
action, method or update function.

On the other hand, � is parametrized by a (strong) monad, � , intended
to capture a particular behaviour model associated to the temporal evolution
of components. Such behaviour may be purely deterministic (in which case
� is instantiated with the identity monad 	�
 ) or rather more complex. By an
appropriate choice for � , different behavioural features might be considered.
For example,
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Partiality, i.e., the possibility of deadlock, captured by the usual maybe
monad, ��� 	�
O�C* .

Nondeterminism, introduced by the (finite) powerset monad, �;���_J8	�
�M .
Monoidal stamping, with � � 	�
���� . Notice that, for � to form a
monad the parameter � should support a monoidal structure to be used
in the definition of � and � .

“Metric” nondeterminism capturing situations in which, among the pos-
sible future evolutions of the component, some are more probable (or
more secure, or more ...) than others. In fact, isomorphism �_J���M���� � * suggests the extension of the powerset to a mapping expressing a
richer notion of nondeterminism in which each possible state is assigned
a confidence level, or probability, leading to �;��� (for � a monoid).
Its refinement to �_J��9�	� M constitutes a monad.

By instantiating � -interface parameters with particular sets, one gets more
specialized notions of a component. Instantiations with * are interesting as
they collapse part of the observation structure. For example, making % � �
* � �E* , results in �

1
� �NJ 5 �C*hM = , a shape for functional components.

A coalgebra of this type is a function ��2 #E587 �_J #6� *SM = . Given a state
 V! # and an input stimulus 
 ! % , � computes a � -structure of possible
responses. Each response is a pair formed by a new state value (representing
the state evolution) and an output value returned to the process environment.

Another relevant case – in fact the one focussed in the rest of the paper —
results from making % � � *"� * , giving rise to � � * � JB��5cM = , a shape
for what could be called object components. What is distinctive of this case
is output independence wrt input. A coalgebra of this type is a split of two
functions

�  %!#� #$!)"12 # 5 7 * �PJB� #\M =

where  %! 2U# 5 7 * is the state observer (usually called the attribute in
the object-oriented programming paradigm) and # ! 2 # � % 5 7 ��# is the
state update function (usually referred to as the method or the process action).
Note that, in practice, * is generally a cartesian product ���� > * � of different,
but simultaneously available, observers, whereas % takes the form of a sum��� ��� % � of (state update) non interfering operations. %

�
is taken as the type of

the argument of operation � .
What we have called here functional and object components, correspond

to a (monadic generalization) of what is known as, respectively, Mealy and
Moore machines in automata literature. Other specializations of � are still
interesting. For example, �NJ 5 �<*SM correspond to purely active components
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whose evolution is not triggered by any external stimulus, and ��� JB��5OM = to
(monadic) automata in which the only information available from a state is its
classification as a final or intermediate one.

A last ingredient has to be added to our model for components. Since they
are not required to possess a complete set of constructors, a seed value for the
state space is required. It represents the initial configuration. A component
with input % and output * is, then, modeled as a pair �M �� ! #1� � 2J# 587
�
1= � � #]" . In the sequel, �

1= � � denotes functor * � JB� 5OM = . Actually, the seed
value could be replaced by a set of possible such values (or a correspondent
predicate) with no extra burden.

� ��� ��� � ��� � ��
�� �
	�� � � � � � � A Stack is a simple example of a component
with two observers (   � and 
��� I �	 �=. ) and two actions (�  ���� and �� � ). As
pop is partial, we use the maybe monad in the type of the corresponding coal-
gebra to force deadlock whenever an illegal pop is performed. Let � be a set
and consider the state space is modeled by sequences of � . Then, define

�  #�?���� �����-!����d�[�  ����!��#���� "K2 ���O5 7^JgJ!� �C*#MK�"��M �PJ!���>�C*YM�#%$%&d"

where the operations have the expected definitions:

 ��� � �   � � 
��� I �	 �=.d"
where   � � G'�-KP)(*� �����,+.-0/21�$��435/26)78/�$ � J!-��9�dM


��� I �	 �=. � G:�+K;� �����
#���� � & �  <��� � �� �=(8
 W b

where �  ���� � GSJ=�4�>dM K $ � J��?��A@B�dM
�  ��� GhJ=�)�C3dM KP)(D� ���;�B+.-0/21�$%�43E/26)78/:$ � JF+.6%�dM

A dummy parameter of pop (of type * ) is made explicit in the component
interface and represents the trigger for this action.

Another example of a simple component is the specification of the reactive
system underlying a

� � � [12] expression, for example, G �IH KKJ KLG �,J KLM\�J KLG . In this case the powerset monad is the appropriate choice and the at-
tribute part may be considered trivial and, therefore, modeled by * . Let �+A �
denote the set of

� � � expressions and � ?  �ON�H1�8J>� K K KQP the set of actions. Our
specification is

G � ��� � �=G !��+A � �O�  SR � �CT � #�R � �UT "K2V�+A �Z587f*_���_J!�+A � M �<W=� "
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where  R � �CT � , # � ! and # R � �CT is given by the following clauses,

# R � �UT J!G��.H@M � N2J KLG�P
# R � �CT J!G��8J�M � N M#�.G�P

# R � �UT JFJ KLG��8J�M � N G�P
# R � �CT J=4��##M � +

for all other -!��+A � and #�!:� ? 
Both components can be represented in a diagrammatic form, making their

input and output interfaces explicit. These are drawn, respectively, at the top
and the bottom of a box:

_____________

��������

_____________

��
��
��
��

��D�C*

��	�
��
J!� �C*YM;� �

�  #N?��
_____________

��������

_____________

��
��
��
��

�� ? 

��	�
��
*

G � ���

� � ��
�
 ��� � � � � � A component morphism is a coalgebra morphism up to a
natural transformation � 0 � 2 encoding the interface conversion, determined by
functions � on the output and 	 on the input. Technically this amounts to a
function � between the state spaces making the following diagram to commute

#
�

//

!
��

�

�
��

�
1= � � # 	�
� �

// �
1= � � � � #

���� � � � � �
// �
1= � � � � �

Furthermore, � has to preserve seeds, i.e., �  � ��� � , taken  � and � � as the
seeds for � and � , respectively.

We need, however, to be more explicit on the definition of � 0 � 2 . For the de-
terministic case (i.e., � � 	�
 ), it is simply � � �L� 2

, for �P2 *�5 7'* � and
	 2�% � 5 7 % . However, the presence of a non trivial (monadic) behavioural
structure calls for a broader definition. The basic observation is that each func-
tion 	R2&% � 587'�-% induces a function # 2 from JB��#\M = to JB� #]M = � given by ,�	 ,
where , is the Kleisli composition for � . # 2 verifies a suitable rephrasing of
the usual properties of exponentials. First of all, it is natural in # :

Proof. Let � and 	 as above. Then JB�;�8M = � 
 # 2 � JB���`
 M 
 J , 	#M �
���a
 ,[	 � J ,O	#M�
=JB���_
 MC� � 2 
�JB�;�8M = .

�

Furthermore, #�� is a contravariant functor from the Kleisli category for �
to
�����

, assigning JB� #]M = to an object % and # 2 to a Kleisli arrow 	R2&% � 587��-% .
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Clearly, #�� � � 5 , 	L� 5/� ���� 1 ��� � . On the other hand, # 2 � 
 # 2 ��# 2�� 2 �
is a direct corollary of the following more general law.

� �
	 � � � � � For ��2 # 587'# � and 	 2O% � 5 7fJB� #]M = , define � 2 2 JB��#\M = 587
JB��# � M = � by

� 2�� JB�\�FM = � 
=JB��#\M 2 � �\�R
 , 	
Now, let � � 2�# � 5 77# � � and 	 � 2&% � � 5 7^JB� #]M = � . Then � �2 � 
 � 2 � J%� � 
d�FM 2�� 2 � .
Proof.

� �2 � 
4� 2 � JgJB�\� � M�
 ,[	 � M�
4� 2
� JB�\� � M�
4� 2 , 	 �
� JB�\� � M�
=JgJB�\�FM 
 ,O	#M ,[	 �
� JB�\� � 
 �FM 
 ,aJ 	 ,[	 � M
� J%� � 
)�FM 2� 2 �

�

� � � ��� ��� 
�
 � � � 
�� � 
 � � 
 ����� � � � Summing up the previous discussion,
a morphism between � -components can be presented as a pair �=�F� � 0 � 2 " , with
� 2 * 5 7 * � , 	 2 % � 5 7 �R% , where �D2 #Q5 7 �

is seed-preserving and
makes the diagram in � 7 to commute. � 0 � 2 is the natural transformation whose
# component is J � 0 � 2 MB� �^� �J# 2 with # 2 defined wrt the Kleisli composition
for � . Given two such arrows �=�F� � 0 � 2 " and � � � � � 0 � � 2 � " , their composition is
�=� � 
��F� � 0 ��� 0 � 2�� 2 � " . Finally identities are defined as �<�� �V� ����� � � � � " . Components
and component morphisms form, therefore, a category

���
.

A crucial point is to ensure that the proposed definition for � 0 � 2 subsumes
the standard case in which the monadic effect is not present. Note that, for
the maybe monad, monadic 	 is just the classifier (or “totalizer”) of a partial
map 	 � 2 % � � % . If 	 � is itself total then its classifier 	 satisfies the equation
	;� $ � 
8	 � and # 2 coincides with J # ��*YM 2 � . This is indeed the case for
the other monads considered above. In fact, a non monadic input morphism
always emerges as a special case of a monadic one. That is to say, a total map
for the maybe monad, an entire and simple relation for the powerset, etc. The
following lemma proves this for the general case.

��� ��	 � � � � Let 	 � 2&% � 587 % and define 	U� � = 
d	 � . Then # 2 � JB� #]M 2�� .
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Proof. Let ��2&%_5 7'� # . Then

# 2 �
����,O	 N by definition P
����,NJM� = 
d	 � M NK	 is non-monadic P
��� 
����R
�� = 
d	 � N , definition P
��� 
�� 1 � 
��R
d	�� N naturality of �9P
��� 
 	 � N monad identities P
� JB� #]M 2 � � N by definition P

�

3. COMPARING
������� � � � ��� � ������
���� When comparing software components, one intuitively
identifies models which, being non isomorphic at the data level, behave in a
similar way “as far as we can see”. Furthermore this tends to be the key ingre-
dient in specifications of distributed systems whose “observational contents”
(or parts thereof) are shared by different observers.

In [14, 12] the notion of bisimulation was introduced in process calculi to
capture this kind of observational equivalence. Later [1] gave a categorical
definition of bisimulation which applies to arbitrary coalgebras (i.e., bisimu-
lation “acquired a shape”). Such a notion of � -bisimulation, for a functor � ,
is defined as a span �!G��	� � �	�/� " whose legs lift to � -coalgebra morphisms, or,
in other words, such that there is a � -coalgebra 
D25G95 7 � G making the
diagram below (on the left hand side) to commute.

G ��
""E

EE
EE

EE
EE���

||yy
yy
yy
yy
y

�

��

G ���
((QQ

QQQ
QQQ

QQQ
QQQ

Q���
vvmmm

mmm
mmm

mmm
mmm

�

��

#

!

��

�

�

��

#

!

��

�

�

��

�EG � ���
  B

BB
BB

BB
BB� ���

~~||
||
||
||
|

*e�PJB� GhM = � � � �
���

''OO
OOO

OOO
OOO� � � �

���
wwooo

ooo
ooo

oo

� # � � * � JB��#]M = * �PJB� � M =
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In
�=���

this can be rephrased in terms of a relation whose projections lift to � -
coalgebra morphisms. The diagram on the right hand side is the corresponding
instantiation for the functor �

1= � � underlying our model for components.

� �	��� 
 
 

��
 � ��� � � Let 
 �e�  � � # � " . A simple calculation yields

� 
 � �
� JH* �PJB�]� � M = M�
 
 N required P
� JH* �PJB�]� � M = M�
=�  � � # � " N by definition P
� �  � �/JB�]� � M = 
 # � " Na� -absorption P
� �  � � �]�F�>
 # � " N exponential-absorption P

and, similarly, � 
 �8� � �  � � �]�8� 
 # � " . A direct consequence of these equali-
ties is the fact that, for any �@ ���" !:#6� �

, the following equations hold:

 � �  ��#"C�  !  �  � �
�]� � 
 # � �M ���"C� #$!� 
�]�8�1
 # � �M ���"C� # � �

Finally, we may rephrase such results as a proof rule for bisimulation, whose
shape depends on the adopted behaviour monad. For the deterministic case
(i.e., ��� 	�
 ) this yields

�M ��#" !9G ���  !  ��  � ��� ��� � = � # ! �M � 
 " ��# � � �8� 
 "?" ! G
For partial components (i.e., ��� 	�
c�D* ), on the other hand,

�M ��#" !9G ���  %!� �� � ��� � 
 ! %
J J #$! �M � 
 " � # � � ��� 
 " � �	�Y�C3d" M




J #$! �M � 
 " � ��� �B � "� # � � �8� 
 " � ��� �� � "��L�M � �� � " ! GhMgM
Finally, for the non deterministic case (i.e., � � �_J8	�
�M ) the proof rule resem-
bles the definition of bisimulation for classical labelled transition systems,

�M ��#" ! G ���  %!� �  � �
� � 
 ! %
J���� � ������ � � ������� � ������� � � ��� �M �� �� � " !9G

�
J�� � � ��� � � � � ��� � � � ��� � � � � ��� �M � �� � " !9GhM
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Notice that if � and � both denote the final coalgebra, then morphisms � � and
��� coincide (by finality), 
 is an isomorphism and, therefore, bisimulation boils
down to equality.

�&� ��� � � ����� �	��
�� �
Let � and � be components over the same interface �H*�� %Y"

with  � ! # and � � ! � as seeds, respectively. They are said to be bisimilar,
written ��� � � � � � (abbv. ��� � ) iff there is a � � � = -bisimulation containing the
pair �M � �� � " .
� � � ��� � ��� � 
 �

Now how does interface data interfere with the definition
of bisimulation? Moreover, what is the effect of “monadic” input morphisms
in defining bisimulation, and, therefore, relating component models? The first
question leads to the definition of bisimulation up to � 0 � 2 . The definition is
well-behaved in the sense that standard results can still be rephrased in this
setting. In particular, we prove in [3] that bisimulation is preserved by

� �
-

arrows and, moreover, the graph of a morphism � � � � 0 � 2 " is a bisimulation up
to � 0 � 2 , where,

� �	��� � � ����� �	��
�� �
Let � and � be components over �H*a� %Y" and �H* � � % � " ,

respectively, and � 0 � 2 2�� = � � � � � = � � � � be a natural transformation. Then �
and � are said to be bisimilar up to � iff

��� 	 � ��� J � 0 � 2 
 � M�� � � � � � � �

4. COMPOSING

In this section we move on to the introduction of some basic operators for
composing components in category

� �
. First, however, we need to define a

twin category of interface spaces for components.

� � ��� � � ��� � ��� 
 ���
For each behaviour monad � , the interface category 	�� �
	 1

(abbv. 	�� �
	 ), has pairs of sets � *�� %#" as objects and pairs of functions as arrows.
In particular, a morphism �R2h�H*�� %#"�587 �H* � � % � " is defined as �%� �!	#" , with
� 23* 587 * � and 	L2 % � 5 7 �-% . Composition and identities are pointwise:
inherited from

�����
in the first component and from the Kleisli category for �

in the second.

� � �� 
 � � � ��� � � A basic operation upon components is interface wrapping in
order, for example, to restrict its use or to pre- or post- process a particular pa-
rameter. In classical process algebra this corresponds to relabelling. However,
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the explicit consideration of input and output types in the model presented in
this paper, turns it into a much more powerful operation. As illustrated below,
it includes restriction as a particular case.

The definition of wrapping builds on the fundamental observation that
���

is cofibred over 	�� �
	 (lemma 18). A cofibration is a functor �P2 � � 587 	�� �
	
providing co-cartesian liftings of every 	�� � 	 morphism �K2 �H*a� %Y"]587 �H* � � % � "
originated in the � image of each

� �
-object. This means, in our context, that

given a component � each interface morphism ��2�� �:587^� * � � % � " can be lifted
(or extended) to a component morphism ���F2 �P5 7 � , such that � ��� �H* � � % � "
in a canonical way.

Given an interface morphism �a2O� *a� %Y" 5 7 �H* � � % � " and a component �
with interface �H*�� %#" , as above, we denote � wrapped by � by ��� � or, simply,
��& � ( . In the

�  #�?�� example, for instance, one has *'� J!� ��*#M �,� and
%��A� �C* . Then,

� 
HI � �! � �  #�?�� � �  #�?C� & �����d�B� # $%& " (

denotes a stack with no   � attribute ( * � �I� , % � � % ). Further restricting the
use of both   � and �  � yields

� �� #�� 	� �  #N?��V� �  #�?��`& �%�8� �B� & 
 $ � " (

Often the input component of the wrapping morphism is a non monadic arrow,
made monadic by composition with the monad unit. This is the case in the
examples above. In the sequel we omit this composition for improved read-
ability, if types are clear from the context. Furthermore, we write ��&'� �!	4( as an
alternative notation to ��& �%� �!	#" ( .
��� ��	 � � � ��� The functor � 2 ��� 587/	�� � 	 defined by

���M � !:#K� �Z2 # 5877* �PJB� #]M = " � �H*a� %Y"
���=� � � 0 � 2 " � �%� �!	�"

is a cofibration.

Proof. Consider � �e�@ � ! #1� ��2�# 5 77*e�PJB� #]M = " and let �%� �!	�" 2�� ��587
�H* � � % � " a morphism in 	�� �
	 (see diagram below). We claim that its cocartesian
lifting is ������V� � 0 � 2 "128�M � � � " 5 7^�M � �/������>� � 0 � 2 " � " .
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� ��� � ?"

���
�

��

�@ � � � " � ����� � 	�
� � �//

� � � 	 
 � � � � �
55jjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjjj �M � �/�< � �>� � 0 � 2 " � "

� � � 	 
 � � � � � � �

<<

	�� � 	 � *�� %Y"
� 0 � 2 �

//

� 0 � � 2 � �
))TTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

TTTT
TTTT

� * � � % � "
� 0 � � � 2�� � �

""E
EE

EE
EE

EE
EE

EE
EE

EE
E

�H* � � � % � � "

Let :� � � � ! � �  2 � 5 7 * � � � JB� � M = � � " be another component and
�=� � � 0 � � 2 � "Z2\�M � � � "Z587 � � � � ?" be an

� �
-morphism. Suppose that �%� � �!	 � "`2

�H*�� %Y" 5 7 �H* � � � % � � " factorizes over �%� �!	#" in 	�� �
	 through ��� � � �!	 � � " . Therefore
composition in 	�� �
	 yields � � � 
 �C� � � and 	 ,]	 � � �6	 � . We may, then, close
the upper diagram, in a unique way, with �=� � � 0 � � � 2 � � " . In fact,

� � � � 0 � � � 2 � � "�
=�<�� � � � 0 � 2 "
� �=�F� � � � �<# 2 � � " 
��<�� �V� ��� # 2 " N by definition P
� �=�F�/J%� � � 
)�FMK� # 2�� 2 � � " N by lemma 8 P
� �=�F� � � �:# 2 � " N by factorization in 	�� � 	 P
� �=�F� � 0 � � 2 � " N by definition P

�

��� � � � � � � ����� � � � Another basic construction on components is pipelining,
which corresponds to a kind of sequential composition. It is associative but
only up to isomorphism, as the presence of internal state precludes most prop-
erties to hold up to equality.

Let ��� �M � ! #1� �Z2 #65 7 � ��JB��#\M = " and �-� � � � ! � � � 2 � 5 7 * �
JB� � M � " stand for two component models. A pipe is formed by placing them
side by side and connecting the output of � to the input of � . The composed
system is ��� ��� �?�M � �� � "J! #e� � ����� �N2 # � � 5 7/* � JB�NJ #e� � MgM = "
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where � � �-� �  %! � � � # ! � � " is given by

 %! � � � # � �
� �

// � � � // *

#$! � � � J # � � M � % �
// J # ��%YM � � � � D ���

// ��# � � ��� // �NJ # � � M
1 � � � // ���_J #6� � M 4

// �NJ # � � M

where

#N A.� # � �
� ��� � � � �

� �
�

// J #6� � MK� � � // #6�PJ � � � M
��� D � �

// # �C� � ��� // �NJ #6� � M

� � � � ��
 ����� � � � 
 ��� 
 � � ��� 
 ��� Unlike, e.g., the cartesian product of data
structures, components’ parallel composition is not described by an universal
construction. We have proceeded experimentally by identifying some tensors
and studying their properties. We shall consider here three such structures. In
all of them the composed state space is the cartesian product of the component
states. They differ, however, on the allowed interaction patterns.

In the sequel let � � �@ � ! #K���C2 # 587 * ��JB��#]M = " and �<� � � � !� � � 2 � 587 	 �PJB� � M Q " stand for two component models.
The first two tensor products are ��
 �U23# � � 587 JH*�� GhM;� JB�NJ # �� MgM = $ Q and �� �_2 # � � 5 7 JH* �9GhM �IJB�NJ #e� � MgM =ED Q . ��
 � behaves

either as � or � depending on input, and corresponds to what is called external
choice in process calculi. On the other hand, �� � is a synchronous product:
both processes are executed simultaneously when triggered by a pair of input
values. A more “liberal” interpretation of parallel composition is given by
another tensor product ��� � 2)#C� � 587fJH* � GhM@�:JB�NJ # � � MgM =�� Q , where����� is given by the coproduct � ��� � �f��� . The intuition is that,
by putting both components side by side one gets an (observable) increase of
behaviour: not only the individual observers and actions of both processes are
available, but also there is the possibility of activating them concurrently (the
disjointness of the two state spaces avoiding interference).

Their definition coincides on the observers

 !�� � �  !�� � �  ! � � � # � � �
� D � � // * ��G
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but does differ on actions. Therefore,

# !�� � � J # � � M;�PJ@%O� ( M
���

// J # � � MK� %O� J # � � MK�<(
� D �

// J #6� %YM � � � # �PJ � �<( M
� � D ��� $ ��� D � � // ��# � � � #6� � �

� � $ � � // �NJ # � � M � �NJ #6� � M
� ��� � �����

// �NJ # � � M

# !�� � � J #6� � M � J@%_�<( M � �
��� � ��� � ��� � � � � � � ��� � ��� � ��� � ��� � �

// J # ��%YM;�PJ � �<( M
� � D � �

// ��#6� � � � � // �NJ # � � M
and

#$! � � � J #6� � M �PJ@%c� (R� %_�:( M
���

//

// J # � � M �PJ@%O�S( M � J # � � MK�PJ@%R�<( M
� � ��� � � � �	� � �

// �NJ # � � M
Moreover, units for 
 and � coincide: in both cases take the component

with empty input and the singleton state space, i.e.,


 � � 
 � � ��3-!P*��[�<�� & �?�� & "K2=* 587 *R�PJB�a*#M � "
The unit for � is


 � � ��3U! *8�]�< � & �B� & " 2 * 5 7 *U�IJB�a*#M & " . Note that the
use of P 6 or P 9 in the definition of � is irrelevant for � a commutative monad.
On the other hand, choosing ���V	�
�� leads to two alternative versions of syn-
chronous product. Commutativity thus seems to be a reasonable requirement
to impose on behaviour monads.

�	�����

�� �
Component interaction is not captured by any of the tensor

products above. However the kind of plugging done in sequential composition
may be generalized to a hook operation connecting some input to some output
points.

Depending on the shape of the input interface, we consider an effective or a
delayed hook. The first case assumes the argument is modeled by a coalgebra
� 2�# 5 7 JH* � � M[� JB��#\M = $ � . Define J � M � as a coalgebra with the same
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signature and observer which feeds back part of the output as follows:

# � ! ��� � # �PJ@%c� � M
� �

// ��#
1 � � � // ����# 4

// � #
where

#O A"� #
� ��� � � � � � � � // #6� � ��� D�� �

// #6�PJ@%c� � M
���

// ��#

A delayed hook applies to cases in which the required input is a tuple whose
second component comes from the (previous) state. Note that the common
parameter becomes hidden. Formally, let �L2 #e587 JH* � � M � J #�� *#M = D � .
Define � J � M as

 � � ! � �C� � 
  %!
# � � ! � � #6� %

� ��� � � ��� � � � � ��� � � // # �PJ@%_� � M
� �

// ��#

���	�,� 	�� ��� � � � In order to illustrate the use of the connectives just in-
troduced, consider a distributed querying system in which a question (modeled
by a type

�  � �  ) is simultaneously placed to several independent data sources,
each of which supplies a possible answer (of type � ). A special component
acts as an answer collector, merging all the answers produced and comput-
ing a final result by means of some pre-defined algorithm. Let us start with
two data sources (the � -ary case is dealt similarly) � �  E � � and � �   � � as
well as a concentrator � � 
 � � acting as a data sink. Note that � �   � � and
� �   � � may have different definitions and need not to be deterministic. A
typical choice for � in this example would be �����_J 5 ��GhM , where G is the
confidence level assigned to a given answer.

_____________

��������

_____________

��
��
��
��

�
�  < � 

��	�
��
�

� �   � �
_____________

��������

_____________

��
��
��
��

�
�  � � 

��	�
��
�

� �   �/�
_____________

��������

_____________

��
��
��
��

��

��	�
��
% � �

� � 
�� �

We begin by constructing the synchronous product � �   � � � � �   �/� with
input

�  < � V� �  � �  and output � �U� . As the same question is to be placed
simultaneously to both data sources, this input has to be reduced by wrapping
the combined process with the diagonal function, i.e.,

� � � J � �   � � � � �   � � M�&  � � 0 (
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Next � �
is composed with � � 
 � � via 
 and the output of the former fed back

into the later, through a double application of hook. For this to be possible,
however, the input of � � 
�� � has to be expanded to a coproduct of � , which is
achieved by wrapping with the appropriate codiagonal

�5� � � � 
�� �]& �� � A (
Some additional wiring is required to apply the hook operator: the output in-
terface of � � 
 � �

is J<� � �cM ��% � � and, consequently has to be changed to
% � � �LJ<� �U�]M by wrapping with the T isomorphism. The result is pictured in
the diagram below.

_____________

��������

_____________

��
��
��
��

�

��	�
��� �

�  <�� 

� �Z�

_____________

��������

_____________

��
��
��
��

�

��	�
���5�

� � �

%�� ��S�?�

The aggregated system is, therefore, given by
�  � � JgJ � � 
 � � M�& �� �?T ( M � � �

Finally, the intermediate answers are hidden from the environment, yielding
the final querying system as a new component pictured as follows

_____________________

��������

_____________________

��
��
��
��

�
�  � � 

��	�
��
% � �

�  � &-$!���?�F�g(

��� ��� � � � ��� 
 � � � Functional components, i.e., components representing pure
functions, are encoded in

���
by output mirror. Let �32Y�e587 � . Its encoding

as an
���

object is
� ���;� ��� !Z�R�/�<�� � � � � 
��R
 � � "?"
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whose coalgebra is of type ��587 ���PJB�]�NM � .
Note, however, that sequential composition in

���
does not specialize to the

usual functional composition. The reason is that the state space in
� � � cannot

be discarded. Moreover, the need to choose a seed value makes the repre-
sentation of � not unique.

� � � , for any � , satisfies, however, an almost seed
irrelevance property: given two encodings of � with different seeds, for ex-
ample, �F�U� ���/� � � " and � � � ��� � � � " (� � �%�� � � � � 
 � 
 � � " ), they become
bisimilar in the step following the initial one.

To see this we have first to formalize a weaker notion of bisimilarity, which
could be called next step bisimilarity. The intuition is that two components
� and � are in such a relation if each pair of successor states of � and � is
contained in a � = � � -bisimulation. Given a � = � � coalgebra � , over a state space
# , and a state  ! # the (possibly empty) set of successors of  is denoted by
� 1 >! N  P and given by (un)lifting the set

N H J�
 M � 
 ! % � H �C���K
%��JM M>P
wrt functor � . Technically, this computation is left adjoint to the predicate
lifting introduced in [6], for (extended) polynomial functors (the whole topic
is addressed in [9] in the broader context of modal languages induced by coal-
gebras). Omitting, for the sake of brevity, the calculational details, we just
present �

1
! for the two familiar cases of the maybe and the powerset monads.

� > $%&! NE P �;N A !:# � $ � A ! N J<�8� 
%��JM MgM�J�
!M � 
 ! %
P�P
��� � > �! NE P ��� N J<��� 
 ��JM MgM�J�
!M � 
 ! %0P

The announced definition is as follows:

� � ��� � � ����� �	��
�� �
Let � and � be components over the same interface � *�� %#"

and behaviour monad � , with  �� and ��� as seeds, respectively. They are said
to be next step bisimilar (written ����� � ) iff

� 1! N  � P � � 1� N � � PR� +



J � � � � ��	� ��
� � � � � ���� � 
� K �M � � " � � �8� � "
�
� � � � ���� � 
� � � � � ���� ��
�� K_�@ � � " � � �8� � " M

� �	� 	 � � � ��� Let � � and � � be two encodings of a function �D2 � 587 �
over different seeds �/� and � � . Then � � � � � � .
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Proof. It is enough to show that the sets of successor states in both cases coin-
cide. If they are both empty we are done; otherwise take the identity relation
to trivially witness all the required bisimulations. Denoting, as in [9], the un-
lifting of a predicate wrt a functor � by J 5OM 1 2 �_JB��5cM[587 �_J 5cM , a simple
calculation yields

� 1� � N � � P � J�N H # � # !Z� � H<�eJ<��� 
�� � M � � PdM 1
� J�N H # � # !Z� � H<�eJ<��� 
=�%����K� �O�3
�� 
 ���/Mg" � � PdM 1
� J�N H # � # !Z� � H<�eJ � � 
�� 
4� � M �/��PdM 1
� J�N JM�O�3
��R
 �8� M � � � ��#�" � # !Z�;PdM 1
� J�N JM�O�3
�� M�# � # !Z�;PdM 1
� J�N JM�O�3
��R
 �8� M � � � ��#�" � # !Z�;PdM 1
� � 1� � N � ��P

�

5. CONCLUDING REMARKS
��� ��� � � ��� � � ��� � � � � � 
 � � 
�
 � �

This paper presented a coalgebraic
model for software components and defined some core operators of a com-
ponent algebra. Components and component morphisms are shown to form
a category

���
. This definition allows for monadic input morphisms to be ab-

sorbed by the component behavioural model. Furthermore, we prove that
���

is
cofibred over the interfaces.

Further properties of the operators as well as alternatives to the basic model
are discussed in [3]. For example, a simple extension captures the presence of
internal actions which allow the component to evolve without being triggered
by the environment.

Complementary research, described in [2], concerns the prototyping of com-
ponent’s behaviours in the non strict functional language

� � ��
 � � � [4, 18], by
computing the anamorphic image of their seeds. In fact, the behaviour of a
component abstracts over all internal states. For a �

1= � � component, this is rep-
resented (or encapsulated) in the image of its seed under the unique arrow (the
anamorphism) from � to the �

1= � � final coalgebra. The actual way in which the
anamorphism is computed (and the behaviour revealed) resorts to lazy evalua-
tion. In each step, activation of a new continuation structure is returned upon
which experimentation proceeds.

A current research topic concerns the refinement of this kind of coalgebras
with structured input and output, which involves a weaker notion of coalge-
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bra morphism. In fact, not one, but several notions of refinement arise in a
construction which is, again, parametric on the behaviour monad.

����������	�
������������������
������
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