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Dependable Decentralized

Storage Management for Cloud

Computing

The volume of worldwide digital information is growing and will continue to grow

at an impressive rate. Storage deduplication is accepted as valuable technique

for handling such data explosion. Namely, by eliminating unnecessary duplicate

content from storage systems, both hardware and storage management costs can

be improved. Nowadays, this technique is applied to distinct storage types and,

it is increasingly desired in cloud computing infrastructures, where a significant

portion of worldwide data is stored. However, designing a deduplication system

for cloud infrastructures is a complex task, as duplicates must be found and elimi-

nated across a distributed cluster that supports virtual machines and applications

with strict storage performance requirements.

The core of this dissertation addresses precisely the challenges of cloud in-

frastructures deduplication. We start by surveying and comparing the existing

deduplication systems and the distinct storage environments targeted by them.

This discussion is missing in the literature and it is important for understanding

the novel issues that must be addressed by cloud deduplication systems. Then, as

our main contribution, we introduce our own deduplication system that eliminates

duplicates across virtual machine volumes in a distributed cloud infrastructure.

Redundant content is found and removed in a cluster-wide fashion while having a

negligible impact in the performance of applications using the deduplicated vol-

umes. Our prototype is evaluated in a real distributed setting with a benchmark

suited for deduplication systems, which is also a contribution of this dissertation.
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Gestão Confiável e Distribúıda

do Armazenamento para

Computação em Nuvem

O volume de informação digital mundial está a crescer a uma taxa impressionante.

A deduplicação de sistemas de armazenamento é aceite como uma técnica valiosa

para gerir esta explosão de dados, dado que ao eliminar o conteúdo duplicado é

posśıvel reduzir ambos os custos f́ısicos e de gestão destes sistemas. Atualmente,

esta técnica é aplicada a diversos tipos de armazenamento e é cada vez mais

desejada em infraestruturas de computação em nuvem, onde é guardada uma

parte considerável dos dados gerados mundialmente. Porém, conceber um sistema

de deduplicação para computação em nuvem não é fácil, visto que os dados

duplicados têm de ser eliminados numa infraestrutura distribúıda onde estão a

correr máquinas virtuais e aplicações com requisitos estritos de desempenho.

Esta dissertação foca estes desafios. Em primeiro lugar, analisamos e com-

paramos os sistemas de deduplicação existentes e os diferentes ambientes de ar-

mazenamento abordados por estes. Esta discussão permite compreender quais

os desafios enfrentados pelos sistemas de deduplicação de computação em nu-

vem. Como contribuição principal, introduzimos o nosso próprio sistema que

elimina dados duplicados entre volumes de máquinas virtuais numa infraestru-

tura de computação em nuvem distribúıda. O conteúdo redundante é removido

abrangendo toda a infraestrutura e de forma a introduzir um impacto mı́nimo

no desempenho dos volumes deduplicados. O nosso protótipo é avaliado exper-

imentalmente num cenário distribúıdo real e com uma ferramenta de avaliação

apropriada para este tipo de sistemas, a qual é também uma contribuição desta

dissertação.
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Chapter 1

Introduction

A study conducted by International Data Corporation (IDC) projects that digital

data will reach 40 ZiB by 2020, corresponding to 50 times more information than

the one reported in the beginning of 2010 [EMC 2012]. Cloud computing has

a significant role in the management of such data and, from 2012 to 2020, the

number of servers worldwide is expected to be 10 times higher, while the amount

of digital information managed directly by data centers will increase by a factor

of 14. This way, novel approaches that e�ciently manage large amounts of digital

content and reduce infrastructure costs are increasingly needed.

The automatic removal of duplicate data has proven to be a successful ap-

proach to tackle previous challenges, and is now present in several storage ap-

pliances [Zhu et al. 2008, Aronovich et al. 2009, You et al. 2005]. Undoubtedly,

current usage patterns mean that multiple copies of the same data exist within a

storage system, for instance, when multiple users of public cloud infrastructures

independently store the same files, such as media, emails, or software packages.

This thesis is focused on storage deduplication, that we define as a technique

for automatically eliminating coarse-grained and unrelated duplicate data in a

storage system. Briefly, duplicate data belonging to distinct users is removed

from the storage system that only persists an unique shared copy. However, the

owners of duplicate content are not aware that their data is being shared, thus

ensuring deduplication’s transparency and privacy. Unlike traditional compres-

sion techniques that eliminate intra-file redundancy or redundancy over a small

group of files, typically stored together in the same operation, deduplication aims

at eliminating both intra-file and inter-file redundancy over large data sets and

5



6 1 Introduction

possibly even across multiple distributed storage servers [Kulkarni et al. 2004].

Also, duplicates are found for data stored at di↵erent times by uncoordinated

users and activities.

Deduplication has been in use for a long time in archival and backup sys-

tems [Bolosky et al. 2000, Quinlan and Dorward 2002, Cox et al. 2002]. Nowa-

days, this technique is no longer an exclusive feature of the latter storage types,

and it is also being applied to primary storage, Random-Access Memory (RAM)

and Solid State Drives (SSDs). The e↵ectiveness of deduplication is usually mea-

sured by the deduplication gain, defined as the amount of duplicates actually

eliminated, that is directly related with the achievable storage space reduction.

As detailed in the literature, deduplication can reduce storage size by 83% in

backup systems and by 68% in primary storage [Meyer and Bolosky 2011]. RAM

used by virtualized hosts can be reduced by 33% [Waldspurger 2002] and the stor-

age space of SSDs can be reduced by 28% [Chen et al. 2011]. The spared space

allows reducing infrastructure costs but, it can also be used to improve reliability

with, for instance, additional Redundant Array of Inexpensive Disks (RAID) con-

figurations. Moreover, deduplication might have a positive performance impact

throughout the storage management stack, namely, in cache and Input/Output

(I/O) e�ciency [Koller and Rangaswami 2010], and in network bandwidth con-

sumption, when it is performed at the client side and only unique data is sent to

the storage server [Muthitacharoen et al. 2001].

However, some of these storage environments have strict latency requirements

for the requests being served by them. This way, maximizing deduplication gain

is no longer the only goal, since minimizing its overhead in storage requests is also

a requirement for enabling e�cient deduplication. The core contribution of this

document aims precisely at providing e�cient deduplication for one of these en-

vironments; the cloud computing primary storage, more precisely, across Virtual

Machines (VMs) primary volumes managed by cloud infrastructures [Srinivasan

et al. 2012, El-Shimi et al. 2012, OpenSolaris 2014, Hong and Long 2004, Clements

et al. 2009, Ng et al. 2011].

Cloud computing and, in particular, virtualized commodity server infras-

tructures bring novel opportunities, needs, and means to apply deduplication

to VMs volumes stored in general purpose storage systems. As static VM images

are highly redundant, many systems avoid duplicates by storing Copy-on-Write
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(CoW) golden images and then use snapshot mechanisms for launching identical

VM instances [Hewlett-Packard Development Company , L.P 2011, Meyer et al.

2008]. In order to further improve deduplication space savings, other systems

also target duplicates found in dynamic general purpose data stored on VMs vol-

umes. Space savings up to 80% are achievable when using both approaches and

when cluster-wide deduplication is performed [Clements et al. 2009, Meyer and

Bolosky 2011, Srinivasan et al. 2012]. With the unprecedented growth of data

managed by cloud computing services and the introduction of more expensive

storage devices, as SSDs, these additional space savings are key to reduce the

costs and increase the capacity of enterprise cloud storage systems [Dan Iacono

2013].

Traditional in-line deduplication approaches, commonly used in backup sys-

tems, share data before storing it, thus including the computational overhead

in storage write requests [Quinlan and Dorward 2002]. Primary storage volumes

have strict latency requirements so, the overhead in the critical storage write path

is usually not acceptable [Ng et al. 2011, Srinivasan et al. 2012]. As another op-

tion, o↵-line deduplication minimizes storage overhead by decoupling writes from

aliasing operations, that are performed in the background [Hong and Long 2004,

Clements et al. 2009]. However, as data is only aliased after being stored, o↵-line

deduplication temporarily requires additional storage space. Also, deduplication

and I/O requests are performed asynchronously so, appropriate mechanisms for

preventing stale data checksums and other concurrency issues are necessary and,

may degrade performance and scalability.

Unlike in archival and backup environments, primary storage data is modi-

fied and deleted very frequently, thus requiring an e�cient CoW mechanism for

preventing in-place updates on aliased data and potential data corruption. For

instance, if two VMs are sharing the same data block and one of them needs

to update that block, the new content is written into a new and unused block

(copied on write) because the shared block is still being used by the other VM.

This mechanism introduces even more overhead in the storage write path while

increasing the complexity of reference management and garbage collection thus,

forcing some systems to perform deduplication only in o↵-peak periods in order

to avoid a considerable performance degradation [Clements et al. 2009]. Unfortu-

nately, o↵-peak periods are scarce or inexistent in cloud infrastructures hosting
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VMs from several clients and with distinct workloads. This way, o↵-line dedupli-

cation has a short time-window for processing the storage backlog and eliminating

duplicates. Ideally, deduplication should run continuously and duplicates should

be kept on disk for short periods of time thus, reducing the extra storage space

required.

Distributed cloud infrastructures raise additional challenges as deduplication

must be performed across volumes belonging to VMs deployed on remote cluster

servers [Hong and Long 2004, Clements et al. 2009]. Space savings are maximized

if duplicates are found and eliminated globally across all cluster volumes. How-

ever, this is a complex operation that requires a remote indexing mechanism,

accessible by all cluster servers, that is used for tracking unique storage con-

tent and finding duplicates. Remotely accessing this index in the critical storage

path introduces prohibitive overhead for primary workloads and invalidates, once

again, in-line deduplication. In fact this negative impact lead to systems that

perform exclusively local server deduplication or that relax deduplication’s accu-

racy and find only some of the duplicates across cluster nodes [You et al. 2005,

Bhagwat et al. 2009, Dong et al. 2011, Fu et al. 2012, Frey et al. 2012].

1.1 Problem statement and objectives

In spite of the considerable space savings, primary storage deduplication in a

cloud computing distributed infrastructure raises novel challenges that are not

fully addressed by current proposals. Firstly, in order to maximize the dedupli-

cation gain, duplicates must be found across volumes of VMs that are running in

several cluster servers. Moreover, deduplication must have a scalable and reliable

design while introducing a negligible performance impact for the VMs dynamic

volumes with strict latency requirements. Coping with both challenges is a di�-

cult task, explaining why current systems are only able to maintain a negligible

performance impact by trading o↵ deduplication space savings, thus only finding

duplicates in o↵-peak periods or across a subset of the cluster data [Clements

et al. 2009, Dong et al. 2011, Srinivasan et al. 2012].

The main objective of this thesis is then to design a deduplication system

for cloud computing primary storage infrastructures that is fully-decentralized,

scalable, reliable and addresses the previous challenges.
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Since there is a vast amount of work on storage deduplication, it is important

to know the current features that may be useful for our system. However, there is

still a general misconception about the common and distinct characteristics that

deduplication systems possess and, there is still few information explaining how

the distinct storage environments a↵ect the designs os such systems. For instance,

it is not clear why a specific system is e�cient for backup storage but not for

primary or SSD storage. This way, another objective of this thesis is to identify

common design features shared by all deduplication systems, and then to discuss

the di↵erent optimizations driven by the targeted storage environment while,

showing their applicability in cloud computing primary storage infrastructures.

Deduplication designs are commonly validated by implementing prototypes

and then evaluating them empirically with static datasets or benchmarking tools.

Static datasets are useful to evaluate archival deduplication systems but are not

able to simulate the dynamism of primary volumes where data is updated fre-

quently [Tarasov et al. 2012]. On the other hand, there are some open-source

micro-benchmarks that can achieve this dynamism but are not able to generate

content in a realistic fashion. This means that, in most cases, all written data

either has the same content, or it has random content with no duplicates at

all, which does not allow a proper evaluation of any deduplication system [Coker

2014, Katcher 1997, Anderson 2002]. This challenge leads to our third objective

that is to develop a benchmark that is able to simulate both the dynamism and

realistic content found in real storage infrastructures, thus allowing to evaluate

properly systems such as the one discussed in this thesis.

1.2 Contributions

As the main contribution of the thesis, the combined challenges of cloud com-

puting primary storage and cluster deduplication are addressed with DEDIS,

a dependable and fully-decentralized system that performs cluster-wide o↵-line

deduplication of VMs primary volumes. More specifically, deduplication is per-

formed globally across the entire cluster, in a fully-decentralized and scalable

fashion, by using a partitioned and replicated fault tolerant distributed service

that indexes storage blocks with unique content and allows finding duplicates.

As all storage blocks are indexed by this service, deduplication is performed in
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an exact fashion across the whole cluster, ensuring that, all duplicate blocks are

processed and eventually shared. Also, an optimistic o↵-line deduplication ap-

proach avoids costly computation and calls to the previous remote service in the

storage write path. Along with this optimistic approach, we introduce several op-

timizations that allow deduplication to run simultaneously with storage requests

while having a negligible impact in the performance of both.

Unlike previous related systems, DEDIS works on top of any storage back-

end exporting an unsophisticated shared block device interface, that may be

distributed or centralized. This way, our system does not rely on backends with

built-in locking, aliasing, CoW or garbage collection operations. Although this

decision significantly impacts the system design and favors distinct optimizations,

it allows decoupling the deduplication systems from a specific storage specifica-

tion and avoids performance issues that arise from this dependency [Hong and

Long 2004, Clements et al. 2009]. Also, our design does not rely on storage

workloads with specific properties, such as data locality, to achieve low storage

overhead and an acceptable deduplication throughput [Srinivasan et al. 2012].

As another contribution, we present an extensive survey of current storage

deduplication systems, detailing the main challenges addressed by them and spe-

cific design decisions while, clarifying some misunderstandings and ambiguities

in this field. Firstly, we extend the existing taxonomy [Mandagere et al. 2008]

and identify key design features common to all deduplication systems. For each

of these features, we describe the distinct approaches taken to address dedupli-

cation main challenges. Then, we group existing deduplication systems into four

di↵erent storage groups: archival and backup storage, primary storage, RAM and

SSDs. We show that each storage group has distinct assumptions that impact

deduplication designs.

As a third contribution, we present DEDISbench, a block-based synthetic disk

micro-benchmark with novel features for evaluating deduplication systems in a

more realistic environment. As the main novelty, data written by the benchmark

mimics the content of distributions extracted from real datasets. These distribu-

tions can be automatically extracted from any storage system with another tool,

named DEDISgen, thus allowing to simulate the content of distinct storage envi-

ronments. As another feature, DEDISbench supports an hotspot random access

distribution, based on Transaction Processing Performance Council Benchmark
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C (TPC-C) NURand function, that simulates hotspot disk accesses [Transaction

processing performance council 2010]. This feature is key for simulating a dy-

namic storage environment where a small percentage of data blocks are hotspots,

with a high percentage of accesses, while most blocks are only accessed sporad-

ically. Write hotspots increase the number of blocks frequently rewritten and,

consequently, the amount of CoW operations which, are known to have a nega-

tive impact in primary deduplication [Clements et al. 2009].

1.3 Results

The work discussed in this thesis resulted in a number of publications in distinct

international journals and conferences:

• João Paulo and José Pereira. A Survey and Classification of Storage Dedu-

plication Systems. ACM Computing Surveys, 47(1):1–30, 2014

This journal publication surveys existing deduplication systems and clas-

sifies them according to the targeted storage environment, i.e., archival

and backup, primary, RAM and SSD storage. Also, an existing taxonomy

that identifies key design features common to all deduplication systems is

extended with novel classification axes.

• João Paulo and José Pereira. Distributed Exact Deduplication for Primary

Storage Infrastructures. In Proceedings of Distributed Applications and In-

teroperable Systems (DAIS), 2014

This conference publication describes DEDIS, a dependable and fully-

decentralized system that performs deduplication across VMs primary vol-

umes in a distributed cloud infrastructure. The main system design is

detailed, as well as, some optimizations that reduce the overhead in storage

requests while increasing deduplication throughput. The evaluation of our

prototype shows that negligible overhead is possible while executing storage

requests and running deduplication simultaneously.

• João Paulo, Pedro Reis, José Pereira, and António Sousa. DEDISbench: A

Benchmark for Deduplicated Storage Systems. In Proceedings of Interna-

tional Symposium on Secure Virtual Infrastructures (DOA-SVI), 2012
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This conference paper presentes DEDISbench, a micro-benchmark for eval-

uating deduplication systems. Data written by the benchmark follows re-

alistic content distributions that were automatically extracted from real

storage systems with another tool called DEDISgen which, is also intro-

duced in the paper. A novel feature for simulating hotspot storage accesses

is also discussed while, two open-source deduplication systems, Opendedup

and Lessfs, are evaluated by DEDISbench.

• João Paulo, Pedro Reis, José Pereira, and António Sousa. Towards an Ac-

curate Evaluation of Deduplicated Storage Systems. International Journal

of Computer Systems Science and Engineering, 29(1):73–83, 2013

This journal publication extends the previous DEDISbench paper by ex-

tracting and analyzing the duplicate distributions of three real storage sys-

tems. More specifically, the DEDISgen tool is used to extract the content

distributions of an archival, a backup and a primary storage belonging to

our research group. Finally, the paper shows that each storage type has

distinct characteristics, and extends our benchmark with the capability of

simulating the novel distributions.

Also, preliminary versions of our work were accepted as fast abstracts or

poster abstracts and are listed below:

• João Paulo and José Pereira. DEDIS: Distributed Exact Deduplication for

Primary Storage Infrastructures. In Poster Proceedings of the Symposium

on Cloud Computing (SOCC), 2013

This poster abstract presents a preliminary version of the DEDIS system,

which is further detailed in the paper from DAIS’14.

• João Paulo and José Pereira. Model Checking a Decentralized Storage

Deduplication Protocol. In Fast Abstract of the Latin-American Symposium

on Dependable Computing (LADC), 2011. URL http://haslab.uminho.

pt/jtpaulo/files/pp09.pdf

This fast abstract explains how model-checking with the TLA+ toolset was

used to uncover and correct some subtle concurrency issues in a preliminary

version of DEDIS algorithm.

http://haslab.uminho.pt/jtpaulo/files/pp09.pdf
http://haslab.uminho.pt/jtpaulo/files/pp09.pdf
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The following work was submitted and it is still in review process:

• João Paulo and José Pereira. E�cient Deduplication in a Distributed Pri-

mary Storage Infrastructure. Submitted to ACM Transactions on Storage

Journal, 2014

This journal publication extends the DEDIS paper from DAIS’14 by in-

troducing a novel optimization, a detailed description of the fault-tolerant

design and a more realistic evaluation setup. More specifically, the paper

presents a cache optimization that increases storage performance by avoid-

ing some of the storage reads done with the deduplication engine. Also, an

evaluation with up to 32 servers in a fully-symmetric setup where servers

run both VMs and DEDIS components is discussed.

DEDIS, DEDISbench and DEDISgen are open-source projects and are pub-

licly available at http://www.holeycow.org. Finally, we also published the next

work in collaboration with other researchers that, is indirectly related with the

thesis:

• Francisco Cruz, Francisco Maia, Miguel Matos, Rui Oliveira, João Paulo,

José Pereira, and Ricardo Vilaça. MeT: Workload Aware Elasticity for

NoSQL. In Proceedings of the ACM European Conference on Computer

Systems (EUROSYS). ACM, 2013

1.4 Outline

The rest of the document is structured as follows:

Chapter 2 presents a detailed survey of storage deduplication systems. More

specifically, the chapter starts by introducing a classification of deduplication

systems according to key design features, discussing the distinct approaches used

for each feature, as well as, their relative strengths and drawbacks. Then, it

surveys existing systems grouped by type of storage targeted, i.e., archival and

backup storage, primary storage, RAM and SSDs, explaining how the distinct

features used by these systems suit each storage environment.

Chapter 3 introduces DEDISbench, a micro-benchmark suitable for dedupli-

cation systems. Namely, the benchmark design, implementation and features are

http://www.holeycow.org
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described. Then, the DEDISgen tool is presented and used for extracting the

duplicate content distributions from three real storage environments; an archival,

a backup and a primary storage. DEDISbench is compared with two open-source

micro-benchmarks, Bonnie++ and IOzone, and the three benchmarks are used

to evaluate two deduplication systems, Opendedup and LessFS.

Chapter 4 presents DEDIS, a dependable and fully-decentralized primary

storage deduplication system. We start by describing the baseline distributed

storage architecture assumed by our system, and then, we discuss the compo-

nents, fault-tolerance considerations, optimizations and implementation details.

To conclude, DEDIS open-source prototype is evaluated in up to 32 servers and

compared with a storage system without deduplication to measure the impact in

storage requests performance, as well as, deduplication performance and scala-

bility.

Chapter 5 concludes the thesis and discusses possible future work in the field

of storage deduplication.



Chapter 2

Storage deduplication

background

Deduplication is now desirable in several storage environments such as; archival

and backup storage, primary storage, RAM, and SSDs [Bolosky et al. 2000, Wald-

spurger 2002, Hong and Long 2004, Chen et al. 2011]. However, there is still a

general misconception about the common characteristics shared by all systems,

as well as, the specific optimizations and functionalities that make distinct sys-

tems appropriate for specific storage environments. This chapter aims precisely

at clarifying such information by providing a novel taxonomy and classification

of today’s storage deduplication approaches.

Storage deduplication can be regarded as bidirectional mapping between two

di↵erent views of the same data: a logical view, containing identifiable duplicates,

and a physical view, as stored in actual devices from which duplicates have been

removed. The mapping process is embodied in the I/O path between applica-

tions that produce and consume the data and, the storage devices themselves.

Figure 2.1 depicts each of these views and identifies key features in each of them

that lead to di↵erent design decisions and trade-o↵s.

The logical view of data in a deduplication system is a set of assumptions

on the workload that determine which duplicate content is relevant, hence which

duplicates exist and which should be removed. First, all deduplication systems

partition data into discrete chunks that are to be compared, identified as du-

plicate, and eventually removed. This partitioning can be done with di↵erent

granularity, using various criteria for chunk boundaries as well as for their sizes.

15
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Figure 2.1: Views of deduplication and key design features.

In the remainder of this document, we refer to chunks as the unit of deduplica-

tion that, in existing deduplication systems can correspond to files, variable-sized

blocks, or fixed-size blocks. Although segment is sometimes used as a synonym

of chunk, we avoid it as it is also used in some proposals as a higher granularity

unit composed by a large number of chunks, thus leading to ambiguity [Lillibridge

et al. 2009]. Moreover, assumptions on the likelihood of duplicate chunks being

found close together, both in space or time, lead to design decisions exploiting

locality that influence both the e�ciency and e↵ectiveness of the deduplication

process.

On the other hand, the physical view of data in a deduplication system is first

and foremost concerned with the technique used on disk to represent duplicate

data that has been removed, such that e�cient reconstruction of the logical view

is possible. Given the current relevance of distributed storage systems, a key

design decision is the distribution scope of the deduplication technique. This can

be defined as the ability to represent removed duplicates across di↵erent nodes,

such that the reconstruction of data requires their collaboration.

Finally, deduplication as a process has to be understood as happening in

the context of a storage management system. This exposes an API to client

applications, such as a file system or a block device, and is composed by multiple

stacked software layers and processing, networking, and storage components. The

key design issue here is the timing of the main deduplication operations, such as

searching for duplicates, regarding the critical path of I/O operations. Since
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finding duplicates is potentially a resource intensive operation, it is invariably

based on an indexing data structure that supports e�cient matching of duplicate

chunks. Thus, the indexing method has a strong impact not only on the e�ciency

of the deduplication process, but also on its e↵ectiveness by potentially trading o↵

exactness for speed. Also, most systems do not index the full content of chunks,

using instead compact signatures of the chunks’ content. These are generally

calculated with hashing functions and we refer to them as chunk signatures or

digests.

This chapter is focused only on deduplication in storage systems. Namely, we

do not address network deduplication [Muthitacharoen et al. 2001], although some

systems we refer to do both network and storage deduplication [Cox et al. 2002].

In fact, as explained in this document, most systems that perform deduplication

before actually storing the data can o↵-load some of the processing to the client

and avoid sending duplicate chunks over the network.

Also, we do not address distributed Logical Volume Management (LVM) sys-

tems with snapshot capabilities that already avoid creating duplicates among

snapshots of the same VM or VMs created from the same snapshot [Meyer et al.

2008]. Although these systems share some technical issues with deduplication,

such as reference management and garbage collection, they are fundamentally dif-

ferent by not addressing the removal of unrelated duplicate chunks. Finally, we

do not address delta-based versioning systems where delta-encoding is only done

across versions of the same file [Berliner 1990, Burns and Long 1997]. We focus

on deduplication systems that eliminate both intra-file and inter-file redundancy

over large data sets without any knowledge regarding data versions.

2.1 Challenges

In order to understand the di↵erent deduplication designs, it is important to first

know the challenges that current systems must overcome.

2.1.1 Overhead vs. gain

The main challenge in deduplication systems is the trade-o↵ between the achiev-

able deduplication gain and the overhead on a comparable storage system that

does not include deduplication. As an example, smaller chunk sizes increase the
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space saving benefits of deduplication, but lead to larger index structures that

are more costly to maintain. Ideally, the index would be fully loaded into RAM,

but for a large storage and a relatively small chunk size the index is too large

and must be partially stored on disk. This increases the number of disk I/O

operations needed by deduplication which may interfere with the foreground I/O

performance [Zhu et al. 2008].

Also, deduplication should be performed as soon as data enters the storage

system to maximize its benefits. However, finding duplicates is a resource in-

tensive task that will impact latency if performed in the critical path of storage

writes. If deduplication is removed from the critical path and done in the back-

ground, additional temporary storage is required and data must be read back

from the storage to find duplicates, thus increasing the consumption of storage

I/O bandwidth [Srinivasan et al. 2012].

The more data chunks are omitted, the more the physical layout of dedupli-

cated data di↵ers from the original layout. Namely, deduplication introduces frag-

mentation that deteriorates the performance of read and restore operations [Kaczmarczyk

et al. 2012, Lillibridge et al. 2013, Mao et al. 2014a, Fu et al. 2014]. Additional

metadata is also required for correctly reconstructing deduplicated data [Meister

et al. 2013a]. Thus, there is additional overhead involved in maintaining the

integrity of such metadata as one must ensure that a certain shared chunk is

no longer serving any I/O request before modifying or deleting it. More specifi-

cally, this requires managing references to shared chunks, which is complex and

requires a garbage collection mechanism that may also impact performance [Guo

and Efstathopoulos 2011, Strzelczak et al. 2013, Botelho et al. 2013].

2.1.2 Scalability vs. gain

The most gain can be obtained when any chunk can, in principle, be compared

with any other chunk and be omitted if a match is found. However, such com-

plete matching is harder as the amount of data and components grow, in a large

scale storage system. Briefly, a centralized index solution is likely to become

itself very large and its manipulation a bottleneck on deduplication through-

put [Clements et al. 2009]. Partial indexes that can match only a subset of dupli-

cates improve scalability, but perform only partial deduplication. Nonetheless,

the amount of chunks that cannot be matched can be reduced by exploring data
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locality [Lillibridge et al. 2009] and by grouping together chunks with greater

similarity [Manber 1994].

In a distributed storage system, a simple strategy for scalability is to perform

deduplication independently in each node thus, having multiple independent in-

dexes. Again, this approach allows only partial deduplication as the same chunk

might be duplicated in multiple nodes. Missed deduplication opportunities can

be mitigated by grouping, in the same node, chunks that have a greater likelihood

of containing matching data, for instance, by routing the most similar files to the

same nodes [Bhagwat et al. 2009].

The trade-o↵ between scalability and gain can be improved by using a Dis-

tributed Hash Table (DHT) as the index. The DHT is accessible by all nodes,

which allows eliminating duplicates globally in an exact fashion [Dubnicki et al.

2009, Ungureanu et al. 2010]. However, a remote invocation to the index is re-

quired to find duplicate or similar chunks. If the index is accessed in the critical

I/O path, which is common in many systems, it may lead to an unacceptable

storage latency penalty.

2.1.3 Reliability, security and privacy

Distributed deduplication systems must tolerate node crashes, data loss and even

byzantine failures [Douceur et al. 2002]. Eliminating all duplicate data will also

eliminate all the redundancy necessary for tolerating data loss and corruption, so

a certain replication level must be maintained. Studies show that it is possible to

achieve both, but few systems address these issues [Bhagwat et al. 2006, Rozier

et al. 2011]. Metadata must also be resilient to failures and, it needs to be stored

persistently, which reduces deduplication space savings. Additionally, both data

and metadata must be distributed in large scale systems to tolerate single node

failures while maintaining high availability.

Some deduplication systems share data from distinct clients, raising privacy

and security issues that can be solved by trading o↵ deduplication space sav-

ings [Nath et al. 2006]. Security and privacy issues are expected not only in cloud

storage infrastructures, but also in remote storage appliances where data from

several clients is stored [Harnik et al. 2010].
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2.2 Classification criteria

This section introduces a taxonomy for classifying deduplication systems by ex-

panding on previous proposals [Mandagere et al. 2008]. This classification is based

on the major design decisions implicit in all deduplication systems as summarized

in Figure 2.1: granularity, locality, timing, indexing, technique and distribution

scope.

2.2.1 Granularity

Granularity refers to the method used for partitioning data into chunks, the

basic unit for eliminating duplicates. Given its importance in the overall design

of a deduplication system, it has been simply referred to as the deduplication

algorithm [Mandagere et al. 2008]. However, there are significant concerns other

than granularity that justify avoiding such name.

One of the most straightforward approaches is the whole file chunking in which

data is partitioned along file boundaries set by a file system [Bolosky et al. 2000].

As many backup systems are file-oriented, whole file chunking avoids the parti-

tioning e↵ort and, by doing deduplication at a higher granularity, there are less

chunks to index and to be processed by the deduplication engine [Policroniades

and Pratt 2004].

Another common approach used has been to partition data into fixed-size

chunks, also referred to as fixed-size blocks or simply blocks. This is partic-

ularly fit for a storage system that already uses such partition into fixed-size

blocks [Quinlan and Dorward 2002, Hong and Long 2004]. In fact, for the cases

where changed data is dynamically intercepted at a small granularity, the fixed-

size block approach can o↵er high processing rates and generate less Central

Processing Unit (CPU) overhead than other alternatives with identical sharing

rates [Policroniades and Pratt 2004, Constantinescu et al. 2011]. By adjusting

the size of chunks, deduplication gain can be increased at the expense of addi-

tional overhead in processing, metadata size, and fragmentation [Policroniades

and Pratt 2004, Kaczmarczyk et al. 2012, Mao et al. 2014a].

Consider now two versions of the same file where version A only di↵ers from

version B by a single byte that was added to the beginning of the latter ver-

sion. Regardless of files being considered as a whole or partitioned into fixed-size
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chunks, in the worst case scenario, no chunks from version A will match chunks

from version B. This issue is referred to in the literature as the boundary-shifting

problem [Eshghi and Tang 2005].

The third option, which solves this problem, is to partition data into variable-

sized chunks with boundaries set by the content itself, also called Content-Defined

Chunking (CDC) [Muthitacharoen et al. 2001]. The first version of the algorithm

uses a sliding window that moves over the data until a fixed content pattern

defining the chunk boundary is found. This approach generates variable-sized

chunks and solves the issue of inserting a single byte in the beginning of version

B. More precisely, only the first chunk from version B will di↵er from the first

chunk of version A due to the byte addition, while the remaining chunks will

match and will be deduplicated.

In this version of the algorithm, a minimum and maximum size restriction was

introduced for preventing too small or large chunks. This modification raises,

once again, the boundary-shifting problem for large chunks whose boundaries

are defined by the maximum size threshold instead of using the content-based

partitioning. The Two Thresholds-Two Divisors (TTTD) algorithm uses two

thresholds to impose a maximum and minimum chunk size, as in previous work,

but also uses two divisors for defining chunk boundaries [Eshghi and Tang 2005].

The first divisor is similar to the one chosen in the original CDC algorithm, while

the second divisor has a larger probability of occurrence. The chunk is calculated

with the sliding window, as in the original algorithm, but whenever the second

divisor is found the last occurrence is registered as a possible breakpoint. When

the maximum size of a chunk is reached, meaning that the first divisor was not

found, then the chunk boundary is defined by the last time the second divisor was

found in the chunk. Therefore, the probability of occurring the boundary-shifting

problem is significantly reduced.

The above algorithms produce variable-sized chunks within a predefined size;

however, other algorithms increase the variability of chunk size to reduce meta-

data space without losing deduplication gain. Fingerdi↵ is a dynamic partitioning

algorithm that creates large chunks for unmodified regions of data, which cannot

be shared, and smaller chunks (sub-chunks) for changed data regions to increase

space savings [Bobbarjung et al. 2006]. As an example, when a new version of

a previous stored file is received, sub-chunks will be small enough for capturing



22 2 Storage deduplication background

small changes in the file and sharing them, boosting space savings, while the un-

modified data will still be stored as larger chunks, reducing indexing space costs.

Two other algorithms aimed at increasing chunk size variability without signif-

icantly a↵ecting deduplication gain were presented in Bimodal content-defined

chunking [Kruus et al. 2010]. The breaking apart algorithm divides backup data

streams into large size chunks, and then further divides the chunks into smaller

sizes when deduplication gain justifies it. On the other hand, the building-up

algorithm divides the stream into small chunks that are then composed when the

deduplication gain is not a↵ected. Moreover, a variant of the breaking apart algo-

rithm can be combined with a statistical chunk frequency estimation algorithm,

further dividing large chunks that contain smaller chunks appearing frequently in

the data stream and consequently allowing higher space savings [Lu et al. 2010].

Each method described here can be combined with techniques that eliminate

exact duplicates or that can cope with similar but not fully identical chunks,

as in delta-encoding [Quinlan and Dorward 2002, Policroniades and Pratt 2004,

Nath et al. 2006, Aronovich et al. 2009]. More specifically, both aliasing and

delta-encoding, detailed in Section 2.2.5, can be applied to whole files, fixed-size

chunks, or variable-sized chunks. However, the optimal chunk size is related to

the technique being used, for instance, chunks in delta-encoding deduplication

can be larger than in exact deduplication without reducing the deduplication

gain.

2.2.2 Locality

Locality assumptions are commonly exploited in storage systems, mainly to sup-

port caching strategies and on-disk layouts. Similarly, locality properties found

for duplicate data can be exploited by deduplication, making deduplication gain

depend on the workload’s locality characteristics. However, there are systems

that do not assume any specific locality assumptions for their storage work-

loads. [Dubnicki et al. 2009, Yang et al. 2010a, Clements et al. 2009].

Temporal locality means that duplicate chunks are expected to appear several

times in a short time window. More specifically, if chunk A was written, it will

probably be written again several times in the near future. Temporal locality

is usually exploited by implementing caching mechanisms with Least-Recently

Used (LRU) eviction policies [Quinlan and Dorward 2002]. Caching some of the
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entries of the index in RAM can reduce disk accesses while reducing memory

usage. In workloads that exhibit poor temporal locality, the LRU cache, however,

is ine�cient and most accesses are directed to the disk index thus, creating a

bottleneck.

Spatial locality means that chunks present in a specific data stream are ex-

pected to appear in subsequent streams in the same order. For example, if chunk

A is followed by chunks B and C in a data stream, the next time that chunk A

appears in another stream, it will probably be followed by chunks B and C again.

Spatial locality is commonly exploited by storing groups of chunks in a storage

layout that preserves their original order in the stream. Then, the signatures

of all chunks belonging to the same group are brought to a RAM cache when

one of the signatures is looked up in the disk [Zhu et al. 2008, Rhea et al. 2008].

For example, if a stream has chunks with content signatures A, B, and C, then

these chunks and their signatures are stored together on disk. When a chunk

with signature A is written, the signatures for chunk A, B, and C are brought

to memory, because chunks B and C will probably appear next in the stream

due to spatial locality and, additional disk accesses to the index can be avoided.

Furthermore, temporal and spatial locality can be exploited together [Srinivasan

et al. 2012].

2.2.3 Timing

Timing refers to when detection and removal of duplicate data are performed.

More specifically, if duplicates are eliminated before or after being stored per-

sistently. In-line deduplication, also known as in-band deduplication, is done in

the critical path of storage write requests. This approach requires intercepting

storage write requests, calculating chunk boundaries and signatures, if necessary,

finding a match for the chunk at the index and, if found, sharing the chunk or

delta encoding it. Otherwise, if the match is not found, the new chunk signa-

ture must be inserted at the index. Only then, the I/O request completion is

acknowledged.

In-line deduplication is widely used in several storage back ends [Quinlan and

Dorward 2002, Rhea et al. 2008] and file systems [Zhu et al. 2008, Ungureanu

et al. 2010]. In addition, in-line deduplication is possible only if I/O requests

can be intercepted. One of the main drawbacks of in-line deduplication is the
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overhead introduced in the latency of write requests as most of the processing is

done in the write path. In fact, one of the major bottlenecks is the latency of

operations to the on-disk index, which could be solved by loading the full index to

RAM, but that does not scale for large data sets. There are some scenarios where

this overhead may not be acceptable, for instance, in primary storage systems

with strict I/O latency requirements [Srinivasan et al. 2012]. Nevertheless, there

are proposals for reducing this impact with optimizations that explore locality,

as discussed in Section 2.3.

A variant of in-line deduplication, in client-server storage systems, partitions

data and computes content signatures at the client side, sending first only com-

pact chunk signatures to the server [Bolosky et al. 2000, Waldspurger 2002]. Then,

the server replies back to the client identifying missing chunks that were not

present at the server storage and must be transmitted. This way, only a subset

of the chunks is sent and network bandwidth is spared [Cox et al. 2002]. This

issue has been referred to as placement [Mandagere et al. 2008]; however, it is not

considered in this survey as a general design decision shared by all deduplication

systems.

As an alternative to in-line deduplication, some systems do o↵-line dedupli-

cation where data is immediately written to the storage and then scanned in

the background to search and eliminate duplicates. This technique is also re-

ferred to as o↵-band or post-processing deduplication. Since deduplication is no

longer included in the write critical path, the overhead introduced in I/O la-

tency is reduced. This approach requires less modifications to the I/O layer, but

needs additional resources to scan the storage, searching for changed chunks that

need to be deduplicated. Moreover, as data is first stored and then shared asyn-

chronously, o↵-line deduplication requires temporarily more storage space than

in-line deduplication.

Scanning the storage in o↵-line deduplication can be avoided by intercepting

write requests to determine which chunks have been written and may be dedu-

plicated. Concurrently in the background, the deduplication mechanism collects

modified addresses, reads the corresponding data from the storage, and elimi-

nates duplicates. Moreover, the calculation of content signatures may be done in

the write path thus, reducing the need of reading the chunk content from disk.

These optimizations are able to detect modified content without requiring a stor-
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age scan while, still introducing negligible overhead in I/O operations [Hong and

Long 2004, Clements et al. 2009]. In both scan and interception strategies, a

CoW mechanism is required to ensure that shared data cannot be concurrently

changed by a storage write. This is a costly mechanism that adds significant

overhead in storage writes latency, but that, is required for avoiding data corrup-

tion [Clements et al. 2009]. Finally, in some o↵-line deduplication systems, I/O

and deduplication operations concurrently update common metadata structures,

leading to lock mechanisms that result in fairness and performance penalties for

both aliasing and I/O operations if implemented naively [Clements et al. 2009].

2.2.4 Indexing

Indexing provides an e�cient data structure that supports the discovery of du-

plicate data. With the exception of some systems that index actual chunk con-

tent [Arcangeli et al. 2009], most systems summarize content before building the

index [Bolosky et al. 2000, Quinlan and Dorward 2002]. A compact representation

of chunks reduces indexing space costs and speeds up chunk comparison.

Summarizing content by hashing leads to identity signatures that can be used

to search for exact duplicates. As a drawback, hash computation needs additional

CPU resources, which may be problematic for some systems, and may generate

collisions where, the same signature is used to summarize the content of two dis-

tinct chunks [Chen et al. 2011]. The latter issue can be avoided by comparing

the content of two chunks with the same identity signatures before aliasing them

thus, preventing hash collisions [Rhea et al. 2008]. However, byte comparison of

chunks will increase the latency of deduplication and I/O operations if dedupli-

cation is done in the storage write path while, the probability of hash collisions

is negligible [Quinlan and Dorward 2002].

The similarity of two chunks can be assessed by computing a set of Rabin

fingerprints for each chunk, and then comparing the number of common finger-

prints [Manber 1994], which we refer to as similarity signatures herein. Rabin

fingerprints can be calculated in linear time and are distributive over addition,

thus allowing a sliding window mechanism to generate variable-sized chunks and

compose fingerprints e�ciently [Rabin 1981, Broder 1993]. Comparing a large

number of fingerprints to find similar chunks may present a scalability problem

and require a large index, so a set of heuristics was introduced for coalescing
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a group of similarity fingerprints into super-fingerprints. Two matching super-

fingerprints indicate high resemblance between the chunks, thus scaling the index

to a larger number of chunks [Broder 1997].

Signatures are then used to build the indexing data structure. With a full

index, all computed signatures are indexed, thus having an entry for each unique

chunk at the storage. This finds all potential candidates for deduplication [Bolosky

et al. 2000, Quinlan and Dorward 2002], but the size of the index itself becomes

an obstacle to performance and scalability. Namely, it becomes too large to be

kept in RAM, and storing it on disk has a profound impact on deduplication

throughput [Quinlan and Dorward 2002].

This problem has been addressed by using a sparse index, in which a group

of stored chunks are mapped by a single entry at the index. As an example,

a sparse index can be built by grouping several chunks into segments that are

then indexed with similarity signatures instead of identity signatures [Lillibridge

et al. 2009]. Since segments are coarse-grained, the size of this primary index is

reduced and can be kept in RAM. Then, each segment may have an independent

secondary index of identity signatures, corresponding to its chunks, that is stored

on disk. When a new segment is going to be deduplicated, its similarity signature

is calculated and only a group of the most similar segments have their identity

secondary indexes brought to RAM. By only loading the secondary indexes of the

most similar segments to RAM, deduplication gain is kept acceptable while using

less RAM. There are also other proposals of sparse indexes that, for example,

exploit file similarity [Bhagwat et al. 2009]. We discuss these specific designs in

Section 2.3. Sparse indexes are able to scale to large data sets, but restrict the

deduplication gain since some duplicate chunks are not coalesced thus, performing

only partial deduplication. However, as the RAM footprint is reduced, each

segment can hold smaller chunk sizes that will allow finding more duplicates

while still scaling for larger data sets.

A third alternative is a partial index where each index entry maps a single

unique chunk, but only a subset of unique stored chunks are indexed, unlike

in the full index approach. Therefore, the RAM utilization is always under a

certain threshold by sacrificing space savings and performing only partial dedu-

plication [Guo and Efstathopoulos 2011, Chen et al. 2011, Gupta et al. 2011,

Kim et al. 2012]. The index eviction is made based on a pre-defined policy, for



2.2 Classification criteria 27

example, by using an LRU policy or by evicting the less referenced signatures.

2.2.5 Technique

Two distinct representations of stored data that eliminate duplicate content are

discussed in the literature. With aliasing, also known as chunk-based deduplica-

tion, exact duplicates can be omitted by using an indirection layer that makes

them refer to a single physical copy. I/O requests for aliased chunks are then

redirected accordingly.

Alternatively, delta-encoding eliminates duplicate content among two similar

but not fully identical chunks. Namely, only one chunk is fully stored, the base

chunk, while the distinct content necessary to restore the other chunk is stored

separately as a delta or di↵. Therefore, the duplicate information is stored only

once in the base chunk and the other chunk can be restored by applying the di↵

to the base version.

Aliasing requires less processing power and has faster restore time than delta

deduplication since no fine-grained di↵erences need to be calculated or patched

to recover the original chunk [Burns and Long 1997]. On the other hand, delta-

encoding saves additional space in chunks that do not have the same exact content

thus, allowing the chunk size to be increased without reducing the deduplication

gain [You and Karamanolis 2004, Aronovich et al. 2009]. In addition, delta-

encoding is performed across a pair of chunks so, it is important to deduplicate

chunks with the most similar content to achieve higher deduplication factors.

Therefore, the mechanism chosen for detecting similar chunks is key for improving

space savings. Finally, the performance of delta deduplication also changes with

the delta-encoding algorithms used [Hunt et al. 1998].

Most storage deduplication systems use aliasing, being Microsoft Single In-

stance Storage (SIS) [Bolosky et al. 2000] and Venti [Quinlan and Dorward 2002]

the pioneers. On the other hand, although there are some studies regarding the

e�ciency of applying delta deduplication on large file collections [Ouyang et al.

2002, Douglis and Iyengar 2003], the first complete deduplication system based

exclusively on delta deduplication was proposed by IBM Protect Tier [Aronovich

et al. 2009]. However, there are other systems that combine both techniques by

first applying aliasing, which eliminates all redundant chunks, and then delta

deduplication for chunks that did not exactly match any other chunk, but could
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be stored more e�ciently if delta-encoded [You et al. 2005, Shilane et al. 2012].

Moreover, other proposals also combine chunk compression with the previous

two techniques for reducing even further the storage space [Kulkarni et al. 2004,

Gupta et al. 2010, Constantinescu et al. 2011, El-Shimi et al. 2012].

Both aliasing and delta-encoding require metadata structures for abstracting

the physical sharing from the logical view. For instance, many storage systems

store and retrieve data at the file level abstraction, even if files are then parti-

tioned into smaller chunks for deduplication purposes. In these systems, it is nec-

essary to have, for example, tree structures that map files to their chunk addresses

and that must be consulted for file restore operations [Quinlan and Dorward 2002,

Meister et al. 2013a]. Other systems intercept I/O calls and deduplicate at the

block level abstraction, having already metadata for mapping logical blocks into

storage addresses [Hong and Long 2004, Chen et al. 2011]. In these cases, alias-

ing engines must update these logical blocks to the same physical address while,

delta engines must update the logical blocks to point to the base chunks and

corresponding deltas. In fact, in all systems where content to be read does not

have an associated signature that allows searching directly for chunk addresses in

indexing metadata, additional I/O mapping structures are necessary to translate

read requests to the corresponding chunks. Finally, as some systems delete or

modify chunks, knowing the number of references for a certain aliased or base

chunk is important, because when a chunk is no longer being referenced, it can be

garbage collected [Guo and Efstathopoulos 2011, Strzelczak et al. 2013, Botelho

et al. 2013]. Both I/O translation and reference management mechanisms must

be e�cient to maintain low storage I/O latency and to reclaim unused storage

space.

2.2.6 Scope

Distributed systems perform deduplication over a set of nodes to improve through-

put and/or gain while also scaling out for large data sets and a large number of

clients. Unlike in centralized deduplication, some distributed deduplication sys-

tems need to define routing mechanisms for distributing data over several nodes

with independent CPU, RAM and disks. Moreover, by having several nodes, it

is possible to increase the parallelism and, consequently, increase deduplication

throughput while also tolerating node failures and providing high availability [Cox



2.2 Classification criteria 29

et al. 2002, Douceur et al. 2002, Bhagwat et al. 2009]. Other distributed systems

assume nodes with individual CPU and RAM that have access to a shared storage

device abstraction where nodes perform deduplication in parallel. This allows to

share metadata information between nodes by keeping it on the shared storage

device, which otherwise would have to be sent over the network [Clements et al.

2009, Kaiser et al. 2012]. Finally, distinct nodes may handle distinct tasks, for

instance, while some nodes partition data and compute signatures, other nodes

query and update indexes, thus parallelizing even further the deduplication pro-

cess [Yang et al. 2010b;a].

The key distinction is the scope of duplicates that can be matched and rep-

resented after being removed. In distributed deduplication systems with a local

scope, each node only performs deduplication locally, and duplicate chunks are not

eliminated across distinct nodes. This includes systems where nodes have their

own indexes and perform deduplication independently [You et al. 2005]. Some

systems introduce intelligent routing mechanisms that map similar files or groups

of chunks to the same node to increase the cluster deduplication gain [Bhagwat

et al. 2009, Dong et al. 2011]. In these systems, deduplication is still performed

at a smaller granularity than routing and in a local fashion thus, not eliminating

all duplicate chunks globally across distinct cluster nodes.

In contrast, in distributed deduplication systems with a global scope, dupli-

cate chunks are eliminated globally across the whole cluster. In this case, an

index mechanism accessible by all cluster nodes is required so that, each node

is able to deduplicate its chunks against other remote chunks. Some systems

use centralized indexes that have scalability and fault tolerance issues [Hong and

Long 2004] while, other solutions use decentralized indexes that, solve previous

issues but increase the overhead of lookup and update operations [Douceur et al.

2002, Dubnicki et al. 2009, Hong and Long 2004, Clements et al. 2009]. When

compared to local approaches, global distributed deduplication increases space

savings by eliminating duplicates across the whole cluster. However, there is an

additional cost for accessing the index, which, for example, in primary storage

systems may impose unacceptable storage latency [Ungureanu et al. 2010].

Finally, storage systems that were devised to perform deduplication in a single

node are centralized, even if they support data from a single or from multiple

clients [Quinlan and Dorward 2002, Rhea et al. 2008]. In a cluster infrastructure,
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these systems do not take any processing advantage from having several nodes

and do not eliminate duplicate chunks across remote nodes.

2.3 Survey by storage type

This section presents an overview of existing deduplication systems, grouped by

storage type, and their main contributions for addressing the challenges presented

in Section 2.1. Moreover, each system is classified according to the taxonomy de-

scribed in the previous section. As each storage environment has its own require-

ments and restrictions, the combination of design features changes significantly

with the storage type being targeted.

2.3.1 Backup and archival

As archival and backup storage have overlapping requirements, some solutions

address both [Yang et al. 2010b]. In fact, most systems targeting either one of

these storage environments have common assumptions regarding data immutabil-

ity, and favor storage throughput over latency. Nonetheless, restore and delete

operations are expected to be more frequent for backups than for archives, where

data deletion is not even supported by some systems [Quinlan and Dorward 2002,

Strzelczak et al. 2013, Lillibridge et al. 2013, Fu et al. 2014]. Distinct duplica-

tion ratios are found in archival and backup production storage. For instance,

archival redundancy can reach a value of 79% [Quinlan and Dorward 2002, You

and Karamanolis 2004, You et al. 2005], while backup redundancy goes up to

83% [Meister and Brinkmann 2009, Meyer and Bolosky 2011].

Deduplication in backup and archival systems was introduced by SIS [Bolosky

et al. 2000] and Venti [Quinlan and Dorward 2002]. More specifically, SIS is an o↵-

line deduplication system for backing up Windows images that, can also be used

as a remote install service. Stored files are scanned by a background process that

shares duplicate files by creating links, which are accessed transparently by clients

and point to unique files stored in a common storage. The number of references to

each shared file is also kept as metadata on the common storage and, enables the

garbage collection of unused files. A variant of CoW, named copy-on-close, is used

for protecting updates to shared files. With this technique, the copy of modified

file regions is only processed after the file is closed thus, reducing the granularity



2.3 Survey by storage type 31

and frequency of copy operations and, consequently, their overhead. With a

distinct design and assumptions, an in-line deduplication Content-Addressable

Storage (CAS) for immutable and non-erasable archival data is introduced by

Venti. Unlike in traditional storage systems, data is stored and retrieved by its

content instead of physical address, and fixed-size chunking is used instead of

a content-aware partitioning, although it is possible to configure the system to

read/write blocks with distinct sizes. Unique chunk signatures are kept in an on-

disk full index for both systems. Since deduplication in SIS is performed in the

background and at the whole-file granularity, the index is smaller and accessed

less frequently, while aliasing is also performed outside the critical write path. On

the other hand, Venti in-line timing requires querying the on-disk index for each

write operation, presenting a considerable performance penalty for deduplication

and storage writes throughput. This overhead penalty is alleviated by using a

LRU cache, which exploits temporal locality, and disk stripping, that reduces

disk seeks by allowing parallel lookups.

The index lookup bottleneck

With no temporal locality, Venti’s performance is significantly a↵ected because

most index lookups must access the disk. This problem is known as the index

lookup bottleneck and has been addressed by new indexing designs [Eshghi et al.

2007], by exploiting spatial locality [Zhu et al. 2008, Lillibridge et al. 2009, Guo

and Efstathopoulos 2011, Shilane et al. 2012], and by using SSDs to store the

index [Meister and Brinkmann 2010, Debnath et al. 2010].

Hash-based Directed Acyclic Graphs (HDAGs) were introduced as a first op-

timization for representing directory trees and their corresponding files by their

content together with a compact index of chunk signatures. The HDAG struc-

tures e�ciently compare distinct directories to eliminate duplicates among them

while, the compact index representation can be kept in RAM, significantly boost-

ing lookups. These optimizations were introduced in Jumbo Store, an in-line

deduplication storage system designed for e�cient incremental upload and stor-

age of successive snapshots, which is also the first complete storage deduplication

system to apply the TTTD algorithm [Eshghi et al. 2007].

Despite the reduction of the index size in Jumbo Store, the amount of RAM

needed was still unacceptable for large storage volumes, thus limiting scalabil-
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ity [Lillibridge et al. 2009]. This led to designs that maintain the full index on

disk, similarly to Venti, while introducing optimizations to improve the through-

put of lookup operations, as in the Data Domain File System (DDFS) [Zhu et al.

2008]. Firstly, a RAM-based Bloom filter is used for detecting if a signature is

new to the on-disk index, thus avoiding disk lookups for signatures that do not

exist. Then, spatial locality is explored instead of temporal locality. Namely,

a Stream-Informed layout is used for packing chunks into larger containers that

preserve the order of chunks in the backup stream. Then, when a specific chunk

signature is looked up, all the other chunk signatures from that container are

pre-fetched to a RAM cache. Due to the spatial locality, these signatures are

expected to be accessed in the next operations, thus avoiding several disk opera-

tions. Although these optimizations also consume RAM, the memory footprint is

significantly smaller to the one needed by Jumbo Store. These optimizations were

also explored in Foundation, where a byte comparison operation for assessing if

two chunks are duplicates was introduced to prevent hash collisions and, conse-

quently, data corruption [Rhea et al. 2008]. Each comparison operation generates

additional overhead, because full chunks must be read from disk.

In an incremental backup system, only modified streams are backed up and

the content of these streams will change significantly in time. For instance, blocks

A, B, C and D are stored in a contiguous fashion but, after some incremental

backups, this sequence of blocks will be considerably distinct as some blocks

were removed while other blocks were added, generating a new sequence with

blocks A X C Y D. With the previous stream-informed layout approach, fewer

duplicates will be found when this new sequence appears. A solution to this

problem is suggested in the Block Locality Cache (BLC) mechanism that presents

a prediction scheme for updating data locality information according to previous

backups and, uses this information for pre-fetching into a LRU cache the blocks

that will probably be accessed next, thus being less a↵ected by the aging e↵ect

of incremental streams [Meister et al. 2013b].

Spatial locality can also be exploited by using a sparse index leading to in-

creased performance and scalability at the expense of deduplication gain [Lillib-

ridge et al. 2009], which works as follows. A backup stream is partitioned into

segments, holding thousands of variable-sized chunks, which are the basic unit of

storage and retrieval. Then a primary index, holding groups of similarity signa-
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tures sampled from each stored segment, is used for finding the stored segments

that most resemble the incoming one, and that are named champions. Identity

signatures of chunks belonging to champion segments, which are stored on disk,

are brought to memory and matched to the chunks of the incoming segment.

This design maintains a smaller RAM footprint by only loading into memory a

sub-set of signatures that will provide the higher deduplication gain. Moreover,

as segments have a coarse-granularity, the primary index can also be kept in

RAM for large data sets. Finally, by grouping contiguous chunks into segments

and finding duplicate chunks among similar segments, spatial locality is also ex-

ploited to increase deduplication gain. Although this approach does no detect

all deduplication opportunities across chunks from all segments, thus perform-

ing only partial deduplication, it allows to reduce chunk sizes and, consequently,

increase duplicate detection while maintaining a small RAM footprint.

The previous design is optimized in Sungem by only keeping, for each group

of similarity signatures at the sparse index, the signatures that are most e↵ective

in finding duplicates. [Simha et al. 2013]. Also, it is discussed a mechanism to

garbage collect entries at the index that are no longer useful deduplication targets.

These improvements allow further optimizing the size of the index.

Partial or sampled indexes present another solution for the index lookup bot-

tleneck and RAM consumption issues by keeping in cache only a subset of signa-

tures that are evicted when a certain threshold of RAM utilization is attained.

As there is no full index on disk, deduplication gain is reduced, because only a few

signatures are identified, which is alleviated by exploring spatial locality with the

pre-fetching of signatures for contiguous chunks [Guo and Efstathopoulos 2011],

as in DDFS. Sampled indexes are also explored in other systems that combine

chunk and delta-based deduplication to achieve higher deduplication gain, as fol-

lows: a cache that takes advantage of spatial locality, and an on-disk full index

are used for aliasing deduplication while, a partial index of similarity signatures is

kept in RAM for delta-encoding chunks that were not eliminated by the previous

method. Multiple levels of indirection caused by delta deduplication, when intro-

duced on a system as the one presented by DDFS, however, have a substantial

impact on restore throughput [Shilane et al. 2012].

Spatial and temporal locality may be lacking in some storage workloads,

thus reducing significantly the e�ciency of locality-based approaches. The index
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lookup bottleneck can then be addressed by storing the index on SSDs, which in-

creases significantly throughput over traditional hard disks and can scale to larger

data sets than RAM indexes, as explained in Dedupv1 [Meister and Brinkmann

2010]. However, fine-grained index write and update operations are not a good

fit for SSDs FLASH memory. This can be solved by organizing the index as a log,

appending new entries sequentially, as in Chunkstash [Debnath et al. 2010]. In

fact, the challenges for key-value stores on FLASH memory are widely researched

and are present in a wider range of systems unrelated to deduplication [Anand

et al. 2010, Debnath et al. 2011, Lim et al. 2011, Lu et al. 2012]. Moreover,

both Dedupv1 and Chunkstash explore spatial locality as the original DDFS

work does. Although these two systems can exploit spatial locality to reduce

FLASH accesses, their designs are not dependent on locality to achieve e�cient

deduplication throughput and gain.

Distributed deduplication

Peer-to-peer deduplication, where backups are made cooperatively to remote

nodes, was introduced in Pastiche [Cox et al. 2002]. More specifically, nodes

backup their data into other remote nodes that are chosen by their network

proximity and data similarity. As in-line deduplication is performed and each

node has its own independent CAS, it is possible to send only the new chunks

over the network to the nodes with the most resembling content, reducing both

network bandwidth and used storage space. Moreover, convergent encryption de-

rives keys from content instead of using each user’s encryption key. This ensures

privacy while forcing duplicate chunks to have the same cypher text for dedupli-

cation. While this technique leaks the knowledge that a particular cipher text,

and thus plain text, already exists, an adversary with no knowledge of the plain

text cannot deduce the key from the encrypted chunk [Douceur et al. 2002].

Since Pastiche only performs deduplication across a specific set of cluster

nodes, duplicate data still exists across the cluster. This led to systems that

focus on deduplication across the cluster as a whole. As a first system pro-

posal, all cluster nodes can have access to a distributed data structure, exported

as a centralized index, where unique chunk signatures are kept and mapped to

specific nodes. Then, duplicate chunks can be routed to the same nodes and

eliminated locally by using Microsoft SIS system, thus achieving exact cluster
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deduplication. This design was proposed in Farsite, an in-line global dedupli-

cation system [Douceur et al. 2002]. Moreover, Farsite also proposes that some

redundant chunks must be kept in order to ensure data reliability, as well as, the

use of convergent encryption for protecting files from distinct users.

Moreover, DHTs can be used for indexing chunk signatures and routing re-

quests deterministically to the correct nodes [Dubnicki et al. 2009, Wei et al.

2010]. In Hydrastor, DHTs are used for implementing a large-scale in-line CAS

that applies compression to non-duplicated chunks to further increase space sav-

ings [Dubnicki et al. 2009]. Moreover, erasure codes and chunk replication, with

a factor defined by the user, are used to ensure reliability. Although Hydrastor

supports data deletion, this involves a complex algorithm for maintaining the

references to shared blocks. A distinct system uses the DHT to distribute files by

their content to specific nodes, and works as follows. Locally each file signature

is compared and, if a duplicate file exists, it is shared. If a duplicate file does

not exist, then file chunks are deterministically distributed over the nodes, being

each node responsible for processing all signatures with a specific prefix. This de-

terministic mechanism ensures that chunks are deduplicated across remote nodes

and is proposed in Mad2 [Wei et al. 2010]. Mad2 also proposes a novel meta-

data structure for preserving spatial locality, named hash bucket matrix, which

is combined with a pre-fetching cache mechanism to reduce disk accesses to the

index. Finally, a RAM-based Bloom filter, similar to the one proposed in DDFS,

is also implemented to avoid looking up entries at the on-disk index that do not

exist.

Global distributed deduplication may also use delta deduplication exclusively

instead of traditional aliasing deduplication. By using the delta technique, the

chunk size can be increased while not significantly a↵ecting gain, thus allowing

a scalable RAM index of similarity signatures where the most resembling chunks

are found and delta-encoded against the new chunks. This novel approach was

introduced by IBM Protect Tier system, presented as a gateway solution that

intercepts data from backup stream generators and writes it into an external stor-

age [Aronovich et al. 2009]. Although specific details are not presented, several

gateways can be combined to perform deduplication over a common data reposi-

tory, thus allowing global distributed deduplication. As a distinct approach, the

Dedupv1 centralized design can be extended over a shared Storage Area Net-
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work (SAN) device where several nodes have exclusive access to their own data

partitions [Kaiser et al. 2012]. Nodes are seen as independent Dedupv1 nodes

that export their own iSCSI interface, partition data, compute hashes, and map

chunk requests to the correct nodes. Each node is responsible for storing, on its

own SSD partition, a range of the signatures index, and, in some cases, signature

lookups must be done through the network. This leads to additional network

bandwidth requirements and to overhead in I/O requests that are minimized

with a write-back cache and write-ahead logs. Partition owners are only changed

in case of load balancing or failure recovery.

Local deduplication in distributed infrastructures

Global indexes and the consequent bottlenecks can be avoided by parallel local

deduplication, increasing deduplication throughput at the expense of gain [You

et al. 2005, Bhagwat et al. 2009, Dong et al. 2011, Fu et al. 2012, Xia et al. 2011].

Deep Store introduces a large-scale archival storage where stored files are routed,

according to their signatures, to specific cluster nodes with independent processor,

memory, and disk [You et al. 2005]. In each storage node, a framework named

PRESIDO divides files into variable-sized chunks, and uses both aliasing and delta

deduplication for locally eliminating duplicates. Another work was then proposed

to route files to specific nodes according to their similarity as follows: When a

file is backed up, it is sent to a backup node, for example, the one with the less

load, and the file similarity and identity signatures are calculated. Then, based

on its similarity signature, the file is routed to the correct backup node. This

was introduced by Extreme Binning system that also proposed a two tier index

design for local deduplication [Bhagwat et al. 2009]. The first index is stored in

RAM and indexes a whole file similarity and identity signature, while the second

index is stored on disk and indexes identity signatures. When the file is routed

to a node, the primary index is searched for a similar file, and, if found, the file

identity signature is compared to see if the whole file can be deduplicated. If not,

chunk identity signatures from the most similar file are brought to memory and

deduplicated against the chunks of the new file. This is another implementation

of a sparse index that reduces RAM footprint at the expense of both global

and local deduplication gain. Moreover, due to the system’s distributed design,

several backup files can be deduplicated in parallel.
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Extreme Binning relies on file similarity for achieving high deduplication

ratios, while other solutions propose to explore spatial locality in each node.

Namely, local deduplication exploring spatial locality and Bloom filters, as in

DDFS, can be combined with stateless or stateful routing mechanisms at super-

chunk granularity [Dong et al. 2011]. In the stateless algorithm, chunks are

grouped into super-chunks and are then routed to the right node by their content

similarity. On the other hand, the stateful routing algorithm uses information

about the location of chunks, and uses a Bloom filter to count the number of

times each chunk signature in a super-chunk is stored in a given node. Then, if

the node with the most chunks in common is not overloaded, thus preserving load

balancing, the super-chunk is routed to that node. Otherwise, the second best

node in terms of space savings is chosen. The stateful routing approach chooses

the best nodes to store the super-chunks in terms of space savings, while the

stateless routing approach does not need knowledge of stored chunks, and uses

a best-e↵ort routing scheme with low computational requirements. The stateless

routing scheme can achieve 80% of the exact deduplication values; however, this

rate may drop significantly for some large data sets where the stateful approach

can maintain the 80%. When compared to Extreme Binning, these approaches

use a smaller routing granularity, and are not highly dependent on inter-file sim-

ilarity to achieve good deduplication ratios.

The computational and memory overhead of stateful routing at super-chunk

granularity can be minimized by using a probabilistic similarity metric that iden-

tifies the nodes holding the most chunks in common with the super-chunk being

stored [Frey et al. 2012]. This metric is based on a probabilistic set intersection.

It does not require exact knowledge about chunks stored at each node to define

the routing strategy that yields the most deduplication gain, but has an implicit

estimation error. The estimation error can then be reduced by preferentially

storing super-chunks in nodes with high metric similarities that were also used

to store previous super-chunks belonging to the same backup file, thus leveraging

spatial locality.

As some workloads may exhibit poor similarity, others may have poor lo-

cality, leading to proposals that explore both simultaneously and, in this way,

compensate the lack of one with the other [Xia et al. 2011, Fu et al. 2012]. More

specifically, one of the approaches divides files into content-defined chunks, group-
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ing small strongly correlated files into a single segment while dividing large files

into several segments. Then a local similarity index is used for finding simi-

lar segments to deduplicate against. Similarity index size can be reduced and

scalability improved by grouping small files into segments. Then, segments are

grouped into locality preserving blocks that are the basic caching unit, allowing a

similar approach to DDFS to exploit spatial locality. This algorithm is presented

in Silo which does not present a detailed description of the routing algorithm, al-

though aimed at a distributed infrastructure [Xia et al. 2011]. In fact, details are

then explained in ⌃-Dedup where similarity-based stateful routing at super-chunk

granularity is presented, while local deduplication follows an identical approach

to Silo [Fu et al. 2012].

Other cluster approaches focus on o↵-line deduplication for splitting data

partitioning and signature calculations from the global index lookup and up-

date operations, parallelizing both and batching accesses to the index, as in DE-

BAR [Yang et al. 2010b] and Chunkfarm [Yang et al. 2010a]. In both systems,

the deduplication algorithm is divided in two phases. In a first phase, data is

partitioned into chunks, content signatures are calculated and a RAM cache sig-

nature is used to eliminate some of the duplicate chunks locally, without requiring

a global index mechanism. In addition this step can be processed in parallel by

several nodes, and requires writing all chunks and their signatures to disk, which

increases storage consumption. In DEBAR chunk signatures are written to a

disk log sorted by buckets to enable batch processing, while in Chunkfarm all

signatures that need to be looked up in the index are collected and sent to a

metadata server that then uses hash join algorithms for performing both look

up and update in batch [Shapiro 1986]. Then, in a second phase, signatures are

processed asynchronously, and both index lookup and insertion operations are

batched, avoiding fine-grained random I/O operations. In DEBAR the index is

stored in a centralized service, while in Chunkfarm it is not specified if the meta-

data server is distributed or how that can be accomplished. As a matter of fact,

a centralized index may pose as a single point of failure and scalability bottleneck

in large clusters.
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File systems for archival and backup

Finally, archival and backup CAS systems can be extended with file system se-

mantics at the expense of moderate I/O performance. A distributed file sys-

tem built on top of HYDRAstor, which performs in-line global deduplication

at content-defined chunk granularity, is proposed in Hydra File System (Hy-

draFS) [Ungureanu et al. 2010]. HydraFS optimizations allow the system to per-

form well for stream I/O operations (sequential read and writes), while single ran-

dom block write and read requests, common in most file systems, are supported,

but are ine�cient due to the FUSE abstraction layer and the backup-oriented im-

plementation of HYDRAstor. Similar negative impact in I/O performance was

also observed when building a file system on top of Venti [Liguori and Van Hens-

bergen 2008].

Similarly, the open-source centralized Less File System (LessFS) is designed

mainly for backup purposes but can also be used for storing VM images and pri-

mary data with moderate performance requirements [Lessfs 2014]. In-line dedu-

plication is performed with a fixed-size block granularity while FUSE is used for

implementing file system semantics.

Archival and backup deduplication has a large pool of research work and is still

being actively researched, mainly on the optimization of both deduplication and

I/O throughputs. Nevertheless, most systems in this category assume that data

is immutable and I/O throughput is preferred over I/O latency. These assump-

tions do not hold true in primary storage systems, and explain why building file

systems over backup and archival deduplication systems have poor performance

for random I/O operations.

2.3.2 Primary storage

With cloud computing there has been a growing interest in live volume dedu-

plication. Primary storage deduplication invalidates some of the assumptions

made by archival and backup deduplication systems. Applications using primary

storage have strict performance requirements for I/O latency, meaning that a

deduplication system must aim at the same I/O performance as a raw storage

system without deduplication. Data is no longer write-once and is expected to

be modified frequently, thus requiring, for some systems, CoW mechanisms for
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preventing updates on aliased data, and e�cient reference management mecha-

nisms for tracking chunk references that will change frequently [Hong and Long

2004]. In primary storage, the percentage of duplicate data is usually lower than

the one found for backup storage, dropping from 83% to 68% [Meyer and Bolosky

2011]. Other studies show that higher deduplication ratios can be found for gen-

eral purpose primary VM volumes in large clusters, where 80% of space reduction

is possible [Jin and Miller 2009, Clements et al. 2009].

O↵-line deduplication

The strict latency requirements of primary storage applications shift the focus to

o↵-line deduplication systems, aiming at lower storage latency by reducing over-

head in the write path. Distributed o↵-line deduplication for a SAN file system

was introduced in the Duplicate Data Elimination (DDE) system [Hong and Long

2004], and works as follows. Deduplication is performed in the background out-

side the critical write path, which, besides reducing latency, allows to temporarily

disable deduplication when the system has a higher load. DDE is implemented

over the distributed IBM Storage Tank system that avoids cross-host commu-

nication in the data path. Clients calculate the signatures for fixed-size chunks

written to the storage, and send these signatures to a server that shares duplicate

chunks asynchronously. The index of unique signatures is stored on the SAN, and

has two versions. One is structured to favor sequential I/O and spatial locality.

The other is indexed by partial bits for facilitating random searches. CoW is used

to ensure that processed chunks are not changed and the signatures are always

valid, as it would otherwise lead to data corruption. Reference counting infor-

mation is stored in separate metadata structure that is needed for the garbage

collection of unused blocks. Deduplication is restricted to within a specific file set

that is a sub-set of the global file system. This policy allows distinct file sets for

applications with di↵erent performance assumptions, as some may not tolerate

the performance penalty introduced by deduplication.

A proposal for distributing the centralized metadata server in DDE, which is

solely responsible for detecting and coalescing duplicates, and presents a single

point of failure, was then introduced in DeDe [Clements et al. 2009]. Namely, an

o↵-line distributed deduplication algorithm for VM volumes on top of VMWares’s

Virtual Machine File System (VMFS) is described, and uses an index structure,
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stored at the cluster file system that is accessible to all nodes and protected by

a locking mechanism. This allows e�cient batch lookups and updates, while

index sharding across multiple nodes enables the design to scale out. Moreover,

VMFS simplifies deduplication as it already has explicit block aliasing, CoW

and reference management operations, which are not commonly exposed in most

cluster file systems, and are used to implement the atomic share function that

verifies the content of two fixed-size blocks and replaces them with one CoW block

if they match. However, there are alignment issues between the block size used

in VMFS and DeDe, implying additional translation metadata and a consequent

impact on performance. Additionally, the storage impact of CoW operations is

also significant and therefore the DeDe algorithm is intended to run in periods

of low I/O load.

A mechanism for reducing the frequency and, consequently, the overhead of

CoW operations was proposed in Microsoft Windows Server 2012 centralized o↵-

line deduplication system [El-Shimi et al. 2012]. Namely, only files that meet a

certain policy, for instance, file age greater than a certain threshold, are dedu-

plicated. This reduces the probability of rewriting highly volatile files and, con-

sequently, invoking CoW operations. Moreover, it was proposed that files are

grouped according to their file extensions, for example, and then each group can

be deduplicated individually. This allows loading the index of each group into

RAM and performing e�cient lookup and update operations. A reconciliation

algorithm for eliminating duplicate data between several groups can be used to

achieve exact deduplication. Mechanisms for exploring spatial locality similar to

DDFS, and to store the index as a log structured file and, possibly, on SSD, as

in Chunkstash, were also proposed.

In-line deduplication

Performing deduplication in an in-line fashion requires costly lookups in the write

path, which can impose a significant overhead in storage I/O latency. On the

other hand, o↵-line deduplication may introduce additional reads from the stor-

age, requires more storage space, raises concurrency issues and increases the com-

plexity of the deduplication systems. These problems motivated the emergence

of in-line deduplication systems for primary storage that introduce optimizations

for reducing significantly the I/O latency.
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Liquid deduplication file system uses a client-side private cache for holding

VMs blocks that are being frequently modified [Xun et al. 2014]. When a flush

is issued by the VM, all blocks are evicted from the private cache, have their

signatures calculated and are stored in remote data servers organized as a DHT.

Deduplication is still done in an in-line fashion since blocks are deduplicated

before being stored in the data servers, however, some of the computational

overhead of deduplication is avoided until explicit flush operations are called.

Although this optimization reduces some of the storage overhead, Liquid dedu-

plication is still only recommended for VM content that is modified sporadically.

As a distinct contribution, when a fresh copy of a previously stored VM image

is launched, a peer-to-peer approach is used for e�ciently retrieving blocks from

both the servers holding data and the clients caches, thus reducing the load in

data servers and allowing a more scalable design.

In-line global deduplication is also supported by the Opendedup open-source

system [Opendedup 2014]. As a novelty, chunk boundaries can be defined with

either fixed or variable sized granularities. The index with chunk signatures

is sharded across several servers while lookups to the index are sent in batch

and multicasted to all servers. Writes to the storage only proceed when all the

responses for the same batch are received or when a pre-defined timeout occurs.

This approach favors throughput over latency and, this way, has a prohibitive

overhead for the latency requirements of most primary storage systems. Also,

in order to increase the performance of deduplication, Opendedup requires a

significant amount of CPU and RAM resources.

In the Z File System (ZFS), optimizing for reduced latency also means fully

loading the index in RAM. It is still possible to cache only a subset of the in-

dex in memory, but disk lookups have a significant impact on deduplication and,

consequently, storage I/O performance [OpenSolaris 2014]. As an alternative to

maintaining the full index in memory, a multi-layer Bloom filter for speeding

lookups at the index and reducing the impact in I/O latency was proposed in

the Deduplication Block-Device (DBLK) [Tsuchiya and Watanabe 2011]. The

first Bloom filter layer detects if a certain signature might be present at the on-

disk index without requiring a disk access. Then, if the signature is likely to

be already indexed, the second Bloom filter layer narrows the location of the

signature, thus speeding its retrieval. Another solution for increasing deduplica-
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tion throughput and reducing I/O latency is to use a Bloom filter and explore

spatial locality by preserving the disk layout, and then pre-fetching contiguous

chunk signatures to cache as in DDFS. These two improvements were presented

for an in-line centralized deduplication system along with a novel fault-tolerant

journaling mechanism for tracking system transactions, and recovering data and

corresponding signatures in failure scenarios [Ng et al. 2011].

Spatial and temporal locality were also explored in order to minimize both

read and write latency. Fragmentation and, consequently, read I/O latency is

reduced by deduplicating groups of contiguous blocks and storing them together,

so as to preserve their layout. Spatial locality makes it likely that duplicates can

still be found in such groups. On the other hand, temporal locality is exploited

with a LRU cache that stores a partial list of index entries. The on-disk index

is organized in buckets and is stored as a red-black tree that reduces the num-

ber of pointers and, consequently, the storage space of traditional hash tables.

This space reduction allows to increase the number of buckets to improve hash

lookup speed. These optimizations were presented in Netapp’s idedup in-line

deduplication system where overhead is minimized while maintaining consider-

able deduplication gain [Srinivasan et al. 2012].

As a distinct approach, the algorithm to pre-fetch chunk signatures into an

in-memory cache can follow statistical information derived from storage access

patterns, as discussed in HANDS in-line deduplication system [Wildani et al.

2013]. Namely, temporal and spatial locality metrics can be extracted from stor-

age I/O traces in order to improve cache e�ciency. Moreover, this mechanism can

be extended to consider other variables that are important for grouping chunks

with a high probability of being accessed together. The paper shows that it is

possible to reduce the space that a full memory index cache would require by

99% while still achieving a cache hit ratio between 30% and 90%.

Another option is discussed in the Performance-Oriented I/O Deduplication

(POD) system where RAM space is dynamically adjusted for the read and index

caches, according to the current storage access pattern [Mao et al. 2014b]. This

idea follows the assumption that primary storage workloads change frequently

between read and write bursts. This way, when a write burst occurs, most of the

reserved RAM space can be used for holding index signatures in an LRU fash-

ion, thus increasing deduplication throughput. On the other hand, when read
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bursts occur, the reserved RAM space holds mainly the content of the most pop-

ular blocks. As another contribution, fragmentation is alleviated by performing

deduplication only for segments that have a higher number of duplicates than

a pre-defined threshold. This ensures that spatial locality is maintained while,

fragmentation in stream read requests is reduced.

2.3.3 Random-access memory

Deduplication is also used for applications and VMs that do not benefit from

classic RAM sharing provided by process forks or shared libraries. The extra

memory, obtained by eliminating redundant memory pages, can be useful for

launching additional applications or VMs, or can be provided to the existing

ones. More precisely, it is possible to reduce memory consumption by 33% by

using RAM deduplication across a group of virtualized hosts [Waldspurger 2002].

Current RAM deduplication systems have di↵erent assumptions from backup

and primary storage systems. For instance, since duplicate content is only found

across applications or VMs running in the same server, deduplication is always

performed locally in a centralized fashion. Moreover, memory pages are highly

volatile and change frequently, requiring e�cient CoW and reference management

mechanisms.

The Disco Virtual Machine Monitor (VMM) pioneered in-line transparent

page sharing for memory pages, such as code or read-only data, across di↵er-

ent VMs [Bugnion et al. 1997]. Memory pages loaded from a special CoW disk

are shared, thus eliminating the need of content-aware deduplication. Disco in-

tercepts read requests from CoW disks and finds if the page for that request

is already in-memory, thus avoiding the disk access and sharing pages between

di↵erent VMs. Duplicate pages are mapped into a single memory page at the

host’s main memory. Since content-aware deduplication is not used, an index of

signatures is not necessary.

Non-intrusive scan deduplication

Disco requires several modifications to the guest OS, which led to content-aware

approaches, such as VMware ESX, that perform non-intrusive memory scans to

find duplicates [Waldspurger 2002]. Namely, memory can be shared in an o↵-line
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fashion by periodically scanning all memory pages, calculating their signatures

and looking for duplicate pages in an index of unique page signatures. Then,

shared pages must be marked as CoW for preventing updates that may cause

data corruption.

As sharing highly volatile pages increases significantly the amount of CoW

operations and, consequently, the overhead, a double tree index was proposed in

Linux Kernel Same-page Merging (KSM) system to detect such pages and avoid

sharing them [Arcangeli et al. 2009]. Memory regions to be deduplicated are given

as a parameter and are periodically scanned for finding and merging duplicate

pages among applications and KVM VMs. A stable tree metadata structure is

used for registering shared pages that are write protected and scanned first for

duplicate detection. An unstable tree is used for keeping unique pages that are

not write protected and scanned only if no duplicates were found at the stable

tree. This mechanism detects what pages are less susceptible to be rewritten and

are better sharing candidates. KSM index trees do not keep hash signatures of

the pages but the actual page content. This way, duplicate pages are found with

memcmp() operation instead of comparing content signatures.

KSM design was then updated in the Singleton system to optimize the dual

page caching mechanism in virtualized hosts and further increase space sav-

ings [Sharma and Kulkarni 2012]. In virtualized hosts, each VM has its own

page cache as a first-level cache mechanism. When this mechanism fails to ser-

vice an I/O request, a second-level hypervisor cache, shared by all VMs, is used

to look up the requested page. Having two caches with duplicate pages occupies

unnecessary memory space that can be spared with deduplication. The original

KSM design was modified by replacing the search trees with hash tables that

index the content signatures of pages instead of their actual content, eliminat-

ing the CPU usage of memcmp() operations. Hypervisor cache page signatures

are calculated periodically, checked against the indexes of pages from VMs’ lo-

cal caches, and dropped from the hypervisor cache if duplicates are found, thus

improving memory usage.

Memory deduplication space savings were further improved by introducing

delta-encoding and compression, besides the usual aliasing technique present in

previous systems. First, duplicate pages are shared by looking for duplicate

signatures in an identity index, and then a similarity index is used for looking
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up for similar pages and delta-encoding them. Pages that were not duplicated,

and are not expected to be rewritten in a near future, are compressed to improve

further space savings, as introduced in Di↵erence Engine [Gupta et al. 2010].

In order to enhance the e�ciency of memory scans and index searches, two

distinct optimizations were proposed. In the Cross Layer I/O-based Hints (XLH)

system, hints about recently modified memory pages are provided to memory scan

approaches, such as the ones used in KSM and ESX [Miller et al. 2013]. These

hints provide information about what pages are better share candidates and avoid

a linear or random search across all memory pages while, allowing to detect short-

lived sharing opportunities. As a distinct optimizations, in the Classification-

based Memory Deduplication (CMD) system, pages are grouped into distinct

trees based on their access characteristics [Chen et al. 2014]. Pages that belong to

the same tree have high probability of having the same content. This classification

allows defining smaller trees than in KSM, thus reducing the search space for

finding duplicate pages while having a minimal penalty in deduplication gain.

Intrusive deduplication

Other memory deduplication systems intercept disk read operations, as in Disco,

but use content-aware page sharing. Intercepting requests has the advantage of

detecting short-lived sharing opportunities that in scan approaches, as the one

presented by VMware ESX Server, may be discarded [Milos et al. 2009]. One of

the first systems to introduce memory deduplication aimed at solving problems

of dynamic libraries, such as Dependency Hell and Global O↵set Table (GOT)

overwrite attack, by replacing dynamic libraries with static libraries, thus cre-

ating self-contained applications [Suzaki et al. 2010]. This replacement leads to

extra memory usage, because static libraries do not share any data. Slinky intro-

duces in-line deduplication as a solution for mitigating these additional memory

costs [Collberg et al. 2005]. Pages are intercepted when they are being loaded into

memory, and their signatures are looked up in an index to find duplicates. Con-

tent signatures are calculated before loading the pages into memory, and CoW is

not necessary because only read-only pages are shared.

Unlike Slinky, some in-band systems must support mutable pages and im-

plement CoW mechanisms. This is addressed in Satori, an in-line deduplication

system that modifies virtual disk implementations to intercept read requests made
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by VMs [Milos et al. 2009]. Namely, an image of the page cache is built by ob-

serving the content of disk reads, and when a block read request is intercepted,

its content is hashed and compared with the other indexed page digests to see if

the page is duplicate. If the page is duplicated, then it is shared and marked as

CoW. For each VM, a Repayment FIFO queue holds a list of volatile pages that

the operating system is willing to relinquish at any time, and which are used to

e�ciently provide free pages for CoW operations.

Besides space savings, memory deduplication can also be used to implement

in hardware a memory abstraction of protected shareable segments with snapshot

and atomic update operations, as explained in the Hierarchical Immutable Con-

tent Addressable Memory Processor (HICAMP) system [Cheriton et al. 2012].

This abstraction allows fault-tolerant and safe concurrent access to data shared

by multiple threads while reducing the overhead of common inter process com-

munication approaches. HICAMP system is implemented as a CAS where the

memory is divided into fixed-size chunks, referred to as lines, with unique and im-

mutable content ensured by the in-line deduplication algorithm. Memory space

is divided into hash buckets with content lookup operations at line granularity.

This way, when a new line is written, it is checked to see if a line with that

content already exists and the new line can be deduplicated, or if the new line

has new content and must be inserted in the memory space. Reference counting

is done by the hardware and when the number of references to a line is zero, the

line is garbage collected. This design allows to implement memory segments that

are logical variable-length contiguous regions of memory and are represented as

direct acyclic graphs pointing to specific lines protected with CoW. With this

representation, snapshots can be performed e�ciently and threads can run with

snapshot-isolation guarantees.

Another work that does not present an actual deduplication system but fo-

cuses on useful optimizations for RAM deduplication is the new hyper-call for

the XEN hypervisor, proposed to minimize the performance impact of hashing

pages [Pan et al. 2011]. Moreover, the benefits of memory deduplication in vir-

tualized clusters can be maximized by placing VMs with similar content at the

same host, as described in [Wood et al. 2009]. A memory fingerprinting technique

that presents a compact representation of the memory content allows to identify

VMs with high page sharing potential and migrate them to the same host to
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achieve higher space savings.

2.3.4 Solid state drives

Deduplication has also been used within SSDs, known for radically improving the

performance of random I/O operations. In SSDs, I/O operations are processed

at fixed page sizes, usually 4 KiB, but unlike in traditional hard disks it is not

possible to delete data at the same granularity. Pages are grouped into erasure

blocks, usually with 64 to 128 pages, and the deletion is done at erasure block

granularity. Moreover, updates cannot be done in-place, so modified blocks must

be appended to an erasure block with free space. Then, only when all pages

in an erasure block are unused, they can be erased and reclaimed by a garbage

collection mechanism. The number of erase operations for each block, however,

is limited in the range of 10,000 to 1,000,000 operations, thus limiting the drive’s

lifespan and being one of the major issues of this technology [Chen et al. 2011].

Typical SSD designs include the following components. A FLASH Transaction

Layer (FTL) is implemented in the SSD controller and emulates the behavior of a

traditional hard drive by exporting an array of logical blocks to the host. In this

layer, an indirect mapping table is kept for mapping logical to physical addresses.

A log-like write mechanism is used for writing pages, and each in-place update to

a logical page only invalidates the previously occupied physical page, appending

the new physical page to a free erasure block and updating the corresponding

entry on the indirect mapping table. A garbage collection mechanism is launched

periodically to recycle unused physical pages, consolidate the valid pages into a

new erasure block and clean unused erasure blocks. Wear-leveling mechanisms

are used to shu✏e the hot and cold blocks in order to balance the number of

writes and deletions in erasure blocks, thus increasing the lifespan of the SSD. A

certain amount of over-provisioned spare space usually exists, which is not usable

by the host, and is used by the garbage collection and wear-leveling mechanisms.

Deduplication gain observed in SSDs is also lower than in primary and backup

storage. A gain of 56% is possible, however, it is the best case scenario, while

for most workloads only up to 30% is achievable [Chen et al. 2011, Gupta et al.

2011, Kim et al. 2012]. On the other hand, finding duplicate data in SSDs has

advantages other than the space saving benefits. In fact, if in-line deduplication

is performed it is possible to reduce the number of writes to the storage and
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increase the device lifespan. Moreover, the space saving benefits not only allow

users to store more data, but also provide additional space for wear-leveling

and garbage collection mechanisms. As SSDs already have a mapping table

for translating logical to physical addresses, the deduplication design can take

advantage of it for sharing identical pages with low overhead. Since there is also

a periodical garbage collection mechanism, it is possible to extend it to perform

reference management and garbage collection of shared pages. Deduplication in

the SSD device has also some disadvantages. These devices come already with an

internal Dynamic Random-Access Memory (DRAM) memory that can be used

to store the deduplication index, however, this DRAM has limited space that

does not allow to store a complete index of page signatures. SSDs also come

with a limited processing capability, and calculating hash signatures may impose

significant overhead. These advantages and drawbacks are further discussed while

we describe existing SSD deduplication systems.

A pioneer CAS for SSDs that performs best e↵ort in-line deduplication was

presented by the Content-Aware Flash Translation Layer (CAFTL) system [Chen

et al. 2011]. The indirect mapping table of the SSD device is used for implement-

ing the I/O translation mechanism for the deduplication engine. In-line dedu-

plication is performed with a best e↵ort approach while the SSD performance is

not significantly a↵ected. If the load reaches a certain threshold, in-line dedupli-

cation is turned o↵, and stored duplicate pages are then shared with an o↵-line

deduplication algorithm that runs in the same periods as the garbage collector.

The o↵-line approach spares storage space, but does not avoid write requests to

the storage. Fixed-size chunks are used and their hash signatures are stored in

a DRAM partial index that only contains the most referenced signatures. An

additional metadata table is used for mapping the references to each shared page

and performing reference management. All these metadata structures are stored

in the SSD, because the DRAM is not persistent over reboots or power failures.

However, metadata updates are bu↵ered and flushed only when the bu↵er is full,

leading to metadata loss when a power failure occurs. This can be solved by using

a capacitor for the DRAM. Since hash calculations are heavy for the SSD built-in

processor, a content-based sampling algorithm that explores data spatial locality

is presented, allowing to check the probability of a set of pages being duplicates.

Then, hash signatures are only calculated for pages with high probabilities that
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will benefit the most from deduplication.

The hash computation overhead is also avoided in the Content-Addressable

Solid State Drive (CA-SSD) system with a built-in hardware hashing unit [Gupta

et al. 2011]. The mapping structures and the partial index, similar to the ones

presented in CAFTL, are stored in a fast persistent storage. This persistent

storage must not be the SSD device itself in order to increase SSD performance

and space savings. The CA-SSD proposal also di↵ers from CAFTL, because

only in-line deduplication is performed. Finally, it was observed that temporal

locality was present in the studied workloads, which allowed to implement the

partial index of chunk signatures as an LRU cache.

Temporal locality was then further researched in subsequent work by propos-

ing a sampling-based filter for written pages that are still in the DRAM bu↵er

and were not flushed to the SSD yet. This sampling mechanism detects what

page contents are being written more than once and will benefit more from dedu-

plication. This way, and since the hash calculation and deduplication can in-

troduce significant overhead in the SSD processor, only the pages that probably

will achieve the most benefits from being shared are actually processed, thus re-

ducing deduplication overhead. Moreover, this work implemented the first real

prototype and evaluated it without resorting to simulation [Kim et al. 2012].

SSD deduplication is still emerging and raises interesting challenges that are

not present in other storage environments. First, the limitations of DRAM space

and computational power raises the need for new designs for metadata structures

and hashing algorithms. SSD partial indexes decrease RAM requirements, but

also detect less duplicates and depend highly on locality assumptions. On the

other hand, data fragmentation is not an issue, as in other storage environments,

since random read requests are e�cient in SSD devices. Regarding the dedupli-

cation overhead in I/O requests, the system described previously shows that for

significant duplication ratios (more than 5%), the write performance can even be

increased, while read performance has no significant overhead [Kim et al. 2012].

These values consider that e�cient hashing mechanisms are being used instead

of the common one presented in most SSDs.
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Table 2.1: Classification of deduplication systems for all storage environments.
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SIS W N O F A C

Farsite W N O F A G

LessFS F N I F A C

Venti, [Liguori and Van Hensbergen 2008] F T I F A C

Foundation F T I F A C

[Guo and Efstathopoulos 2011] F S I P A C

JumboStore V N I F A C

Debar, ChunkFarm V N O F A G

Hydrastor, HydraFS, [Kaiser et al. 2012] V N I F A G

Pastiche V N I F A L

DDFS, Dedupv1, Chunkstash, [Meister et al. 2013b] V S I F A C

[Dong et al. 2011], Silo, ⌃-Dedup V S I F A L

[Lillibridge et al. 2009], Sungem V S I S A C

Mad2 WV S I F A G

ExtremeBinning WV N I S A L

IBM ProtectTier F N I F D G

[Shilane et al. 2012] V S I FP AD C

DeepStore V N I F AD L

ZFS, DBLK F N I F A C

DeDe F N O F A G

DDE F S O F A G

Liquid F N I F A G

[Ng et al. 2011] F S I F A C

iDedup, HANDS, POD F TS I F A C

Microsoft Windows Server V S O F A C

Opendedup VF N I F A G

Disco F N I2 n/a1 A C

Slinky, Satori, HICAMP F N I2 F A C

VMware ESX, KSM, Singleton, XLH F N O F A C

CMD F N O S A C

Di↵erence Engine F N O F AD C

CAFTL F S IO P A C

CA-SSD, [Kim et al. 2012] F T I P A C

Granularity: (W)hole file; (V)ariable; (F)ixed. Locality: (N)one; (S)patial; (T)emporal. Timing: (I)n-line;
(O)↵-line. Indexing: (F)ull; (P)artial; (S)parse. Technique: (A)liasing; (D)elta. Scope: (C)entralized;

(G)lobal; (L)ocal.
1. Disco does not require an index since it does not perform content-aware deduplication.

2. Disco and Satori perform in-line deduplication, because I/O read requests to the persistent storage are
intercepted and redirected, if possible, to duplicate shared memory pages before actually loading the pages

from the storage. Slinky performs in-line deduplication, because pages loaded from static libraries are shared
before actually being loaded to memory.
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2.4 Discussion

Table 2.1 classifies deduplication storage systems according to the taxonomy de-

scribed in Section 2.2 and groups these systems by storage environment. This

table highlights the relevance of each design option, characterizes the design

space for each storage type, and points out unexplored designs that should be

researched.

Aliasing deduplication is used in all storage types, while delta deduplication

by itself is used only in backup systems. In both backup storage and RAM, alias-

ing and delta deduplication are combined for increasing space savings. Backup

storage systems use several chunk granularities, being variable-sized chunks the

most common one, while fixed-sized chunks are preferred in all other storage en-

vironments. Several indexing designs are used in backup deduplication, including

even combinations of full and partial indexes [Shilane et al. 2012]. In primary and

RAM deduplication systems, except for Disco and CMD systems [Bugnion et al.

1997, Chen et al. 2014], full indexes are always used. In contrast, SSD deduplica-

tion uses only partial indexes due to DRAM space restrictions. Locality is only

explored in backup, primary and SSD deduplication systems. In RAM and SSD

storage, deduplication is performed only in a centralized fashion, while in backup

deduplication, local and global distributed approaches are also available. On

the other hand, in primary deduplication all distributed systems perform global

deduplication. Finally, all storage types have systems using o↵-line and in-line

deduplication, while in SSD deduplication it is possible to combine both.

Most archival and backup systems assume that stored data has a write-once

policy and, in some archival systems, this data cannot be deleted at all. Some

of these systems, however, can be used as back end for implementing file system

syntax and, consequently, support data updating with limited performance for

random I/O operations [Nath et al. 2006, Ungureanu et al. 2010]. Since deletion

and update operations are expected to be less frequent than in other storage

environments, reference management and garbage collection mechanisms are also

active for shorter periods and their overall overhead is reduced. Moreover, in

these deduplication systems throughput is preferred over latency and, as most

deduplication systems perform in-line deduplication, I/O latency is significantly

increased.

These assumptions are not valid in primary storage, RAM, and SSD where I/O
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latency overhead must be negligible even if deduplication throughput is reduced.

Thus, data is updated in place, requiring a CoWmechanism to protect updates on

shared data and potential data corruption. Although data is not updated in place,

in SSDs it is necessary to ensure that shared blocks are not erased and collected

by the garbage collector while still being referenced. In RAM deduplication,

most pages are highly volatile, thus changing more often than in other storage

environments, and increasing CoW and reference management overhead. Finally,

existing SSD deduplication systems present deduplication embedded in the SSD

device, which significantly restricts the computational power and RAM space

available.

Most strikingly, in-line global deduplication can still be further explored in

distributed primary storage systems. Liquid and Opendedup are the only two

systems that perform in-line global deduplication [Xun et al. 2014]. However,

both approaches have a significative impact in storage requests when performing

global deduplication, which is not acceptable for primary volumes with strict la-

tency requirements. In fact, even with the proposed optimizations, current in-line

primary deduplication systems are designed for centralized storage appliances as

introducing remote index lookups in the critical I/O path results in prohibitive

storage overhead. Moreover, there are few proposals on distributed deduplication,

and several contributions and combinations of techniques are possible. For in-

stance, all primary deduplication systems use full index approaches while partial

and sparse indexing mechanisms can still be explored.

It is also important to notice that primary deduplication must be evaluated

di↵erently from backup deduplication. In archival and backup deduplication sys-

tems, static VM images, containing the operating system and application bina-

ries, are widely used to assess the system’s performance as many of these systems

are designed to store such content [Guo and Efstathopoulos 2011]. In primary

storage deduplication, dynamic traces should be used to accurately simulate real

workloads. In fact, using evaluation workloads suited for specific environments

is extremely important to validate distinct assumptions. For example, in a sce-

nario where VM images with a common ancestor are backed up integrally, spatial

locality can be explored e�ciently. In a primary storage scenario where specific

blocks of VM images are being changed independently with no correlation, for

instance, in a Virtual Desktop Infrastructure (VDI) where each user has its own
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workstation mapped to an independent VM, spatial locality will be significantly

reduced.

Mechanisms that replay dynamic traces or resort to synthetic I/O benchmarks

can be used to simulate primary storage environments if real workloads are not

available. Traditional I/O benchmarks do not simulate realistic content distribu-

tions for their tests, which limits their realism. As only a few proposals address

this challenge [Tarasov et al. 2012], novel contributions in this topic are possible.

Also, workloads for RAM and SSD storage must be considered.

To conclude, current primary storage systems with strict latency requirements

either have centralized components that limit scalability, or find duplicates in a

centralized fashion or in o↵-peak periods to ensure a minimal penalty in the per-

formance of storage requests [Hong and Long 2004, Clements et al. 2009, Srini-

vasan et al. 2012, Xun et al. 2014]. In a cloud computing primary storage, the

solutions must be fully-decentralized in order to scale and cannot rely on o↵-peak

periods that may be scarce or even non-existent. As another issue, there are still

few benchmark tools suited for accurately simulating the duplicate content and

dynamism expected in a primary storage environment [Tarasov et al. 2012].



Chapter 3

Benchmarking storage

deduplication systems

Deduplication is now being applied to distinct storage environments with specific

workloads and characteristics, which justifies the need of having proper bench-

marking tools for evaluating and comparing existing deduplication systems. Pre-

vious work analyzed 120 datasets used in deduplication studies and concluded

that most of them are either private or non-reproducible [Tarasov et al. 2012].

Therefore, other researchers and enterprises cannot use them to evaluate their

own deduplication systems. On the other hand, the few datasets that are publicly

available contain mainly static operating system distributions and VM images,

while most have less than 1 GiB of data.

Using static workloads for evaluating primary deduplication systems, as the

one we present in Chapter 4, is not realistic. Primary storage data is dynamic

and some parts of it are frequently rewritten, requiring a CoW mechanism that

adds significant overhead in storage requests and must be accounted in the eval-

uation [Clements et al. 2009]. This dynamism can be simulated with traditional

micro-benchmarks. However, most of them do not use a realistic distribution

for generating duplicates and, in most cases, the data written in each bench-

mark operation either has the same content or, it has random content with no

duplicates at all [Coker 2014, Katcher 1997, Anderson 2002]. In both cases, the

deduplication engine will process an abnormal number of duplicates, which will

a↵ect not only the storage and deduplication performance metrics but also the

values reported for the space savings and resource usage of the deduplication

55
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system [Tarasov et al. 2012].

Moreover, distinct storage types i.e., archival, backup, primary, RAM and

SSD storage, have specific distributions of duplicates and, simulating these di↵er-

ences is key for having a more realistic evaluation. For instance, distinct duplicate

distributions will have a specific impact in the reference management and CoW

operations that, as explained in the previous chapter, do not a↵ect significantly

the performance of archival deduplication but a↵ect the performance of primary

storage deduplication.

Some benchmarks generate duplicates by defining a percentage of duplicate

content over the written records, or the entropy of generated content [Norcott

2014, Al-Rfou et al. 2010]. However, these methods are only able to generate

simplistic distributions that do not specify, for example, distinct number of dupli-

cates per unique data as found in a real storage system. To our knowledge, there

is only one file system benchmark addressing the previous limitations [Tarasov

et al. 2012]. Nevertheless, as we explain in Section 3.4, the characteristics of this

benchmark are more focused towards archival and backup deduplication. For

example, data modification is not simulated in a stress fashion as it would be

expected in a primary storage.

This way, there is still the need for benchmarks that are able to simulate

the dynamism and the duplicate content found in distinct storage environments.

Also, with the increased number of deduplication proposals, it is important that

these benchmarks are public so that distinct systems can be evaluated in repro-

ducible and comparable testing environments.

3.1 DEDISbench

We target the previous challenges with DEDISbench, an open-source synthetic

disk I/O micro-benchmark suited for block-based deduplication systems.

3.1.1 Design, features and implementation

The basic design and features of DEDISbench resemble the ones found in Bon-

nie++ and IOzone, which are two open-source synthetic micro-benchmarks widely

used to evaluate disk I/O performance [Coker 2014, Norcott 2014].
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DEDISbench is implemented in C and allows performing either read or write

storage requests at the fixed-size block granularity, with a size chosen by the

user. Storage operations can be issued directly over a block storage device or

over files, created by the benchmark, in a file system. Also, several processes can

access concurrently the storage device or independent files, being the number

of processes and the size of process files defined by the users. The evaluation

can be configured to stop when a certain amount of data was processed or when

a pre-defined period of time has elapsed, which is not common in most I/O

benchmarks.

As another novel feature, storage operations can be executed with di↵erent

load intensities. In addition to a stress/peak load where storage operations are

issued as fast as possible to stress the system, DEDISbench can also issue op-

erations at a nominal load, specified by the user, and thus evaluate the system

with a stable load. Few disk I/O benchmarks support both features, as stated in

Section 3.4.

Note that DEDISbench simulates low-level block I/O operations so, it is

not focused on generating realistic directory trees and files like other bench-

marks [Katcher 1997, Anderson 2002, Filebench 2014, Al-Rfou et al. 2010, Tarasov

et al. 2012]. Nevertheless, such benchmarks are also referred along this chapter

and compared with DEDISbench in terms of content generation and storage ac-

cess patterns.

Figure 3.1 depicts an overview of DEDISbench architecture. For each process,

an independent I/O request launcher module launches either read or write block

operations, at nominal or peak rates, until the termination condition is reached.

For each I/O operation, this module must contact the access pattern generator

for obtaining the storage o↵set for the I/O operation (1) that will depend on

the type of access pattern chosen by the user and that can be; sequential, ran-

dom uniform or random with hotspots. Next, the I/O request launcher module

contacts the content generator module for obtaining an identifier for the content

to generate (2). Since DEDISbench is aimed at block-based deduplication, this

identifier will then be appended as an unique pattern to the block’s content, en-

suring that blocks with di↵erent identifiers will not have the same content. The

generated identifiers will follow the information from an input file, provided to the

benchmark, that details how to simulate a specific duplicate content distribution.
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Step 2 is only required for write requests because read requests do not generate

any content to be written. Finally, the operation will be sent to the storage (3)

and the metrics regarding operations throughput and latency will be monitored

by the I/O request launcher module. The approaches used for generating the

access and duplicate distributions are further detailed next.

I/O request 
launcher

1. Get request 
offsetAccess 

pattern 
generator

Content 
Generator

2. Get request
content 

3. Perform I/O 
operation

Figure 3.1: Overview of storage requests generation.

3.1.2 Storage access distribution

DEDISbench supports sequential and random uniform patterns for storage read

and write accesses, as in IOzone and Bonnie++. These patterns are important

for measuring the performance of low-level hardware characteristics, for instance,

the hard disks arm movement while, also being useful for testing other storage

characteristics such as raid and replication.

DEDISbench introduces a novel third access pattern that simulates access

hotspots, where few blocks are accessed frequently while the majority of blocks

are accessed sporadically. This hotspot distribution is generated with TPC-C

NURand function [Transaction processing performance council 2010]. TPC-C is

an industry standard on-line transaction processing SQL benchmark that mimics

a wholesale supplier with a number of geographically distributed sales districts

and associated warehouses. In DEDISbench, the NURand function is used for

generating the storage addresses to be written in each operation. As we show in

Section 3.3, this is a more realistic pattern for most applications, where random

accesses are tested while leveraging the advantages of caching mechanisms, thus

allowing to uncover distinct performance issues.
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3.1.3 Duplicate content distribution

DEDISbench main contribution is the ability to process an input file specifying

a distribution of duplicate content, and using this information for generating a

synthetic workload that follows such distribution. As depicted in Figure 3.2 the

input file states the number of unique content blocks for a certain amount of

duplicates. In this example there are 5000 blocks with 0 duplicates, 500 blocks

with 1 duplicate, 20 blocks with 5 duplicates and 2 blocks with 30 duplicates.

This file can be populated by the users or can be generated automatically with

DEDISgen, an analysis tool used for processing a real dataset and extracting

from it the duplicate content distribution. This tool is further detailed in the

next section.

0 5000
1 500
5 20
30 2
...

Input File

DEDISgen

2. generate
input file

1. analyze
data set

3. generate
cumulative 
distribution

DEDISbench

Figure 3.2: Process for extracting and generating a duplicate content distribution
in DEDISbench.

With the previous information, DEDISbench generates a cumulative distri-

bution that defines the probabilities of selecting specific block identifiers. Blocks

are duplicates when they share the same identifier. Identifiers with high probabil-

ity of being chosen correspond to blocks with many duplicates, while identifiers

with lower probabilities correspond to blocks with few duplicates. Unique blocks

without any duplicate are also contemplated in the distribution and, have unique

identifiers. For each write operation issued, a random generator and a cumulative

distribution function are used to select the correct identifier and, consequently,

the content to write.

3.2 Automatic dataset analysis and extraction

There is extensive work focusing on the duplicates found at real storage sys-

tems [Meyer and Bolosky 2011, Clements et al. 2009, Hewlett-Packard Develop-

ment Company , L.P 2011]. However, the information provided in these studies
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does not present the necessary details in order to generate the input content dis-

tributions used by DEDISbench. This section explains how our benchmark can be

extended to simulate additional duplicate content distributions, and presents the

details of the distributions found for three distinct real storage systems. These

distributions are publicly available to be used with our benchmark.

DEDISgen is an open-source tool for analyzing and extracting duplicate con-

tent distributions from real storage systems. This tool is implemented in C and

processes data either from a storage block device, or from files inside a specific

directory tree in the following way: The stored data is read and divided into

fixed-size blocks, with a size chosen by the user. A SHA-1 hash sum is calculated

for each block and inserted in a Berkeley DB database1 in order to find duplicate

hashes [Olson et al. 1999]. After processing all data, the database information

is transformed into an input file suitable for DEDISbench. All this process is

transparent and automatic for anyone who uses this tool.

Next, we analyze the distributions, for three distinct storage environments,

extracted with DEDISgen for a block size of 4 KiB. These three distributions

have specific access patterns and performance requirements that, as explained

previously, limit the deduplication approach to be used.

3.2.1 Archival storage

The first dataset analyzed has mainly archival and some backup data from the

members of our research group. Most data is accessed sporadically and the

number of updates on stored data is extremely low, thus not significant. However,

data can be deleted which is not assumed in some archival systems. This way, this

dataset’s requirements are similar to the ones found in traditional archival/backup

deduplication systems where write-once data is assumed and I/O throughput is

leveraged over I/O latency [Quinlan and Dorward 2002].

As depicted in Table 3.1, the dataset has approximately 486 GiB, 90% of

the blocks do not have any duplicate, 3% of the blocks have duplicates with

distinct content and 7% of the blocks are copies that can be eliminated with

deduplication. This storage has a small percentage of duplicate content, when

compared to some of the literature [Meyer and Bolosky 2011, Hewlett-Packard

Development Company , L.P 2011]. This happens because most files are stored

1Berkeley DB is used as an hash table.
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in compressed formats to reduce storage space usage. Since these files are only

restored sporadically, the cost of decompressing them is acceptable for the users.

Table 3.1: Content statistics for the archival, personal files and high performance
storage systems.

Archival Personal
Files

High
Performance

Total space (GiB) 486 113 1528

% Blocks w/o duplicates 90 76 69

% Duplicate blocks
distinct 3 6 6

copies 7 18 25

3.2.2 Personal files storage

The second dataset has personal files from our research group and has distinct re-

quirements from the archival dataset. Most data is accessed frequently and some

is updated and deleted sporadically, so it cannot be considered as write-once.

Also, the latency for reading and writing files at this storage is expected to be

lower than the one tolerated for the previous archival storage. Since the require-

ments of this dataset change, the deduplication systems targeting this storage

type are also di↵erent from the ones considered in the last section. Namely,

deduplication systems are expected to e�ciently handle reference management

and protect updates on shared data with CoW mechanisms that can have a sig-

nificant impact in storage requests latency.

As shown in Table 3.1, the dataset has approximately 113 GiB and has a

higher percentage of copies than the one found at the Archival storage, namely,

18%. Moreover, 76% of the blocks do not have any duplicate while 6% are dupli-

cated blocks with distinct content. This storage has significantly more duplicates

than the archival one because several personal files are duplicated and compres-

sion of files is less usual. For example, several source-code repositories are held by

this storage and, in most cases, each researcher has its own copy, thus generating

several duplicates.
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3.2.3 High performance storage

The last dataset analyzed is used as the primary storage for our group research

projects and stores dynamic data from simulations and real applications. Data

is updated frequently, which requires a higher number of CoW operations from

deduplication systems and raises the complexity of reference management. Also,

storage I/O latency is expected to be as minimal as possible so, the deduplication

systems suitable for the two storage types described previously are usually not

suited for primary storage environments.

As shown in Table 3.1, the dataset occupies approximately 1.5 TB, having the

larger size of the three storage systems analyzed, and also the larger percentage

of copies, namely, 25%. Additionally, 69% of the scanned blocks do not have

any duplicate and 6% have duplicates with distinct content. This storage has

the higher percentage of duplicates, which can be explained by the amount of

duplicate runs from simulations and real systems benchmarks that are persisted

in this storage system.

3.2.4 Datasets analysis

It is important to look at the distinct percentages of duplicates found for each

storage environment, as it a↵ects the global number of duplicates to generate.

However, it is also important to observe the ratio of duplicates per block with

unique content. In a storage scenario where blocks are updated frequently, having

many blocks with one duplicate or having many blocks with several duplicates

will change the complexity and performance of CoW, reference management and

garbage collection mechanisms. This way, it is important that the workload

simulates not only the number of duplicates but also the duplication ratio found

in real storage systems.

The di↵erences in the duplication ratios for the three storages are visible at

Table 3.1. For instance, in both personal files and high performance storage sys-

tems 6% of the scanned blocks have unique content and are duplicated. However,

the percentage of duplicates (copies) is higher for the high performance storage

that, consequently, has a higher ratio of duplicates per block. These di↵erences

are even more noticeable in Figure 3.3, pointing the percentage of unique content

blocks that have a specific range of duplicates (i.e., equal to 0, between 1 and
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Figure 3.3: Distribution of duplicate ranges per unique blocks for archival, per-
sonal files and high performance storage systems.

5, 5 and 10, 10 and 50 and so on). The figure omits blocks with more that 500

duplicates for legibility reasons. In fact, all storage systems have some unique

blocks with more than 500 duplicates. In detail, the personal files storage has

244 blocks with more than 500 duplicates, the high performance storage has 161

blocks with more than 500 duplicates, and the archival storage has 118 blocks

with 50 to 100 duplicates, 120 blocks with 100 to 500 duplicates and 58 blocks

with more than 500 duplicates.

Looking at the figure, the archival storage has few unique blocks with more

than 100 duplicates, while the personal files storage has the higher percentage of

unique blocks with many duplicates. On the other hand, the high performance

storage has the higher percentage of unique blocks with few duplicates, which will

probably increase the complexity of reference management and garbage collection

as many shared blocks will be copied-on-write and then garbage collected in a

frequent basis.

To sum up, this analysis is important for understanding the percentage of

duplicates and the ratio of duplicates per unique block for three storage en-

vironments with distinct access patterns and requirements. For instance, the

di↵erent duplication ratios identified can change the utilization patterns of ref-

erence management, garbage collection and CoW mechanisms that may impact
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significantly the storage performance. Moreover, as we show next, distinct dupli-

cate content distributions indeed a↵ect the evaluation of deduplication systems

so, it is extremely important to choose the correct workload. Finally, these are

just three examples of what duplicate distributions can be expected from distinct

real storage systems. Both DEDISgen and DEDISbench are publicly available

so, we encourage other researchers and enterprises to use them for analyzing and

releasing the distributions of their own storage systems.

3.3 Evaluation

In order to understand the impact of DEDISbench novel features, we compared

our benchmark with IOzone and Bonnie++, the two micro-benchmarks with the

most resembling design and features [Coker 2014, Norcott 2014].

Bonnie++ is a standard micro-benchmark that performs several tests to eval-

uate disk I/O performance in the following order : Write tests assess the per-

formance of single byte writes, block writes and rewrites, while read tests assess

byte and block reads, all with a sequential access distribution. Seek tests perform

random uniform block reads and, in 10% of the operations, random uniform block

writes. The size of blocks, the number of concurrent Bonnie++ processes and

the size of the file each process accesses are defined by the user. All these tests

are performed with a stress load and run until an amount of data is written/read

for each test. It is not possible to specify the content of written blocks. Finally,

Bonnie++ also tests file deletion and creation, which is not contemplated in this

evaluation because it is not supported by IOzone or DEDISbench.

IOzone is the I/O micro-benchmark that most resembles DEDISbench and

allows performing sequential and random uniform write and read tests. The block

size, number of concurrent processes, and the size of the files of each process, are

also defined by the users. Tests are performed at a stress load and, for each

test, the user defines the amount of data to be read/written by each process.

Unlike in Bonnie++, it is possible to define full tests that perform either read or

write random disk I/O operations. Additionally, the percentage of inter-file and

intra-file duplicate content can be specified for written blocks. Nevertheless, as

discussed in the next sections, this content generation mechanism does not allow

specifying a content distribution with a realistic level of detail as in DEDISbench.
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DEDISbench, IOzone and Bonnie++ have several features in common but

also di↵er in specific details, as shown in Table 3.2. In DEDISbench, a cumu-

lative distribution function extracted from a real dataset allows simulating not

only the percentage of duplicate and non-duplicate blocks but also the distri-

bution of duplicates per unique block. Such is not possible with the IOzone’s

approach that only allows defining the intra and inter-file duplication percent-

age, or in Bonnie++ where the content distribution cannot be specified by the

user. The content distributions generated by the three benchmarks are evaluated

and further discussed in Section 3.3.2.

Table 3.2: Comparison of DEDISbench, IOzone and Bonnie++ features.

DEDISbench IOzone Bonnie++

Content generation Cumulative distribu-
tion function of a
real distribution

Intra and Inter-file
duplication percent-
age.

Cannot be specified

Access distributions Sequential, uniform
random and hotspot
random

Sequential and uni-
form random

Sequential and uni-
form random

Termination Data written and
time

Data written Data written

Intensity Stress and nominal Stress Stress

Granularity Block Block Byte and block

The three benchmarks support sequential and random uniform access tests.

DEDISbench introduces a novel hotspot access distribution where few blocks are

accessed frequently, while the majority of blocks are accessed sporadically. I/O

tests in DEDISbench can be pre-defined to terminate when a specific amount of

data was written, as in IOzone and Bonnie++, or when a specific amount of time

has elapsed. Moreover, our benchmark can issue I/O operations with stress or

nominal load intensities, allowing to evaluate storage systems with peak or stable

loads. In Bonnie++, it is possible to perform block and byte I/O tests while,

in the other two benchmarks, tests are only performed at the block granularity.

Most of these details are evaluated and discussed in Section 3.3.4 as they influence

the results of the evaluation of deduplication systems.
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3.3.1 Scope and setup

The experiments discussed in this section aim at validating two distinct points:

First, we want to show that DEDISbench simulates more accurately a real content

distribution than IOzone and Bonnie++. As a second goal, we want to show that

this enhanced content generation mechanism along with the other novel features

allow uncovering new issues in deduplication systems, thus proving that such

features are important for an accurate evaluation.

All tests ran in a 3.1 GHz Dual-Core Intel Core Processor with hyper-threading,

4 GiB of RAM and a local SATA disk with 7200 RPMs. Unless stated otherwise,

for each benchmark test, the amount of data read/written was 8 GiB distributed

over 4 concurrent processes, each reading/writing 2 GiB from an independent

file.

The three benchmarks were configured in order to simulate as accurately as

possible the content distribution of the personal files dataset described in Sec-

tion 3.2. Also, since this dataset was analyzed with a block size of 4 KiB, the size

chosen for DEDISbench and Bonnie++ block tests was also 4 KiB. DEDISbench

used the input distribution file generated by DEDISgen to simulate the realistic

distribution while, in Bonnie++, it is not possible to specify the content to be

written.

On the other hand, the block size chosen for IOzone was 16 KiB, thus defining

that each block would have 25% of its data (4 KiB) duplicated across distinct

process files. With this configuration and using 4 independent files, each block of

16 KiB has a distinct 4 KiB region with three duplicates, one for each file, which

resembles the average number of 3 duplicates per block found at Personal Files

workload. Globally, IOzone generates 18.75% of copies while the remaining 75%

of the blocks do not have any duplicate, which also resembles the values shown

at Table 3.1 for the Personal Files data. By choosing 16 KiB for the block size,

the duplicate blocks are generated with a size of 4 KiB as in the real dataset,

which would not be possible if the IOzone block size was defined as 4 KiB.

Since IOzone allows defining intra and inter-file duplicate percentages, we

could have increased further the block size parameter to define the number of

duplicate sub-blocks at the same file. However, this decision would have increased

significantly the block size and the complexity of the configuration for achieving

a slightly closer distribution to the real one. Moreover, even with this extra
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parameter, IOzone would only be able to simulate two or three types of blocks

with distinct proportions of duplicates, while in DEDISbench it is possible to

simulate as many types as specified in the input distribution file, thus increasing

hugely the content distribution detail.

Note that we chose the personal files dataset for evaluating the benchmarks

accuracy but we could have chosen one of the other two datasets described previ-

ously. As explained in Section 3.3.4, the evaluated deduplication systems, namely

Opendedup and Lessfs, were developed for storage workloads with requirements

resembling our personal files one. This way, we use this real distribution as a

baseline for the complete evaluation procedure in order to increase the chapter’s

uniformity and clarity. However, the results and consequent conclusions of Sec-

tion 3.3.2 would have been similar if one of the other distributions was chosen

and the benchmarks were configured to simulate them. Finally, thorough the

next sections, we also refer to the personal files dataset as the real dataset.

3.3.2 Duplicate content distributions

We used DEDISgen for analyzing the data generated by DEDISbench, IOzone

and Bonnie++, for a sequential disk I/O write test, in order to compare the

distinct content generation mechanisms. We chose the sequential I/O test over

a random test because there are no block rewrites, enabling the extraction of

precise information about all the written blocks and their contents. As explained

previously, all benchmarks were configured to simulate as accurately as possible

the content of the personal files workload.

Figure 3.4 presents the percentage of unique content blocks with a specific

range of duplicates for Bonnie++, IOzone and DEDISbench generated content,

and for the personal files dataset. Unique content blocks generated by Bonnie++

have between 1 and 5 duplicates, in fact, each unique block has precisely 3 du-

plicates because every file is written with the exact same content, meaning that,

all blocks in the same file are distinct but are duplicated across the other files.

Consequently and as shown in Table 3.3, with Bonnie++, 75% of the written

space can be deduplicated. Note that, Figure 3.4 shows the number of duplicates

generated for each unique block written by the benchmarks, while Table 3.3 shows

the percentages of blocks without any duplicate, blocks with distinct duplicates,

and duplicate blocks for all the blocks written by the benchmarks, thus explaining
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why the percentages di↵er.
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Figure 3.4: Distribution of duplicate ranges per unique blocks for Bonnie++,
IOzone, DEDISbench and the real dataset.

The results for IOzone in Figure 3.4 show that most unique blocks do not

have any duplicate, while the remaining blocks have mainly between 1 and 5

duplicates, and a very small percentage has between 5 and 10. According to

IOzone configuration, duplicated distinct blocks should have 3 duplicates each,

which happens for almost all the blocks with the exception of 216 blocks that

have only 1 duplicate and 3 blocks that have 7 duplicates. In Table 3.3, IOzone

percentages for duplicates and unique blocks are the closest ones to the real

distribution percentages.

Table 3.3: Duplicates found for Bonnie++, IOzone, DEDISbench and the real
dataset.

Bonnie++ IOzone DEDISbench Real

% Blocks w/o duplicates 0 75 90 76

% Duplicate blocks
distinct 25 6 3 6

copies 75 19 7 18

The results of DEDISbench, in Figure 3.4, show that the number of unique

blocks is distributed over several regions of duplicates, resembling most the real
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distribution. Most blocks have few duplicates and a small percentage of blocks has

many duplicates. In fact, we omitted one value from the figure in the far end of the

distribution tail, for legibility reasons, where a single block has 15665 duplicates.

Simulating accurately the head and tail of the distribution is important for having

a realistic evaluation. For example, having many blocks with few duplicates

will increase the number of shared blocks that, after being rewritten, must be

collected by the garbage collection algorithm. On the other hand, mixing blocks

with di↵erent number of duplicates will also a↵ect the size of metadata structures

and the work performed by the deduplication engine.

However, when looking at Table 3.3, DEDISbench results are slightly more

distant from the real values than IOzone results. Since the real data set has

approximately 100 GiB and the benchmark is only writing 8 GiB, even if the

cumulative distribution followed by DEDISbench has a high probability of writing

the content of some blocks several times, which would generate a large amount of

duplicates, these blocks are being written fewer times than expected. Figure 3.5

and Table 3.4 compare the results of running DEDISbench sequential write tests

for 16 and 32 GiB (divided by 4 files) and show that when the amount of written

data is closest to the amount of data in the real dataset, the generated distribution

also becomes closer to the real one.

Table 3.4: Duplicates found for DEDISbench tests with 8, 16 and 32 GiB and
the real dataset.

DEDISbench
8

DEDISbench
16

DEDISbench
32

Real

% Blocks w/o duplicates 90 87 83 76

% Duplicate blocks
distinct 3 4 5 6

copies 7 8 12 18

To conclude, these results show that both Bonnie++ and IOzone do not

simulate accurately the distribution of duplicates per unique blocks. On the other

hand, DEDISbench design allows to overcome this limitation and simulates more

accurately a real storage workload, thus proving our first evaluation goal. The

lack of detail in Bonnie++ and IOzone can influence the load in the deduplication

and garbage collection mechanisms of the deduplication system. For instance, a

block shared by two entities or by one hundred determines the timing when
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Figure 3.5: Distribution of duplicate ranges per unique blocks for DEDISbench
tests with 8, 16 and 32 GiB and for the real dataset.

garbage collection is needed, how often the CoW mechanism must be used and

the amount of information in metadata structures for sharing identical content.

3.3.3 Storage access distributions

Another contribution of DEDISbench is the introduction of the NURand hotspot

access distribution, besides the traditional sequential and random uniform disk

access patterns, used in Bonnie++ and IOzone. We ran DEDISbench with the

three access distributions: sequential, random uniform and NURand, and ex-

tracted the access patterns of each distribution. IOzone and Bonnie++ were not

used in these tests because, in order to extract this information, it would require

modifying their source code. Moreover, DEDISbench sequential and random uni-

form distributions mimic the ones found for these two benchmarks.

Figure 3.6 presents the percentage of blocks for a certain range of accesses. In

the sequential distribution 100% of the blocks are accessed precisely once (range

between 1 and 5 in the figure), while in the random uniform distribution most of

the blocks are accessed between 1 and 5 times, in fact most blocks are accessed

only once and the percentage of blocks decreases for an higher number of accesses.

On the other hand, the NURand distribution results show that a high percentage
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Figure 3.6: Distribution of accesses per block for sequential, random uniform and
NURand approaches.

of blocks is accessed few times while a small percentage is accessed many times,

generating blocks that are hotspots (i.e., a few blocks are accessed more than 500

times).

To sum up, the NURand distribution allows creating hotspots for I/O re-

quests, thus simulating a storage environment where some data is accessed fre-

quently and most data is only accessed sporadically. For deduplication systems

this means that some blocks are constantly being shared, copied-on-write and

garbage collected, which has a distinct impact that cannot be simulated by the

other two access distributions.

3.3.4 Storage performance evaluation

In order to assess how the distinct features of each benchmark a↵ect the evalua-

tion of real deduplication systems, we chose to evaluate LessFS and Opendedup

in-line deduplication systems, discussed in Chapter 2. We chose these systems

because they are mature open-source projects that, although not designed for

primary storage scenarios with strict latency requirements, export file system se-

mantics supporting data modification. This feature is important for testing the

impact of CoW and garbage collection mechanisms.
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The main goal of this section is to compare how Bonnie++, IOzone and

DEDISbench evaluate both deduplication systems. However, a direct comparison

of the results of each benchmark have no meaning, as we are dealing with dis-

tinct benchmarking tools. For instance, saying that Opendedup achieves higher

disk throughput in Bonnie++ sequential block write test than in IOzone and

DEDISbench sequential block tests may not be significant. Firstly, each bench-

mark has distinct implementations for similar tests, and measures di↵erently the

performance metrics. Moreover, some benchmarks support tests that are not

present in the others, for example, only Bonnie++ has single byte tests, and only

DEDISbench uses an hotspot access distribution.

For these reasons, we chose to evaluate each deduplication system as it would

have been evaluated in a traditional scenario. Namely, the two deduplication

systems were compared, in terms of overhead, with Ext4, a file system with-

out deduplication. This way and as an example, if the single byte write tests

of Bonnie++ introduce higher disk latency overhead than the sequential block

write tests of the three benchmarks, we can conclude that writing single bytes

is ine�cient and that this specific test uncovers a problem that is not evaluated

by the other tests. Similarly, if sequential block writes in Bonnie++ have less

I/O latency overhead than in IOzone or in DEDISbench sequential write tests,

we can compare these values and explain that this di↵erence exists because Bon-

nie++ writes a higher percentage of duplicates than the other two benchmarks.

To sum up, by comparing the overheads of the deduplication systems over Ext4,

it is possible to extract meaningful information even if the implementations of

the three benchmarks are di↵erent. Note that this evaluation does not aim at

assessing which benchmark consumes less resources or has higher throughput.

Instead, we want to understand how each deduplication system is evaluated by

these benchmarks and which issues are uncovered by using distinct features.

Regarding the tests setup, the three file systems were mounted in the same

partition, with a size of 20 GiB, that was formatted before running each bench-

mark. Also, the deduplication file systems were configured to have a fixed-block

size of 4 KiB. Bonnie++ tests were issued in the following order: single-byte

write, block write and block rewrite in sequential mode, single-byte read and

block read in sequential mode and, finally, the random seek test. For IOzone and

DEDISbench we tried to choose a test order as similar as possible to Bonnie++.
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IOzone order was: Block write, block rewrite, block read and block reread in

sequential mode, and then block read and block write in random uniform mode.

For DEDISbench the order was exactly the same as in IOzone, but with two ad-

ditional tests, a block read and block write with the NURand access distribution.

Also, DEDISbench used the personal files workload, discussed in Section 3.2,

because this is the storage environment that best fits the assumptions of the

evaluated deduplication systems.

Table 3.5 shows the results of running Bonnie++ on Ext4, LessFS and Opend-

edup. By comparing the deduplication systems with Ext4 it is possible to con-

clude that writing sequentially one byte at a time is ine�cient because, for each

written byte, a block of 4 KiB will be modified and will be shared by the dedu-

plication system, thus forcing the deduplication system to process a single block

4096 times. This is also true for sequential byte reads where, in each operation,

it must be made an access to the metadata that tracks the stored blocks for re-

trieving a single byte. In this last test, the overhead introduced by Opendedup,

when compared to LessFS overhead, is considerably higher so, it is possible that

LessFS is taking advantage of some sort of mechanism that avoids retrieving the

whole block to memory in each byte read operation.

Table 3.5: Evaluation of Ext4, LessFS and Opendedup with Bonnie++.

Ext4 LessFS Opendedup

Sequential byte write (KiB/s) 1100 76 56

Sequential block write (KiB/s) 72035 13860 155496

Sequential block rewrite (KiB/s) 17319 1016 62744

Sequential byte read (KiB/s) 3029 1262 72

Sequential block read (KiB/s) 73952 60064 144614

Urandom seek (seeks/s) 171 127 116

In sequential block write and rewrite tests Opendedup outperforms Ext4 by

taking advantage of Bonnie++ writing the same content frequently and repeating

it in all tests. Data written in sequential byte tests is shared so, in subsequent

tests, Opendedup algorithm only requires consulting the in-memory metadata

for finding duplicate content and sharing it, thus avoiding the need of actually

writing the new blocks to disk. On the other hand, LessFS implementation does

not seem to take advantage of such scenario, probably because some persistent
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metadata structure is still being written for each write operation. Opendedup

also outperforms Ext4 in sequential block reads probably with a pre-fetching

cache mechanism, although only e�cient at the block granularity. Finally, in

random seek tests both deduplication systems present worse results than Ext4,

with LessFS slightly outperforming Opendedup. RAM and CPU measurements

while Bonnie++ was running are depicted in Table 3.6. Both Opendedup and

LessFS consume a significant amount of RAM, meaning that most metadata is

loaded in memory and explaining, for example, the performance boosts of Opend-

edup in sequential block read and write tests. The significant CPU consumption

measured for Opendedup can be a consequence of Bonnie++ writing a high per-

centage of duplicate content, thus generating a large amount of duplicates to be

processed.

Table 3.6: CPU and RAM consumption of LessFS and Opendedup for Bonnie++,
IOzone and DEDISbench.

LessFS Opendedup

Bonnie++
CPU 22 % 163 %

RAM 2.2 GiB 1.8 GiB

IOzone
CPU 9 % 25 %

RAM 1.3 GiB 2.1 GiB

DEDISbench
CPU 15.7 19.5 %

RAM 2.2 GiB 1.9 GiB

Table 3.7: Evaluation of Ext4, LessFS and Opendedup with IOzone.

Ext4 LessFS Opendedup

Sequential block write (KiB/s) 74463 5525 19761

Sequential block rewrite (KiB/s) 74357 373 29925

Sequential block read (KiB/s) 67159 7777 10464

Sequential block reread (KiB/s) 67522 11495 10404

Urandom block read (KiB/s) 2086 1304 1766

Urandom block write (KiB/s) 2565 162 1608

Table 3.7 shows the results of running IOzone for Ext4, LessFS and Opend-

edup. Unlike Bonnie++, this benchmark does not write always the same content

in distinct tests, explaining why Opendedup does not outperforms Ext4 in block
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rewrite operations. This way, although some of the data was shared already, the

content written is not always the same and most requests are still written to disk.

With IOzone, Opendedup outperforms LessFS in almost all tests with the excep-

tion of block reread test where LessFS is slightly better. LessFS performance

degradation is visible in sequential and random write tests, and mainly in rewrite

tests. In Table 3.6, the RAM and CPU usages drop significantly which can be

a consequence of less duplicate content being written and processed. The RAM

usage in Opendedup is an exception and the value is higher than in Bonnie++

tests. The size of the metadata index increases with the number of unique blocks

to index, which can explain this last value.

Table 3.8 shows the results of running DEDISbench on Ext4, LessFS and

Opendedup. As explained previously, IOzone generates almost all duplicated

blocks with exactly 3 duplicates, while DEDISbench uses a realistic distribution

where most blocks have few duplicates but some blocks have a large number of

copies. This will help explaining the next results. In sequential tests both Opend-

edup and LessFS are outperformed by Ext4, as in IOzone evaluation. However,

the results of Opendedup for the sequential write test show considerably less

overhead when compared to the same IOzone test. This can be a consequence of

DEDISbench generating some blocks with a large amount of duplicates that will

require writing only one copy to the storage, thus enhancing the performance of

Opendedup. On the other hand, in the sequential rewrite tests, Opendedup per-

formance decreases since DEDISbench generates many blocks with few duplicates

that will then be rewritten, copied-on-write and will require garbage collection,

thus increasing the overhead.

The most interesting results appear in the random I/O tests. Firstly, LessFS

outperforms Ext4 in uniform random block read test, which is an harsh test for

the disk arm movement, pointing one of the advantages of using deduplication.

If two blocks stored in distant disk positions are shared, the shared block will

then point to the same disk o↵set and a disk arm movement will be spared. Also,

in-memory cache mechanisms can store more blocks since duplicate blocks do not

need to be included in the cache. In IOzone there are few duplicates per block

and this operations does not occur so often but, in DEDISbench some blocks

have a large number of duplicates which can reduce significantly the disk arm

movement, increase cache e�ciency and, consequently, improve performance. As
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Table 3.8: Evaluation of Ext4, LessFS and Opendedup with DEDISbench.

Ext4 LessFS Opendedup

Sequential block write (KiB/s) 86917 5025 77508

Sequential block rewrite (KiB/s) 76905 658 18853

Sequential block read (KiB/s) 78649 7527 18592

Sequential block reread (KiB/s) 78620 11789 20405

Urandom block read (KiB/s) 791 2055 511

Urandom block write (KiB/s) 1416 123 n.a.

NURandom block read (KiB/s) 2287 1830 1350

NURandom block write (KiB/s) 1246 152 n.a.

a matter of fact, even in Opendedup where this improvement is less visible, the

overhead for random uniform read tests is lower than the one for sequential read

tests.

With the NURand hotspot distribution the performance of read operations

in Ext4 is leveraged because caching mechanisms can be used more e�ciently.

Therefore, the performance gain for LessFS and Opendedup are less noticeable

but, nevertheless, achieve less overhead than in sequential tests. The CPU and

RAM consumptions, shown in Table 3.6, for LessFS and Opendedup are similar

to the ones obtained with IOzone, with a slight reduction in Opendedup values

and increase in LessFS ones. These variations can be explained by the design and

implementation of each deduplication system and how they process the distinct

generated datasets.

The other interesting results are visible in the uniform and NURand random

write tests. The performance of LessFS when compared to Ext4 decreases sig-

nificantly, while Opendedup system blocks with a CPU usage of almost 400%,

not being able to complete these tests. This means that the realistic content

distribution in DEDISbench uncovered a problem in Opendedup that could not

be detected with the simplistic content distributions of IOzone and Bonnie++.

To further prove this point, Table 3.9 tests Opendedup with the default

DEDISbench and a modified version that writes always the same content for

each I/O operation. The results show that Opendedup completes successfully

all the tests and greatly increases the performance, even when compared to the

Ext4 results with the default DEDISbench version. However, the drawback of
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processing a fully duplicate dataset is visible in the CPU and RAM usage of

Opendedup that increases to 272% and 2.6 GiB respectively. These results show

that using a realistic content distribution is necessary for a proper evaluation of

deduplication systems, and that Opendedup is not thought for datasets with a

considerable percentage of non-duplicated data.

Table 3.9: Evaluation of Opendedup with DEDISbench and a modified version
of DEDISbench that generates the same content for each written block.

DEDISbench Original DEDISbench Modified

Sequential block write (KiB/s) 77508 247428

Sequential block rewrite (KiB/s) 18853 253818

Sequential block read (KiB/s) 18592 412694

Sequential block reread (KiB/s) 20405 418169

Urandom block read (KiB/s) 511 106696

Urandom block write (KiB/s) n.a. 3638

NURandom block read (KiB/s) 1350 73386

NURandom block write (KiB/s) n.a. 3289

To sum up, this section states that using realistic content and access distribu-

tions influences significantly the evaluation of deduplication systems. Moreover,

generating a realistic content distribution is necessary for finding performance

issues and system design fails, like the ones found for Opendedup, but also for

finding deduplication advantages, such as the performance boost in uniform ran-

dom read tests found for LessFS. Moreover, it is useful having a benchmark that

can simulate several content distributions ranging from fully duplicate to fully

unique content and, most importantly, that is able to generate a content distribu-

tion where the number of duplicates per block is variable, and follows a realistic

workload.

3.4 Related work

Despite the extensive research on storage benchmarking, benchmarks that simu-

late duplicate content distributions are vaguely addressed in the literature, being

either limited to generating simplistic distributions, or focused towards generat-

ing specific storage datasets [Norcott 2014, Filebench 2014, Tarasov et al. 2012].
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IOzone and Bonnie++ are the two open-source synthetic micro-benchmarks

that most resemble DEDISbench in terms of features and evaluation parame-

ters [Norcott 2014, Coker 2014]. However, Bonnie++ does not allow specifying

the content generated for write operations, in fact, it writes the same content in

each I/O test and for each file. On the other hand, IOzone allows specifying the

percentages of a record (block) that are duplicated in a intra-file and inter-file

fashion. Although these parameters allow having some control over the number

of duplicates per record, the level of detail is not as realistic as the one achievable

with our benchmark.

Both IOzone and Bonnie++ support either sequential or random uniform

access distributions, and are only able to perform stress testing. DEDISbench

introduces an hotspot access distribution based on TPC-C NURand function,

and allows issuing tests at a nominal throughput specified by the users.

Other work, with distinct goals, leverages the characterization of actual file

systems by simulating directory threes and depth, the amount of files in each

directory, distinct file sizes, and multiple operations on files and directories.

Namely, Postmark design aims at evaluating the performance of creating, append-

ing, reading and deleting small files, thus simulating the characteristic workloads

found in mail, news and web-based commerce servers [Katcher 1997]. Distinct

operations and sizes are assigned to files by using a random uniform distribution.

Then, in Fstress work, novel workloads for simulating distinct storage environ-

ments are discussed (e.g., peer-to-peer, mail and news servers) [Anderson 2002].

Also, an hotspot probabilistic distribution is used for assigning operations to dis-

tinct files and, these operations are issued with a pre-defined nominal load. As

a third option, with higher accuracy, a set of probabilistic models can be used

for creating new directories and files, choosing the depth and number of files in

each directory, and defining the size and access patterns to distinct files [Agrawal

et al. 2009].

Although previous benchmarks are able to simulate realistic file systems, none

of them focus on realistic content generation. In Filebench file system bench-

mark, an entropy based approach is used for generating data with distinct con-

tent, and allows controlling the compression and duplication ratio of written

blocks [Filebench 2014, Al-Rfou et al. 2010]. Similarly to IOzone, this feature

cannot reproduce the level of detail that is achievable with DEDISbench.
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Finally, Tarasov et al. work presents a framework for generating synthetic re-

alistic datasets for deduplication systems [Tarasov et al. 2012]. When compared

to previous benchmarks, this is the only work that aims at generating duplicate

content distributions with a high-level of detail. In order to accurately simulate

datasets and the mutations on their content over time, several snapshots of a

real storage system must be analyzed. This analysis is done at the file system

level, while the extracted information is used to specify a probabilistic model

that tracks both the content at the real storage system and the data mutations

across snapshots. Deduplication storage systems are then evaluated in the follow-

ing way. A first version of the dataset is represented in an in-memory metadata

structure describing all the folders, files and their content signatures, as found

at the analyzed dataset. This first version is applied to the storage system by

creating all the content at the storage, thus simulating a realistic dataset. Then,

for each iteration of the benchmark, the probabilistic model is used for mutat-

ing the in-memory metadata into the new dataset version. After completing the

mutation process, the new simulated dataset is specified in the metadata struc-

ture, and can applied to the current storage system by creating, modifying and

deleting the necessary files and folders.

This model is accurate for simulating mutable backup systems, in fact, for

this specific purpose it is a more realistic model than the one followed by DEDIS-

bench. However, for other storage environments like primary storage systems, the

previous mutation process is too slow so, the high dynamism of DEDISbench that

frequently writes and modifies data blocks is necessary to simulate an accurate

storage workload.

To sum up, most I/O benchmarks do not support the generation of duplicate

content writing either random or constant data patterns. To our knowledge,

IOzone, Filebench and Tarasov et all framework are the only I/O benchmarks

supporting such feature. When compared with DEDISbench, these benchmarks

use di↵erent algorithms for generating duplicate content that limit the realism

of generated distributions, or simulate specific storage environments that are

distinct from the ones simulated by DEDISbench.



80 3 Benchmarking storage deduplication systems

3.5 Discussion

In this chapter, we discuss the characterization of duplicate content in storage sys-

tems and its impact in the evaluation of deduplication systems. Also, we propose

DEDISbench, a synthetic disk I/O micro-benchmark that processes metadata ex-

tracted from real datasets for generating realistic content for I/O write operations.

Previous micro-benchmarks either do not focus on distinct content generation, or

generate limited distributions that, in most cases, do not accurately simulate real

datasets. Moreover, DEDISbench allows performing I/O tests with stress and

nominal intensities and introduces a novel distribution, based on TPC-C NU-

Rand function, that allows testing the impact of hotspot random disk accesses.

We also show that distinct storage environments have specific content dis-

tributions that must be simulated accurately in order to have a more realistic

evaluation. The DEDISgen tool can be used precisely to extract these di↵erent

distributions from real storage datasets. Also, this tool allows extending DEDIS-

bench supported workloads in a simple and fully-automatic fashion.

The comparison of DEDISbench with IOzone and Bonnie++ shows that our

benchmark simulates more accurately a real content distribution, allowing to

specify in detail the proportion of duplicates per unique block. Along with the

novel hotspot distribution, this increased accuracy is key for finding relevant

issues in two deduplication file systems, LessFS and Opendedup. This allow us to

conclude that DEDISbench novel features are important for properly evaluating

primary storage deduplication systems.



Chapter 4

DEDIS: Primary storage

deduplication

Deduplication space savings are increasingly desired in cloud computing virtu-

alized infrastructures. In fact, previous studies show that up to 80% of du-

plicate content exists across VMs primary volumes stored at these infrastruc-

tures [Clements et al. 2009]. CoW golden images are commonly used to launch

identical VM images as they allow eliminating a high percentage of duplicate

static data [Hewlett-Packard Development Company , L.P 2011, Meyer et al.

2008]. Deduplication gain can then be increased if dynamic data from users and

applications is also targeted by the deduplication system, as well as, if duplicates

are found and eliminated across the whole cluster. However, cluster-wide dedu-

plication of dynamic data stored in VMs primary volumes raises new challenges

that must be addressed.

Challenges

Applications accessing VMs primary volumes have strict performance require-

ments, therefore, the impact of deduplication systems in the latency and through-

put of storage accesses must be unnoticeable. Traditional in-line systems include

the computational overhead of deduplication in the storage critical path, which

leads to an unacceptable penalty in the storage system performance [Ng et al.

2011, Srinivasan et al. 2012].

Alternatively, o↵-line systems alleviate the previous penalty by running dedu-

plication as a background process, that asynchronously shares written data [Hong

81
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and Long 2004, Clements et al. 2009]. Since deduplication and storage requests

are performed concurrently, it is necessary to have proper mechanisms for coping

with concurrency issues. CoW is required to prevent in-place updates of aliased

data and possible data corruption. However, CoW operations are done in the

critical storage write-path, and increase the complexity of reference management

and garbage collection. In fact, in some o↵-line systems the storage overhead

introduced by this and other operations is still significant, thus forcing dedupli-

cation to run only in o↵-peak periods [Clements et al. 2009]. O↵-peak periods are

usually scarce in cloud infrastructures so, deduplication has a short time-window

for processing duplicates. As o↵-line systems require extra temporary storage

space, the deduplication algorithm should run continuously to ensure that dupli-

cates are only kept on disk for short periods of time.

Deduplication gain is maximized if duplicates are found and eliminated glob-

ally across all VMs volumes at the cluster. Doing so in a distributed cloud in-

frastructure is not trivial and raises even more challenges [Hong and Long 2004,

Clements et al. 2009]. In order to find duplicates across the whole cluster, each

node performing deduplication must have access to a remote indexing mechanism,

that tracks unique storage content and allows finding duplicates. Remotely ac-

cessing this index in the critical storage path introduces prohibitive overhead

for primary storage workloads and invalidates, once again, in-line deduplication

approaches.

The previous challenges are addressed with DEDIS, a dependable and fully-

decentralized system that performs cluster-wide o↵-line deduplication of VMs

primary volumes. Our system supports any storage backend, distributed or cen-

tralized, as long as it exports a simple shared block device interface. This way,

our approach does not rely on specific storage backends with built-in functionali-

ties, thus decoupling the deduplication system from a certain storage specification

and avoiding performance issues that arise from this dependency [Hong and Long

2004, Clements et al. 2009]. Also, our design does not depend on storage work-

loads exhibiting specific data locality properties to achieve low storage overhead

and an acceptable deduplication throughput [Srinivasan et al. 2012].

Briefly, DEDIS uses an optimistic o↵-line deduplication approach that ex-

cludes most of the computational e↵ort from the storage write path. Storage

writes are intercepted with a fixed-size block granularity, and redirected immedi-
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ately to the correct storage address by a layer that considers aliased chunks. This

decision avoids costly accesses to remote metadata and reference management in

the critical storage path, thus reducing the impact of deduplication in storage

requests. Moreover, deduplication is performed globally and exactly across the

entire cluster, more specifically, all duplicate chunks are processed and eventually

shared. This is achieved by using a partitioned and replicated fault tolerant dis-

tributed service, that maintains both the index of unique chunks signatures and

the metadata necessary for reference management and garbage collection. This

service allows our design to be fully decentralized and to scale-out.

4.1 Baseline architecture

Figure 4.1 outlines the distributed primary storage architecture assumed by

DEDIS. A number of physical disks are available over a network to physical hosts

running multiple VMs. Together with the hypervisor, storage management ser-

vices provide logical volumes to VMs by translating logical addresses within each

volume to physical addresses in arbitrary disks upon each block I/O operation.

Since networked disks provide only simple block I/O primitives, a distributed

coordination and configuration service is assumed to locate meta-information for

logical volumes, free block extents and to ensure that a logical volume is mounted

at any time by at most one VM. The main functionality is as follows:

         Network

Storage
Manager
(Dom0)

VMM (Xen)

Client VM
(DomU)

Client VM
(DomU)

...

Physical Hosts

Physical Disks

Distributed
Coord./
Config.

(Extent Server)

Figure 4.1: Distributed storage architecture assumed by DEDIS.

Interceptor A local module in each storage manager maps VMs logical to

physical storage addresses, storing the physical location of each logical block in a
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persistent mapping structure. In some LVM systems, this module supports the

creation of snapshots by pointing multiple logical volumes to the same physical

locations [Meyer et al. 2008]. Logical addresses sharing a physical location must

be marked as CoW. Then, updates to these addresses must write the new content

to a free block and update the mapping accordingly.

Extent server A distributed coordination mechanism allocates free blocks

from a common pool when a logical volume is created, lazily when a block is

written for the first time, or when an aliased block is updated (i.e., copied on

write). Storage extents are allocated with a large granularity and are then, within

each physical host, used to satisfy individual block allocation requests, thus re-

ducing the overhead of contacting a remote service [Meyer et al. 2008].

The architecture presented in Figure 4.1 is a logical architecture, as physical

disks and even the instances of the distributed coordination and configuration

service itself, can be contained within the same physical hosts. For simplicity,

we assume that the Xen hypervisor is being used and label payload VMs as

DomU and the storage management VM as Dom0. Also, in DEDIS evaluation,

iSCSI is used as the storage networking protocol. However, the architecture

is generic and can be implemented within other hypervisors while using other

networked storage protocols. Since we focus on the added functionality needed

for deduplication, we do not target a specific metadadata structure for mapping

logical to physical addresses. We also do not require built-in volume snapshot

or CoW functionalities, as we introduce our own operations. Finally, DEDIS

operates with fixed-size blocks because the interceptor module also processes

requests at the fixed-size block granularity and, generating variable-sized chunks

would impose unwanted computation overhead [Hong and Long 2004, Clements

et al. 2009].

4.2 The DEDIS system

4.2.1 Architecture

DEDIS architecture, depicted in Figure 4.2, requires, in addition to the baseline

architecture, a distributed module and two local modules. These are highlighted

in the figure by the dashed rectangle and provide the following functionality:
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Figure 4.2: Overview of the DEDIS storage manager.

Distributed Duplicates Index (DDI) A distributed module that indexes

unique content signatures of storage’s blocks. Each entry maps an unique signa-

ture to the physical storage address of the corresponding block and to the num-

ber of logical addresses pointing to (sharing) that block. This information allows

aliasing duplicate blocks, and performing reference management and garbage col-

lection of unreferenced blocks. Index entries are persistent and are not required

to be fully-loaded on RAM to enable e�cient lookup operations. Also, entries

are sharded and replicated across several DDI nodes for scalability and fault tol-

erance purposes. The size of each entry is small (few bytes) so, a single node can

index several blocks. This way, the index scales-out without having any single

point of failure.

Duplicates Finder (D. Finder) A local module that asynchronously collects

addresses written by local interceptors, which are stored in a dirty addresses

queue, and shares the correspondent blocks with other blocks registered at the

DDI. Blocks processed by this module are preemptively marked as CoW in order

to avoid concurrent updates and possible data corruption. This module is thus

the main di↵erence from a storage manager that does not support deduplication.



86 4 DEDIS: Primary storage deduplication

Garbage Collector (GC) A local module that processes copied on write

blocks or, in other words, aliased blocks that were updated and are no longer

being referenced (aliased) by a certain logical address. The physical addresses of

copied blocks are kept at the unreferenced queue, and the number of references

to a certain block can be consulted and decremented at the DDI. Copied blocks

can be freed if the number of references reaches zero. Both D. Finder and GC

modules free unused blocks by registering their physical addresses in a local free

blocks pool that provides unused block addresses for CoW operations and, when

necessary, inserts/retrieves unused block addresses from the remote extent server.

4.2.2 I/O operations

The operations executed by DEDIS modules are depicted in Figure 4.2. Bidirec-

tional arrows mean that information is both retrieved and updated at the target

resource. The GC and D. Finder modules are included in the same process box

because both run in a background multi-threaded process within the Xen Dom0,

i.e., run in distinct threads of the same process.

An I/O operation in the Interceptor The interceptor (a) gets read and

write requests from local VMs, (c) queries the logical-to-physical mapping for

the corresponding physical addresses; and (b) redirects them to a physical disk

over the network. As potentially aliased blocks must be marked in the mapping

as CoW by D. Finder, writes to such blocks must first (l) collect a free block

address from the free pool, (b) redirect the write request to the free block and (c)

update the map accordingly. Then, (d) the physical address of the copied block

is inserted in the unreferenced queue to be processed later by the GC. For both

regular and CoW write operations, (h) the logical address of the written block

is inserted in a dirty queue. I/O requests are acknowledged as completed to the

VMs (a) after completing all these steps.

Sharing an updated block in D. Finder This background module runs

periodically and aliases duplicate blocks. Therefore, each logical address that was

updated and inserted in the dirty queue is eventually picked up by the D. Finder

module (i), that marks the address for CoW (e), reads its content at the storage

(f), computes a signature and queries the DDI in search of an existing known
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duplicate (j). This is done using a test-and-increment remote operation, that

stores the block’s information (hash, physical address and number of references)

as a new entry at the DDI if a match is not found. If a match is found, the counter

of logical addresses (references) pointing to the DDI entry is incremented and,

locally (e), the logical-to-physical map is updated with the new physical address

found at the DDI entry and (k) the physical address of the duplicate block is

inserted in the free pool.

Freeing an unused block in GC This background module examines if a

copied block, at the unreferenced queue (g), has become unreferenced with the

last CoW operation. The block’s content is read from the storage (f), its signature

is calculated and then the DDI is queried (j) using a remote test-and-decrement

operation that decrements the number of logical addresses pointing to the corre-

sponding DDI entry. If the block is unused (zero references), its entry is removed

from the DDI and, locally, the block address is returned to the free pool (k).

This pool keeps only the addresses needed for local CoW operations, while the

remainder is returned to the remote extent server (m). When the queue is empty,

unused addresses are requested from the extent server (m).

Each VM volume has its own latency-sensitive interceptor module running as

an independent process. This module does not invoke any remote services and

only blocks in the unlikely case of having an empty local free pool, which can

easily be avoided by tuning the frequency of the GC execution and extent server

requests for unused blocks. Also, each VM volume has an independent logical-

to-physical mapping, dirty queue, and unreferenced queue. Finally, both in D.

Finder and GC modules, an independent thread processes the operations for each

VM volume. This way, the only metadata structure shared across all VMs, in

the same server, is the free pool that is protected from concurrent accesses by

private caches that reduce access frequency.

The test-and-increment and test-and-decrement operations and the metadata

stored in each DDI entry allow performing the lookup of storage block signatures

and corresponding physical addresses while, incrementing or decrementing the

entry’s logical references, in a single round-trip to the DDI. This feature distin-

guishes DEDIS from previous systems that use two distinct metadata structures,

and allows combining aliasing and reference management in a single remote in-
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vocation, thus avoiding a higher throughput penalty and reducing the required

metadata size.

Finally, the interceptor processes storage calls from VM applications and from

the VM operating system so, deduplication is applied to both types of dynamic

data.

4.2.3 Concurrent optimistic deduplication

Figures 4.3 and 4.4 show the pseudo-code for intercepting a VM write request and

for aliasing a block address at the dirty queue, respectively. The interceptor and

D. Finder modules concurrently update and retrieve information from metadata

and storage blocks. In order to avoid concurrent accesses and consequently, data

corruption, the D. Finder preemptively marks blocks for CoW (line 15) before

reading their content from the storage pool, calculating signatures, contacting

the DDI, aliasing identical blocks, and freeing the duplicate ones (lines 18 to 25).

Blocks marked for CoW are immutable until they are freed by the D. Finder or

GC modules.

procedure to write content to a VM logical address:
1 lock logical address at the logical-to-physical mapping
2 if logical address is marked as CoW:
3 let CoW block address be the current value mapped by logical address
4 get unused block address from the free pool
5 write content to unused block at the storage pool
6 map logical address to unused block address and remove CoW mark

7 insert CoW block operation details in the unreferenced queue

8 else:

9 let block address be the current value mapped by logical address
10 write content to block at the storage pool
11 insert logical address in the dirty queue
12 unlock logical address at the logical-to-physical mapping

Figure 4.3: Pseudo-code for intercepting and processing VM writes at the inter-
ceptor module.

However, this mechanism alone is not su�cient. Consider the following sce-

nario: storage block A is being processed by D. Finder, it was preemptively

marked for CoW, and the request to the DDI was sent to find out if a duplicate

block exists at the storage (line 20). Concurrently, the interceptor receives a

write request for the logical address pointing to storage block A (line 3), writes
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procedure to share a logical address at the dirty queue:
13 lock logical address at the logical-to-physical mapping
14 let old block address be the current value mapped by logical address
15 mark logical address as CoW

16 register operation in a persistent log

17 unlock logical address at the logical-to-physical mapping
18 read content from old block at the storage pool
19 compute a signature from content

20 perform a DDI test-and-increment operation using signature

21 lock logical address at the logical-to-physical mapping
22 if a duplicate block exists at the DDI and logical address still maps to old block :
23 update logical address mapping to point to duplicate block address
24 unlock logical address at logical-to-physical mapping

25 insert old block in the free pool

26 else:

27 unlock logical address at logical-to-physical mapping

28 insert operation details at the logical-to-physical log

Figure 4.4: Pseudo-code for share operations at the D. Finder module.

the content to an unused storage block B, as block A is marked as CoW, and

updates the corresponding entry at the logical-to-physical mapping to refer to

block B, which has now the latest content (lines 4 to 6). Then, after this set

of events, the response from the DDI is received and a block C, with the same

content as A, is found so the D. Finder module updates the logical address to

refer to block C (lines 22 and 23). In this trace, the most recent content written

in block B is lost and data can be corrupted.

A straightforward solution to this issue is to lock the logical-to-physical map-

ping during the whole aliasing operation. However, such decision includes costly

remote calls in the critical section which significantly increases the contention

and latency for concurrent storage requests accessing the same lock. Instead,

the D. Finder performs fine-grained locking that excludes remote invocations to

the DDI, storage reads, and other time consuming operations from the critical

section (lines 13 to 17 and 21 to 24/27). Then, the race condition detailed previ-

ously must be detected and requires aborting aliasing operations, while generating

dangling blocks that must be garbage collected. Namely, the second condition

in line 22 ensures that the block being processed (old block) is only aliased and

freed if the corresponding logical reference has not changed concurrently due to

a CoW (line 22 to 27).
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Regarding read operations, the logical-to-physical mapping is used in a read-

only fashion for redirecting requests to the corresponding storage blocks. Never-

theless, accesses to the mapping use the same lock mechanism to ensure that the

latest content is read.

Figure 4.5 shows the pseudo-code for processing a copied block inserted in

the unreferenced queue (line 7). Mutual exclusion is used to manage concurrent

accesses to this queue that, is the only metadata structure shared by the GC and

interceptor modules. On the other hand, the GC and D. Finder modules access

concurrently the DDI and free pool structures thus requiring mutual exclusion.

As an example, consider that D. Finder marked a block for CoW, read its content

from the storage pool, and is now calculating its signature (lines 15 to 19). Con-

currently, the interceptor receives a write to the same block and, as it is marked

for CoW, redirects the write to an unused block and inserts the copied block in

the unreferenced queue. Then, the GC starts processing the queue, reads the

content of the block from the storage pool, calculates a signature and performs

a test-and-decrement operation (lines 29 to 31). However, at this time, it is pos-

sible that the D. Finder has not yet performed the test-and-increment operation

for that same block. This can lead to a scenario where blocks are freed while

still being in use and, consequently, to data corruption. In our design, this race

condition is solved by running D. Finder and GC modules sequentially for the

same VM.

procedure to garbage collect a copied block address at the unreferenced queue:
29 read content from copied block at the storage pool
30 compute a signature from content

31 perform a DDI test-and-decrement operation using signature

32 if copied block address is distinct from the DDI block address:

33 insert copied block address in the free pool

34 if DDI block has zero references:

35 insert DDI block address in the free pool

36 insert operation details at the logical-to-physical log

37 remove copied block address from the unreferenced queue

Figure 4.5: Pseudo-code for garbage collection at the GC module.

As discussed previously, the D. Finder aborts a small number of operations

due to concurrent CoWs done before updating the logical-to-physical mapping



4.2 The DEDIS system 91

to reflect aliasing (line 23). These aborts generate dangling blocks that must

be collected and freed with the GC module (lines 32 and 33). Moreover, blocks

that were copied and have corresponding entries at the DDI, which are no longer

being referenced, are also freed (lines 34 and 35). Our algorithm ensures that a

test-and-decrement operation is always preceded by a test-and-increment for the

same DDI entry in order to properly handle reference management.

Some of the previous concurrency issues were uncovered while validating a

version of our algorithm with a model checker. More specifically, the algorithm

was encoded with the CAL language and two safety properties were then verified

with the TLA+ toolset [Lamport 2002, Lamport et al. 2009]: (i) That values read

from a storage block correspond to values actually written there, thus excluding

corruption; and (ii) that both the DDI and logical-to-physical mappings are not

indexing or referring to free blocks, thus avoiding the incorrect scenario where

blocks are simultaneously being used and marked as free. The configuration

used had 2 virtual storage blocks, 3 physical disk blocks, 3 processes, and 2 block

values. For further details, the CAL specification can be consulted in Appendix A.

4.2.4 Fault tolerance

Writing meta-information persistently is required to ensure that logical volumes

survive crash and restart of physical nodes. Our proposal uses transactional logs

for tracking changes to metadata structures and allows logical volumes, held by

a crashed physical node, to be recovered by another freshly booted node. The

dashed rectangles, in the previous three figures, highlight the key operations for

DEDIS fault-tolerance.

Our design assumes that failures occur at the process or server level. In

our current implementation, all VMs deployed on the same server have their D.

Finder and GC modules running in distinct threads of a single process so if one

thread fails all the others fail too. On the other hand, if the previous process fails,

the interceptor continues to process I/O requests independently. However, CoW

operations must use free blocks directly from the extent service as the unused

blocks in the free pool are managed by a thread that was also running in the

failed process (line 4).

CoW is the only operation done by the interceptor that modifies the logical-

to-physical mapping. The details of each CoW operation are stored persistently
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and atomically in the unreferenced queue before acknowledging the write request

as completed (line 7). When a failure occurs, the information at the queue is

used to recover the mapping to a consistent state. The dirty queue is solely

kept in-memory because it holds non-critical information that, if lost, only has

the consequence of missing some share opportunities. Finally, read operations

and non-CoW write operations do not require logging as they do not modify any

critical metadata structure.

A persistent log registers D. Finder operations immediately after marking

logical addresses as CoW and before unlocking the logical-to-physical mapping

thus, ensuring that no concurrent mapping accesses are done before the log is

written (line 16). Then, if a failure occurs, the log can be used to check what

addresses were marked as CoW and need to be reprocessed. However, operations

registered at the log may have failed in distinct processing stages, for instance,

some operations were contacting the DDI while other operations were already

processing the DDI response and aliasing duplicate blocks. To ensure that log

entries are fully processed exactly once, all steps are replayed in an idempotent

fashion. Namely, each D. Finder operation has an unique ordered timestamp

that is stored persistently in the log, and at the DDI when a test-and-increment

is done (lines 16 and 20). Since requests to the DDI follow the order specified in

the timestamps, each DDI node persistently stores the last timestamp processed

for each VM volume. This allows quickly checking for unprocessed operations

while, requiring a small amount of extra storage space, even for a large number

of VM volumes.

The persistent logical-to-physical log registers modifications to the logical-to-

physical mapping due to CoW marking and block aliasing, and is appended at

the end of each aliasing operation (lines 15, 23 and 28). If a duplicate is found at

the DDI, the address of one of the copies (old block) is inserted in the persistent

free pool, and this log is updated while keeping exclusive access to the free pool

(lines 25 and 28). This way, when an operation is being repeated due to a

failure and a duplicate is found at the DDI, if that specific operation is already

registered in the logical-to-physical log, it is guaranteed that the old block was

already freed. On the other hand, if the operation is not registered at the log,

the free pool must be checked for the old block address. Since the log is written

while holding exclusive access to the free pool and the thread that manages the
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pool was also running in the failed process, if the address was added to the pool

then it corresponds to the last address inserted.

Reprocessed operations must also account aborts due to concurrent CoW

operations done before updating the logical-to-physical mapping to reflect aliasing

(line 23). The necessary information to identify these events is stored in the

unreferenced queue that must be checked when recovering aliasing operations

that found duplicate blocks and were not registered as completed in the logical-to-

physical log. At the end of each D. Finder iteration, all operations were registered

persistently in the logical-to-physical log so, remaining logs can be pruned. This

also means that aliasing operations only need to be reprocessed if the failure

occurred during an iteration of this module.

The GC has the same approach to fault tolerance, as each operation has an

unique timestamp for ordering CoW operations. The timestamp is calculated

when CoW is performed by the interceptor and it is stored in the corresponding

unreferenced queue entry (line 7). Then, the GC processes entries at the queue

but only removes them after being completely processed and after writing to the

logical-to-physical log (line 37). This way, if a failure occurs, all entries at the

queue can be reprocessed in an idempotent fashion. Namely, test-and-decrement

calls to the DDI are persistent and identified by the timestamp thus, allowing to

replay requests without repeating operations that were already processed. Then,

addresses are inserted in the persistent free pool and, the exclusive access to the

pool is maintained until the logical-to-physical log is written (lines 33 to 36). The

recovery process is identical to the one used for aliasing operations.

Both GC and D. Finder update the logical-to-physical log that can be pruned

periodically into a persistent version of the logical-to-physical mapping to reduce

recovery time. Log updates done by the GC reflect changes in the mapping due

to CoW operations that are performed in parallel with aliasing operations. This

way, the timestamps discussed previously order both CoW and aliasing operations

to the same logical address, ensuring that the persistent mapping has always the

latest modifications.

Regarding storage overhead, only two logging operations are performed in the

critical storage path or when holding the lock of the logical-to-physical mapping.

Namely, when the unreferenced queue and the log that registers the beginning of

aliasing operations are written (lines 7 and 16). The overhead of these operations
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is reduced as follows: The first log operation only occurs for copied blocks so, as

detailed next, an hotspot avoidance mechanism is used for reducing the number

of CoW operations. The overhead of the second log operation is reduced by

grouping several blocks that will be processed by D. Finder and performing a

single batch log write. Although executed outside the critical path, the logical-

to-physical log is also updated in batch to reduce the overhead of concurrent

accesses to the storage pool.

Finally, in order to recover failed nodes into a distinct freshly booted node, the

logs and persistent metadata discussed previously are stored in a shared storage

device. If necessary, the impact of logging in storage bandwidth can be reduced

by using distinct storage backends for the logs and for the VM volumes. Then,

as described in Section 4.1, a fault-tolerant distributed coordination and config-

uration service is used to locate and manage the metadata and logical volumes

of crashed VMs and for booting them in a distinct cluster node. Moreover, this

service is responsible for providing the extent server functionality and for toler-

ating failures of this service. DDI entries can be stored persistently in a shared

storage backend or at the local disks of servers since each DDI node can be fully

replicated, with a virtually-synchronous group communication protocol, and can

serve requests for failed replicas.

To sum up, when a failure occurs, our current design allows D. Finder and

GC modules to replay unfinished operations without repeating processing steps

that were already completed. After completing all these unfinished steps, the

logical-to-physical log is pruned into the persistent mapping that will correspond

to the latest version of the in-memory mapping.

4.2.5 Optimizations

In previous related work, CoW overhead is reduced by only marking a physical ad-

dress to be copied when a duplicate block is actually found at the index [Clements

et al. 2009]. In a distributed infrastructure, this approach requires synchroniza-

tion between the servers sharing the block and, since DEDIS does not assume a

storage backend with locking capabilities, implementing such strategy is complex

and requires costly cross-host communication. We avoid this cost by introducing

other optimizations.

The D. Finder module uses an hotspot detection mechanism for identifying
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blocks susceptible to be rewritten in the near future or, in other words, write

hotspots. By avoiding sharing such hotspots, the amount of CoW operations is

reduced. In detail, logical addresses in the dirty queue are only processed in the

next D. Finder iteration if they were not updated during a certain period of time.

For instance, in our evaluation, only the logical addresses in the dirty queue that

were not updated between two consecutive D. Finder iterations (approximately 5

minutes) and, that were inserted in the queue before this period, are ready to be

shared. This is just an example and the period can be tuned for each VM volume.

CoW overhead is then further reduced with an in-memory cache of unused storage

blocks addresses retrieved from the persistent free pool. This allows pre-fetching

to memory free addresses that will be served to CoW operations performed by

the interceptor. This cache is independent for each interceptor and, it is resilient

to failures by registering the pre-fetched unused addresses in a persistent log. If

a failure occurs, this log and the unreferenced queue can be compared to find

what blocks are still in the cache and what blocks were used for CoW by the

interceptor. The log can be pruned when entries at the unreferenced queue are

processed with the GC module.

Another in-memory cache, which can be enabled or disabled in a per VM basis,

is used for reducing the content that must be read back from the storage with

the D. Finder module. As explained in Section 4.2.2, the D. Finder reads back

the content of dirty blocks from the storage in order to calculate their content

signatures. Many of these reads can be avoided if hashes are calculated and

inserted into an in-memory hash cache when write requests are being processed

with the Interceptor. Since hash calculation is now executed in the storage write

path, it is important to evaluate its impact in storage requests, which is done in

Section 4.3. The only hashes that need to be kept in-memory are the ones from

blocks that were written but are still waiting to be processed with the D. Finder

module so, the cache size depends on the period between share iterations. DEDIS

already aims at keeping this interval small in order to maintain a reduced storage

backlog. Also, the cache has a pre-defined maximum size, and a disk metadata

structure is used for keeping the subset of hashes that do not fit in memory.

This way, when a cache miss occurs, instead of reading the full block from disk,

the D. Finder only reads the corresponding hash for the address being shared,

which reduces the storage I/O bandwidth needed. In our implementation, we use



96 4 DEDIS: Primary storage deduplication

Berkeley DB to store on-disk hashes [Olson et al. 1999]. Finally, both the cache

and on-disk structure address the concurrency issues described in Section 4.2.3

and do not need to be durable. If a failure occurs, the content of the blocks can

always be retrieved directly from the storage pool.

As other optimizations, the throughput of D. Finder and GC operations is

further improved by performing batch accesses to persistent logs, the DDI, the

extent server, and the free pool. Batch requests allow e�ciently using disk and

network resources and, enable DDI nodes to serve requests e�ciently without

requiring the full index in RAM.

Finally, our current implementation uses the SHA-1 hashing function which

has a negligible probability of collisions [Quinlan and Dorward 2002]. However,

full byte comparison of chunks can be enabled for specific VM volumes persist-

ing data from critical applications. Due to our optimistic o↵-line deduplication

approach, byte comparison is done outside the critical storage path, reducing the

overhead in storage requests. However, this comparison requires reading back,

from the storage, the content of the blocks to be shared.

4.2.6 Implementation

DEDIS prototype is implemented within Xen and uses the Blktap mechanism

for building the interceptor module. Blktap exports an user-level disk I/O in-

terface that replaces the commonly used loopback drivers while providing better

scalability, fault-tolerance and performance [Citrix Systems, Inc 2014]. Each VM

volume has an independent process intercepting disk requests with a fixed block

size of 4 KiB, which is also the block size used by our system. Also, each VM

volume may have a distinct blktap driver, so deduplication can be performed only

for specific volumes. For instance, it is possible to define policies where dedu-

plication is only applied to volumes with significant space savings, while other

volumes use a default Blktap driver without deduplication.

The goal of this implementation is to highlight the impact of deduplication

and not to re-invent a LVM system or the DDI. Simplistic implementations have

thus been used for metadata and log structures. Namely, the logical-to-physical

mapping, dirty queue and the free blocks queue cache are implemented as arrays

fully loaded in memory that are accessible by both interceptor and D. Finder

modules. The in-memory hash cache is also shared by both modules and it is
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implemented as a direct-mapped cache that allows finding the hash for a specific

storage block address. This way, depending on the cache size and number of

requests, a percentage of entries of distinct blocks may end up in the same cache

slot. When this happens, one of the hashes is kept in memory and the others are

written to disk. On-disk hashes are stored on Berkeley DB and retrieved when

cache misses occur [Olson et al. 1999].

The unreferenced and free blocks queues are implemented as persistent queues

with atomic operations. The DDI is a modified version of the Accord high-

performance coordination service, resembling the Apache Zookeeper system, but

based on the Corosync group communication protocol and aimed at write-intensive

workloads [Tsuyoshi, Ozawa and Kazutaka, Morita 2014]. Accord is a replicated,

transactional and fully-distributed key-value store that supports atomic test-and-

increment and test-and-decrement operations. Therefore, only a few lines of code

had to be changed. The extent server is implemented as a remote service with a

persistent queue of unused storage blocks. This implementation allows measuring

the overhead of providing unused blocks to the free pools of cluster nodes.

Despite being simplistic, all these structures are usable in a real implementa-

tion, this way, the resource utilization (i.e., CPU, RAM, disk and network) values

observed in our evaluation are realistic. In fact, this implementation presents a

worst-case scenario for the storage and RAM space occupied by metadata and

persistent logs as more space-e�cient structures could have been used instead.

4.2.7 Launching new VMs

To evaluate the prototype in a more realistic environment, we ensure that the

system does not start with an unrealistic amount of duplicates in VM images,

that would be avoided by cloning in most LVM systems. Those duplicates would

result in abnormally high number of duplicates being found and processed during

the initial stage of experiments, while at the same time, not having any aliased

blocks would unfairly reduce the overhead from CoW operations.

Briefly, upon loading, VM images are divided into 4 KiB blocks that are

examined and actually stored only if they have useful content. This way, unused

blocks found in sparse images are lazily allocated only when needed. Moreover,

deduplication is performed for each block being loaded to the storage. Duplicates

are found inside the same image and across distinct images, with an algorithm
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that is very similar to the one used by our prototype. Moreover, the metadata

and DDI structures used, while loading the VMs, are the same that are used by

DEDIS when the VMs are deployed and running. This way, if an image is being

loaded while other VMs are already running at the cluster, the loading mechanism

will also contemplate duplicate blocks from running VMs. The only di↵erence

fromDEDIS algorithm is that in-line deduplication is used instead, meaning that

duplicates are eliminated before being stored. In-line deduplication is commonly

used in VM loading mechanisms so, we chose to use a similar approach in our

implementation [Ng et al. 2011].

Lazy-allocation is resilient to failures in a similar fashion to CoW. When the

interceptor receives a write request for a block that must be lazily allocated, it

gets an unused address from the free pool, updates the logical-to-physical map-

ping and registers the operation at the persistent unreferenced queue. Then, the

GC is responsible for processing the queue and persisting the mapping modi-

fications in the logical-to-physical log. Deduplication uses the same logs as D.

Finder to ensure that modifications to the logical-to-physical mapping and to

other persistent structures are resilient to failures.

To conclude, this mechanism is important for evaluating our prototype in a

more realistic scenario as it provides the results that would have been obtained

by having DEDIS running for a much longer time and discarding a longer prefix

of the execution. These operations use the same metadata structures as DEDIS,

require no additional storage space and, have no additional impact while the

experiment is running.

4.3 Evaluation

Next we evaluate DEDIS prototype in order to validate the following assump-

tions. First, that deduplication does not overly impact storage performance, even

when both deduplication and I/O intensive workloads run simultaneously. Then,

that the storage space required for storing VM volumes is significantly reduced.

Finally, that our design scales out for several cluster servers.
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4.3.1 Benchmark

Since DEDIS targets dynamic primary data, using exclusively static traces of

VM images is not suitable for its evaluation. On the other hand, traditional

disk benchmarks do not simulate accurately duplicate content, either writing all

blocks with the same content or with random content. For these reasons, we have

used DEDISbench to evaluate our deduplication system.

As explained in Chapter 3, DEDISbench novel features are important for

evaluating primary deduplication systems under a more realistic scenario. Firstly,

the content written by the benchmark mimics distributions found in real storage

systems. In fact, one of the workloads presented at the previous chapter and

supported by DEDISbench, simulates the content of a real primary storage, with

⇡ 1.5 TB and 25% of duplicates, which fits our evaluation requirements.

Moreover, DEDISbench supports an hotspot random pattern for storage ac-

cesses. This pattern allows simulating a primary storage environment where a

small percentage of blocks are hotspots, with a high percentage of accesses, while

most blocks are only accessed sporadically. Write hotspots increase the number

of block rewrites and, consequently, the amount of CoW operations. Since CoW

is a costly operation for storage writes latency, it is important to test the e↵ects

of hotspots in primary deduplication systems [Clements et al. 2009].

4.3.2 Experimental setup

Tests ran in cluster nodes equipped with a 3.1 GHz Dual-Core Intel i3 Processor,

8 GiB of RAM and a 7200 RPMs SATA disk. VMs were configured with 4 GiB

of RAM and a single virtual disk volume with 20 GiB. A symmetric setup where

each server ran a single VM, local DEDIS modules and a DDI instance was

used for all tests. The only component that ran in an isolated server was the

extent service. The main advantage of using this setup was that no additional

servers were required for running exclusively DEDIS or DDI components, thus

resembling the setup of a traditional LVM system.

DDI entries were partitioned and replicated with a replication factor of two.

In each replication group, holding a distinct shard of the DDI, one of the replicas

was used to process requests while the other was kept only for fault-tolerant

purposes. This way, for the setup with two servers, a single shard was used, for
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the setup with four servers, two shards were used, and so on. For instance, for a

setup with four servers, server 1 and 3 processed requests for two distinct shards.

Then, in order to cope with the failure of these two servers, server 2 replicated

server 1 and server 4 replicated server 3.

The distributed storage pool was also provided by the local disks of the cluster

servers. More specifically, each server exported to the other servers an iSCSI

device with 45 GiB. VM volumes were then stored in these devices with block-

level striping. This way, the number of iSCSI devices grew with the number of

servers i.e., for a setup with two servers there were two iSCSI disks, for a setup

with four servers there were four iSCSI devices, etc. This design allowed scaling

the storage pool with the number of VMs while spreading the volumes across

distinct iSCSI devices. Persistent metadata and logs belonging to DEDIS and

the extent server were also stored in the distributed storage pool, ensuring that

all servers could access these logs and recover failed components if necessary. DDI

persistent data was kept in the local disk of each server, since replication was used

to ensure fault-tolerance. Due to the scope of the evaluation, our storage pool

implementation only performed striping without maintaining any redundancy for

tolerating disk failures.

Each VM ran an independent DEDISbench instance so I/O operations were

measured at the VM (DomU). Deduplication, CPU, metadata, RAM and network

utilization were measured at the host (Dom0). Measurements were taken for

stable and identical periods of the workloads, excluding ramp up and cool down

periods, and include the overhead of all DEDIS modules, both local and remote,

as well as, the overhead of persistent logging.

Finally, the evaluation results presented in this section required ⇡ 18 hours

of computation, only for DEDIS tests. In this period, more than 1.7 TB (⇡ 455

million blocks) were written by DEDISbench into the storage and more than 405

GiB (⇡ 106 million blocks) were deduplicated by both DEDIS and the loading

mechanism. Tap:aio tests required ⇡ 7 hours and wrote more than 395 GiB (⇡
103 million blocks) into the storage. These tests generated 80 MiB of logs that

were then analyzed to extract the results presented in this chapter.
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4.3.3 Optimizations

In order to evaluate the in-memory hash cache, described in Section 4.2.5, we

compared two versions of DEDIS, one using this mechanism (DEDIS w/ cache)

and another without it (DEDIS w/o cache). Also, to understand the overhead of

doing byte comparison of blocks before sharing them, we have evaluated another

version, identical to DEDIS w/ cache, but using the byte comparison optimiza-

tion (DEDIS byte).

Tests ran in a setup with two servers, each with a single VM. Two servers were

used to ensure that there were at least two DDI nodes and that replication costs

would be properly assessed in the results. Table 4.1 shows the storage I/O and

deduplication metrics for a 40 minutes run of DEDISbench performing hotspot

random writes (with a block size of 4 KiB) and for the subsequent 20 minutes,

when deduplication ran isolated from the I/O workload. 5 minutes were chosen as

the interval between D. Finder and GC iterations to obtain several iterations of

the modules during the test and to minimize the storage backlog. In the first 40

minutes, DEDIS ran in parallel with the I/O benchmark to assess its overhead

in a system with intensive storage load. Note that, deduplication throughput

includes all operations processed by the D. Finder module and not only the

operations that actually shared blocks. Also, all the operations included in this

metric require marking the blocks as CoW, contacting the DDI and processing

its response.

Table 4.1: DEDIS optimizations results for 2 cluster nodes with a random
hotspot write workload.

DEDIS w/o
cache

DEDIS w/
cache

DEDIS

byte

Aggregated storage throughput (IOPS) 1710 1854 1807

Average storage latency per node (ms) 1.08 1.00 1.05

Aggregated deduplication throughput
(MiB/s)

2.14 28.27 4.40

The results show that the storage I/O latency is reduced and the aggregated

throughput increased when the in-memory hash cache is used. Improvements

are even more noticeable for the aggregated deduplication throughput, increasing
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from 2.14 MiB/s to 28.27 MiB/s.1 This gain is achievable because block digests

are pre-calculated and looked up in the in-memory cache. Even when cache

misses occur and, the hashes must be fetched from the on-disk Berkeley DB, the

storage bandwidth used is significantly smaller than the one that would be used

for reading back the full content of 4 KiB blocks from the storage. In terms of

metadata space, the on-disk Berkeley DB required 15 MiB of disk space per server.

The in-memory cache was configured to use 16 MiB of RAM per server that, for

these tests, allowed obtaining a cache hit ratio of 69%. It is also important to

refer that, for both DEDIS versions, the deduplication throughput value was

similar when deduplication was running in parallel with the I/O benchmark and

when it was running isolated.

In the DEDIS w/ cache test, the hotspot mechanism avoided approximately

80% of CoW operations (⇡ 300,000 operations per server). As explained previ-

ously, CoW operations are costly for storage writes latency so, this reduction is

important for achieving the results discussed in the next section.

Table 4.1 also shows the overhead of performing byte comparison over hash

comparison. The overhead is small for storage latency and throughput but it is

more noticeable in deduplication throughput. Byte comparison requires reading

back the content of the two blocks being shared from the storage, which reduces

the benefits of the hash cache. This cost presents a tradeo↵ between performance

and resilience to collisions of the SHA-1 algorithm, that must be considered for

the VMs where deduplication is being applied. In most cases, the negligible prob-

ability of collision of the SHA-1 algorithm is acceptable and the hash comparison

is preferred [Quinlan and Dorward 2002].

Finally, in terms of CPU, RAM and network bandwidth the three DEDIS

versions had similar consumptions. We further discuss resource consumption and

deduplication space savings in the next section where we evaluate our prototype

in a larger cluster.

4.3.4 Scalability and performance

The prototype, with hash comparison and all the optimizations, was then evalu-

ated in a setup with up to 32 servers where each server ran a single VM, a DDI

1In the DEDIS w/ cache test, the D. Finder module processed more than 1 million opera-
tions.
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instance, and local DEDIS components. The extent service was the only compo-

nent that ran in an independent server. In order to assess overhead, we compared

it with the default Blktap driver for asynchronous I/O, named Tap:aio, that was

the base to implement the interceptor module and does not perform deduplica-

tion [Citrix Systems, Inc 2014]. This comparison ensures that the storage over-

head observed was directly related with DEDIS. Unfortunately, a comparison

with DDE or DeDe was not possible as these systems are not publicly available.

Again, we started our evaluation with 2 servers to include DDI replication costs

in the results.

Our prototype and Tap:aio were evaluated with a random write workload,

i.e., DEDISbench performed random hotspot writes for 40 minutes with a sub-

sequent pause of 20 minutes when deduplication ran isolated. In DEDIS tests,

deduplication was executed in parallel with the I/O benchmark and the periods

of GC and Share iterations were the same as the ones used in the previous tests.

Storage writes

Figures 4.6(a) and 4.6(b) show the average storage latency and aggregated through-

put for both Tap:aio and DEDIS running with 2, 4, 8, 16 and 32 cluster nodes.

Storage latency slightly increases when more VMs are serving I/O requests, for

both DEDIS and Tap:aio. It occurs because in a symmetrical infrastructure,

where all volumes are evenly stripped across all servers, an increasing share of

requests are routed to remote nodes, thus incurring network overhead. Note that

with 32 servers, only a small share of load is handled locally.

When compared with Tap:aio results, the latency overhead introduced by

DEDIS is at most 11%, regardless of the number of servers. Similarly, the

throughput overhead is at most 14%, the maximum value observed in experi-

ments with 4 and 32 servers. These results show that our system introduces

low overhead in a worst case scenario when deduplication and intensive I/O are

running concurrently. Also, the overhead as a percentage is not directly a↵ected

by the number of cluster nodes meaning that our design scales along with the

storage backend.
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Figure 4.6: DEDIS and Tap:aio results for up to 32 cluster nodes with a random
hotspot write workload.

Deduplication

Figure 4.7(a) shows the aggregated deduplication throughput for the same tests

which scales close to linearly with a growing number of servers. Again, in settings

with a very low number of servers, the share of accesses to the local disk, that

avoid network overhead, is still significant and provides a slight advantage. Also,

the throughput is evenly distributed across the distinct cluster nodes, showing

that storage bandwidth is fairly distributed and that no node is starved. The

key component in our design, which allows deduplication to scale out, is the

decentralized DDI service that can be partitioned across distinct nodes. As our

results show, these shards can be collocated with VMs and other DEDIS compo-

nents without having a significant impact in the overall performance. For the 32

servers run, the average deduplication throughput per server was approximately

10 MiB/s, which is a clear improvement over previous work where blocks are

shared at ⇡ 2.6 MiB/s [Clements et al. 2009].

When more VMs are writing data into the storage, there is an higher proba-

bility of finding more duplicates across their volumes. This is shown in table 4.2

where the percentage of deduplication operations that found and eliminated du-

plicates is detailed. The table comprises the percentage of duplicates found solely

for processed DEDISbench operations and for all operations, including both the

benchmark and the VM loading mechanism. Both values show that when more

servers are added the percentage of duplicates increases, which is only possible
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Figure 4.7: Deduplication results for up to 32 cluster nodes with a random hotspot
write workload.

because DEDIS does exact cluster-wide deduplication. The percentages of du-

plicates found for all operations are higher because, in our tests, we have used

the same VM image for all servers so, pre-allocated blocks of these images were

fully deduplicated by our loader. Also, there was some redundancy inside the

same VM image that was eliminated before being loaded to the storage pool.

Note that, unused blocks from VM images were not deduplicated and were lat-

ter lazily-allocated so we have not included them in these results. Using the

same image for all VMs allows evaluating all cluster nodes in the same condi-

tion and ensures that extracted I/O metrics are not a↵ected by using distinct

configurations. Although this approach does not simulate a cluster with distinct

VM images, it is common for many cloud providers to have a set of standard

images that are widely used for launching new VMs. Therefore, the amount of

fully-duplicate images is significant in real world deployments.

Table 4.2: Percentage of deduplication operations that eliminated duplicates for
up to 32 servers.

# Servers 2 4 8 16 32

% Benchmark operations shared 16.9 17.0 17.2 17.3 17.5

% All operations shared 33.4 38.6 45.7 51.6 57.0

For the experiment with 32 VMs, the loading mechanism deduplicated approx-

imately 31 GiB. While DEDISbench was running and, in the subsequent 20 min-
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utes, approximately 5.9 GiB of dynamic content was shared, which corresponds

to 17.5% of the total number of blocks processed by the D. Finder module, that

processed approximately 8.7 million requests. Note that DEDISbench hotspot

workload simulates a high percentage of re-write operations which is important

for generating more CoW operations and assessing their overhead, but also re-

duces the duplicates processed by DEDIS due to the following reasons: First, the

hotspot avoidance mechanism avoids many share operations for blocks frequently

rewritten and that would probably be copied-on-write after being shared. Also,

even without the avoidance mechanism, a block may be rewritten several times

between two share iterations but it will only be shared once when the D. Finder

asynchronously collects it. Nevertheless, the percentage of processed blocks that

were actually shared is near the duplicate content simulated with DEDISbench,

which is 25%. Regarding the other tests, the results and conclusions are similar

to the ones described for the 32 servers experiment.

Figure 4.7(b) shows the storage space required after loading the VMs im-

ages into the storage and running the I/O benchmark in each VM. This figure

compares DEDIS with a LVM system without deduplication but that supports

lazy-allocation of unused blocks. Our approach used approximately 50% of the

space that the LVM system would require. Moreover, a storage system without

lazy allocation would require 640 GiB for storing the 32 VM volumes instead of

the 43 GiB used by DEDIS. These values do not include, however, the storage

space needed for persistent metadata and logs, which we detail next and show

that is clearly compensated by the space savings.

Resources

Table 4.3 shows the average resource consumption per server for the 32 servers

experiment. We chose this specific run but, once again, the other tests have

similar results and conclusions. The CPU, RAM and network values include the

resources consumed by all DEDIS components and by the DDI nodes that, ran

collocated in the cluster nodes. The persistent metadata values also include the

VM loading mechanism that shared persistent structures with DEDIS and used

the DDI to deduplicate VM images.

In terms of CPU usage, DEDIS introduced a small percentage of overhead

when compared to Tap:aio. As expected our system required more RAM for its
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Table 4.3: Average resource consumption, per node, for the hotspot random write
test with 32 cluster nodes.

CPU (%) RAM
(MiB)

Network
(KiB/s)

Persistent
metadata

Tap:aio 3.90 6.25 - -

DEDIS 6.44 197.25 247.89 96.10

in-memory caches and for performing deduplication. Nevertheless, less than 3%

of the total RAM of each cluster node was used. The network usage for the 32

servers, more specifically, the network bandwidth used for contacting the DDI

nodes and for supporting their replication was less than 250 KiB/s. Regarding

metadata consumption, the DDI, DEDIS and the loading mechanism required

96.10 MiB of storage space per server. Globally, for the 32 servers, it were

used ⇡ 3 GiB of storage space that, were clearly compensated by the 37 GiB of

deduplicated space.

Finally, it is important to refer that, in our tests, resource consumptions were

evenly distributed across the servers. Also, in the 32 servers experiment, the

extent service used less than 1% of CPU, 2% of the server RAM and 2 GiB of

persistent metadata for indexing ⇡ 1 TB of storage blocks.

4.3.5 Read performance

A setting with two servers was also used for assessing the overhead in random

hotspot read workloads. In these tests, DEDISBench wrote data in the first

30 minutes, then stopped for 30 minutes, and finally, ran again for another 40

minutes performing random hotspot reads. The first 60 minutes were used to

populate the storage and have DEDIS sharing duplicate blocks. The last 40

minutes were used to run the benchmark and check storage read performance in

a deduplicated storage. In the test with the Tap:aio driver, the storage was also

populated but without any sort of deduplication.

Surprisingly, Table 4.4 shows that DEDIS outperforms Tap:aio in both stor-

age latency and throughput. This happens because, in a deduplicated storage,

some of the reads for distinct addresses will end up reading the same shared block

from the storage. This allows using OS read caches more e�ciently while reduc-

ing the disk arm movement [Koller and Rangaswami 2010]. As a matter of fact,
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this e↵ect was also verified in Chapter 3 for the LessFS deduplication system.

To conclude, these results prove that our design has negligible impact in storage

read requests and that, in some cases, deduplication can even increase random

read performance.

Table 4.4: DEDIS and Tap:aio results for 2 cluster nodes with a random hotspot
read workload.

Aggregated storage
throughput (IOPS)

Average latency per
node (ms)

Tap:aio 8238 0.24

DEDIS 8698 0.23

4.3.6 Throttling deduplication and garbage collection

Finally, we measured the performance impact in both storage throughput and la-

tency for distinct deduplication and garbage collection throughputs. More specif-

ically, we have limited the throughput of D. Finder and GC modules per cluster

node, and compared the storage overhead of these limited versions with the over-

head of a run without any limit. DEDIS was evaluated in 32 cluster nodes with

a random write workload. The remaining experimental settings were identical to

the ones used in Section 4.3.4.

Table 4.5 shows that the non-limited version of DEDIS achieves 2677 alias-

ing operations per second for each cluster node (⇡10 MiB/s). Surprisingly, when

deduplication is limited to 1000 ops/s per node, the impact in storage requests

latency and throughput is higher. As explained previously, DEDIS deduplica-

tion relies on batching for reducing the impact of logging and remote calls to

DDI. When the throughput is limited, the size of each batch is smaller while

more batches are required for processing the same amount of operations, which

helps explaining the increased storage overhead. On the other hand, when the

throughput limit approaches the 2677 ops/s, the storage performance becomes

closer to the one observed for the baseline non-limited test. In fact, for the 3000

and 4000 ops/s limits, the average deduplication throughput is no longer reaching

the defined upper bound.

Similarly, in Table 4.6 the values for storage latency and throughput are

similar when the number of CoW operations processed per second with the GC
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Table 4.5: DEDIS results with deduplication throttling for 32 cluster nodes.

Deduplication throughput upper limit
per node (ops/s)

- 1000 2000 3000 4000

Aggregated storage throughput (IOPS) 17733 13347 17029 17587 17580

Average storage latency per node (ms) 1.82 2.41 1.87 1.82 1.81

Average deduplication throughput per
node (ops/s)

2677 934 1765 2191 2384

module are limited. Without any restriction, the module processes 63 ops/s

for each cluster node, which is an acceptable value as only some write operations

generate CoWs and, up to 80% of these are prevented with our hotspot avoidance

mechanism. As expected, when the upper bound is increased, the average GC

throughput is closer to the non-limited one. It is also important to refer that, for

all the previous tests, the usage of CPU, RAM, network and metadata is similar

across them.

Table 4.6: DEDIS results with garbage collection throttling for 32 cluster nodes.

Garbage collection throughput upper
limit per node (ops/s)

- 20 40 80 120

Aggregated storage throughput (IOPS) 17733 17712 17600 17610 17557

Average storage latency per node (ms) 1.82 1.80 1.82 1.81 1.82

Average garbage collection throughput
per node (ops/s)

63 18 28 38 45

These results prove, once again, that deduplication and garbage collection can

run simultaneously with storage I/O load. Moreover, since costly operations are

excluded from the critical storage path, these operations can run at the maxi-

mum throughput without a significant impact. This is an important distinction

from previous systems that are only capable of running deduplication in o↵-peak

periods, thus requiring extra temporary storage space and higher deduplication

throughput for processing the additional storage backlog.

4.4 Related work

As explained in Chapter 2, traditional deduplication systems target archival and

backup data. Although these systems share common assumptions with primary
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deduplication ones, there are important distinctions. Firstly, primary storage

deduplication must maintain low storage latency or, in other words, a primary

deduplication system must aim at the same storage latency as a raw storage sys-

tem without deduplication. As another di↵erence, although data updates and

deletes are supported in some backup systems, primary data is expected to be

re-written more frequently, thus increasing the number of costly CoW operations

and the complexity of reference management and garbage collection. In previous

work, some archival and backup deduplication systems were extended to export

file system semantics with moderate I/O performance [Ungureanu et al. 2010,

Liguori and Van Hensbergen 2008, Lessfs 2014]. These systems achieve good

performance for stream I/O (sequential reads and writes), while supporting ran-

dom block storage requests but with unacceptable performance for the primary

storage environment targeted by DEDIS.

Recently, live volume deduplication in cluster and enterprise scale systems

is emerging. LVM systems with snapshot capabilities avoid duplicating data

but only among snapshots of VM volumes and golden VM images with common

ancestors [Meyer et al. 2008]. Other systems like ZFS are designed for enterprise

storage appliances and require large RAM capacities for indexing chunks and

enabling e�cient deduplication [OpenSolaris 2014].

These issues shift focus to o↵-line deduplication where processing overhead is

excluded from the storage write path and lower latency is achievable. Primary

distributed o↵-line deduplication for a SAN file system was introduced in the DDE

system, implemented over the distributed IBM Storage Tank [Hong and Long

2004]. A centralized metadata server receives signatures of stored chunks and

deduplicates them asynchronously by resorting to an index of unique signatures

stored at the SAN. A CoW mechanism avoids updates on aliased data while

reference counting information, required for reference management, is stored on

an independent metadata structure.

One of the major drawbacks of DDE is the single-point of failure central-

ized metadata server so this centralized component is avoided in DeDe [Clements

et al. 2009]. DeDe introduces an o↵-line decentralized deduplication algorithm

for VM volumes on top of VMWares’s VMFS cluster file system. DeDe uses an

index structure, also stored in VMFS, that is accessible to all nodes and pro-

tected by a locking mechanism. E�cient deduplication throughput is obtained
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by doing index lookups and updates in batch, while index partitioning allows a

scalable design. VMFS simplifies deduplication as it already has explicit block

aliasing, CoW, and reference management. However, these operations are not

commonly exposed in most cluster file systems and the performance of the dedu-

plication system is highly dependent on their implementation. For instance, there

are alignment issues between the block size used in VMFS and DeDe, implying

additional translation metadata and an additional impact in storage requests la-

tency. In fact, this issue alone adds 10% of overhead in storage requests, which

is practically the same value for the overhead of the whole DEDIS system. This

penalty along with the extra latency added by CoW operations, that require ⇡10

ms to complete, confines DeDe deduplication to run in periods of low I/O load.

A proposal for reducing the overhead of CoW operations in storage requests is

described in Microsoft Windows Server 2012 centralized o↵-line deduplication

system, where it is suggested that deduplication should be performed selectively

on files that meet a specific policy, such as, file age superior to a certain thresh-

old [El-Shimi et al. 2012]. Such policy avoids sharing fresh files that are more

prone to generate CoW operations.

Recently, several optimizations were proposed to reduce the storage latency

overhead of in-line primary storage deduplication. These optimizations focus

on speeding up the index lookup operations by avoiding disk accesses that, are

costly and done in the storage write path. Briefly, these systems use multi-layer

Bloom filters, combine Bloom filters and disk layouts exploiting spatial locality,

use client-side caches for holding chunks being frequently modified and avoid

processing them until strictly necessary, and use cache mechanisms that explore

both temporal and spatial data locality at the cost of loosing some deduplica-

tion accuracy [Tsuchiya and Watanabe 2011, Ng et al. 2011, Srinivasan et al.

2012, Xun et al. 2014, Opendedup 2014]. Then, deduplication accuracy can be

increased by extracting statistical information from storage workloads and us-

ing it for optimizing the pre-fetch of disk signatures into cache [Wildani et al.

2013]. Also, the RAM space used for caching can be dynamically optimized for

the read and index caches, according to the current storage access pattern [Mao

et al. 2014b]. Many of these optimizations are based on mechanisms previously

thought for archival and backup deduplication [Zhu et al. 2008, Rhea et al. 2008,

Lillibridge et al. 2009, Guo and Efstathopoulos 2011, Shilane et al. 2012, Wei
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et al. 2010]. However, even with these optimizations, most of the current in-line

primary deduplication systems are designed for centralized storage appliances as

introducing remote index lookups in the critical I/O path results in prohibitive

storage overhead. In fact, Liquid and Opendedup are the only systems supporting

global in-line deduplication [Xun et al. 2014, Opendedup 2014]. However, these

approaches introduce a significative impact in storage requests latency, thus being

limited to workloads with moderate latency requirements.

DDE and DeDe are the systems that most resemble DEDIS. However, our

system is fully-decentralized and does not dependent on a specific cluster file

system. This distinction allows removing existing single point of failures while

also handling unsophisticated storage implementations as backend, centralized or

distributed, as long as a shared block device interface is provided for the storage

pool. Decoupling deduplication from the storage backend changes significantly

the design of DEDIS and allows exploring novel optimizations while avoiding the

alignment issues of DeDe. For example, as detailed in Section 4.2.5, DeDe’s mech-

anism to tentatively mark addresses as CoW is implemented with the aid of the

storage backend locking capabilities. Implementing this mechanism in DEDIS

without the lock primitive would require costly cross-host communication, so we

introduce a novel mechanism for avoiding I/O hotspots and, consequently, CoW

operations. Also, as CoW specialization is not provided by our storage backend,

novel cache mechanisms can be used to reduce its impact in storage requests.

In fact, these optimizations are key for running deduplication and I/O intensive

workloads simultaneously with low overhead, unlike in previous systems.

To sum up, in comparison with other archival, backup, and primary deduplica-

tion work, DEDIS does not require data locality or keeping metadata structures

in SSDs to have acceptable deduplication throughput and reduced storage I/O

overhead. Index lookups are optimized by performing them in batch and outside

from the critical I/O storage path. Also, the index is not assumed to be fully-

loaded in RAM and can be partitioned to improve throughput and scalability.

Exact deduplication is performed across all cluster nodes, i.e., all stored chunks

are compared against each other, thus having optimal deduplication gain. Fi-

nally, deduplication is decentralized so each cluster node performs deduplication

tasks independently and concurrently. This is a major distinction from using

a single centralized storage appliance with built-in deduplication [Bolosky et al.
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2000].

4.5 Discussion

In this chapter we show the design, implementation, and evaluation of DEDIS,

a dependable and distributed system that performs o↵-line deduplication across

VMs primary storage volumes, in a cluster-wide fashion. Our design is compat-

ible with any storage backend, distributed or centralized, as long as it exports

a shared block device interface. Also, our system is fully-decentralized avoiding

any single point of failure or contention thus, safely scaling-out. The DDI com-

ponent is decisive to achieve the previous properties and also to enable global

deduplication. Then, the optimistic o↵-line deduplication approach and novel

optimizations allow improving deduplication performance and reliability while

reducing the impact in storage requests. Namely, the hotspot avoidance and

cache mechanisms are key for the results obtained in our experiments.

The evaluation of DEDIS Xen-based prototype in up to 32 cluster nodes

focus on random reads and writes and shows that deduplication and primary

I/O workloads can run simultaneously in a fully-decentralized and scalable sys-

tem while, keeping low latency and throughput overhead, less than 14%, and a

baseline single-server deduplication throughput of approximately 10 MiB/s with

low-end hardware. Such is not possible in previous primary deduplication pro-

posals, and is fundamental for performing e�cient deduplication and reducing

the duplicate storage backlog in cloud computing infrastructures with scarce o↵-

peak periods [Clements et al. 2009, Hong and Long 2004]. Also, the resulting

net space savings are clearly worthwhile, in face of an acceptable consumption

of CPU, RAM and network resources. These results allow us to conclude that

e�cient distributed deduplication is achievable in primary storage cloud infras-

tructures.
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Chapter 5

Conclusions

Deduplication is a key technique to deal with the current explosion of digital

information in cloud computing infrastructures. However, finding and eliminating

duplicates across primary volumes of VMs in a distributed infrastructure is not

a trivial task and raises several challenges. In this thesis, we address precisely

these challenges and present a deduplication system for cloud computing that is

fully-decentralized, scalable, and reliable.

Although the first published storage deduplication systems have now more

than twelve years, the research work in deduplication is still growing at an accel-

erated pace. In fact, deduplication is no longer an exclusive feature of archival

and backup storage, being now also present in primary storage, RAM and SSDs.

Due to the considerable amount of work on this topic, it is important to clearly

know how distinct systems relate to each other and what specific problems they

address. Also, this information is crucial to fully-understand why the existing

solutions are not suited for the cloud computing environment.

This challenge motivated the work described in Chapter 2, where we sur-

vey the existing research on storage deduplication systems. The chapter starts

by defining the concept of deduplication and presenting a novel taxonomy with

the common design features, that are shared across all deduplication systems.

Namely, we discuss the granularity of chunks, reliance on data locality assump-

tions, the timing when deduplication is performed, how chunk content is indexed

to find duplicates, how duplicate chunks are shared, and the distributed scope of

deduplication systems. As another contribution, the same taxonomy is then used

to classify 52 deduplication systems and to explain how each system copes with

115
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the challenges of specific storage environments. Archival and backup dedupli-

cation systems are widely explored and already exploited in several commercial

storage appliances. Most of these systems assume immutable data, and trade

latency for deduplication and storage I/O throughput by mainly using in-line

deduplication approaches. On the other hand, in primary storage, data is mu-

table and storage I/O latency is critical, so the number of in-line deduplication

systems is reduced and the percentage of o↵-line approaches raised. In RAM

deduplication, most systems scan memory for duplicates to avoid intrusive mech-

anisms for intercepting I/O calls. Also, RAM pages are highly volatile, thus being

updated more often than in other storage systems. Finally, in SSD deduplication

the processor and DRAM included in the devices are used for deduplication, but

both have limited capabilities that significantly restrict deduplication designs.

Since the core contribution of this dissertation is a distributed primary stor-

age deduplication system, we require proper benchmarking tools for evaluating

it. Although there are several benchmarks for traditional storage systems, only

a really small number is capable of simulating realistic duplicate content, which

is crucial for evaluating accurately any deduplication approach. In Chapter 3,

we addressed precisely this issue by introducing DEDISbench, a synthetic micro-

benchmark suitable for storage deduplication systems. As the main contribution,

data written by the benchmark follows content distributions that mimic the du-

plicates found in real storage systems. Unlike in previous benchmarks, the written

content simulates the percentage of duplicate and non-duplicated blocks found

in a real storage, while also, detailing the proportion of duplicates per block.

As other important novel features, DEDISbench tests can be issued at stress

and nominal intensities, and a novel storage access distribution that simulates

hotspot random accesses is introduced. This hotspot distribution is based on

the TPC-C NURand function and it is important to test random storage I/O

while maintaining cache e�ciency. Also, it allows simulating a storage environ-

ment with frequent block updates, as the one assumed in DEDIS and similar

systems [Clements et al. 2009].

The process of analysis and extraction of novel content distributions is fully

automatic by using DEDISgen. Any real storage system can be processed with

this tool that automatically generates distributions usable by DEDISbench. We

exemplify this feature by analyzing three distinct real storage systems from our
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research group; An archival, a backup and a primary storage. We conclude that

each distribution has specific characteristics, and thus, it is important to evalu-

ate deduplication systems with suitable storage workloads. Our comparison of

DEDISbench with IOzone and Bonnie++ shows that our benchmark simulates

more accurately duplicate content. Also, we show that the features of our bench-

mark are crucial to find new issues in two deduplication file systems, LessFS and

Opendedup.

Primary storage and cloud computing distributed infrastructures raise several

challenges for storage deduplication that are only addressed by few systems. To

ensure that deduplication does not overly a↵ect the performance of VMs pri-

mary storage volumes, many of these systems avoid cluster-wide deduplication.

Such restriction limits the achievable deduplication gain because duplicates are

not found exactly across the whole cluster. Other systems reduce the storage

penalty by performing o↵-line deduplication in o↵-peak periods. However, as

such periods are scarce or inexistent in cloud infrastructures, the temporary stor-

age space required for keeping unprocessed data must be large, thus also a↵ecting

deduplication space savings.

These limitations were addressed in Chapter 4 with DEDIS, a dependable

system that performs distributed deduplication across VMs primary storage vol-

umes. Our novel optimistic o↵-line deduplication avoids issuing costly opera-

tions in the critical storage path and, consequently, reduces storage overhead.

Duplicate blocks are found and eliminated across the whole cluster by using

a distributed index of duplicates. This index enables our design to be fully-

decentralized while avoiding any single point of failure or contention thus, safely

scaling-out. Our system is compatible with any storage backend, distributed or

centralized, as long as it exports a shared block device interface. This way, our

solution is agnostic to the storage implementation and does not depend on any

special storage operations, which allows exploring novel optimizations. Namely,

we present a novel mechanism that avoids sharing write hotspot blocks and re-

duces significantly the number of costly CoW operations issued. Also, we intro-

duce several cache mechanisms that spare costly storage accesses, thus speeding

up deduplication throughput while reducing the impact in VMs storage requests.

DEDIS design and optimizations are key for running deduplication in peak hours

while still introducing low storage overhead. As another contribution, our design
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is fault-tolerant and can withstand hash collisions in specific VM volumes by

performing byte comparison of chunks before aliasing them.

The evaluation of DEDIS Xen-based prototype in up to 32 cluster nodes

proves the e�ciency and scalability of our design and optimizations. In fact, the

results show that the overhead in random storage requests is less than 14%, even

when cluster nodes are performing deduplication in parallel with a baseline single-

node deduplication throughput of approximately 10 MiB/s. These values are not

achievable in previous systems and allow us to conclude that exact cluster-wide

deduplication and low storage overhead are attainable in cloud primary storage

infrastructures, even in peak periods. Also, the evaluation is performed in a fully-

symmetric setup where servers run both VMs andDEDIS components. This way,

our prototype does not require additional servers for running our services, in fact,

even the storage backend, where VMs volumes and DEDIS persistent metadata

are stored, is composed by the local disks of the same servers.

As a final contribution, DEDIS, DEDISbench, DEDISgen and the archival,

backup and primary storage distributions are open-source and publicly available

for anyone to use.

5.1 Future work

Due to the broadness of the storage deduplication research field, there are still sev-

eral challenges to solve. Briefly, primary, RAM, and SSD deduplication systems

have received less attention and further contributions for improving deduplica-

tion throughput, reducing storage overhead, and increasing deduplication space

savings can still be expected. Moreover, even in backup deduplication where the

amount of work is substantially larger, these issues and others, such as reference

management and scalability can be further improved.

Fault tolerance and security are other two topics that deserve further atten-

tion. Although the impact of deduplication in reliability was already studied and

it was shown that a level of replication must be enforced to ensure data relia-

bility, the design of many systems must still be improved to tolerate crash and

byzantine faults [Rozier et al. 2011, Bhagwat et al. 2006]. Security must also be

enforced when deduplication can be performed across data from distinct users.

Convergent encryption is commonly used for ensuring this property [Cox et al.
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2002, Douceur et al. 2002], but it is also possible to use other security mecha-

nisms that on the one hand reduce deduplication gain, and on the other hand

increase data privacy and security [Nath et al. 2006]. For instance, it is possible to

achieve security models that hide the users identities from the storage providers

while still enabling deduplication [Storer et al. 2008]. Moreover, security has also

been identified as an important challenge for RAM deduplication [Suzaki et al.

2011].

Regarding specific improvements and novel features for the DEDIS system, it

is necessary to complete the implementation and evaluation of the fault recovery

mechanism. Also, our design can be improved to tolerate byzantine failures. Since

many infrastructures are now using SSDs, it would be interesting to understand

the impact of deduplication in these new drives.

The privacy of deduplicated data is also not addressed by our current design.

This is an important aspect as data from distinct VMs and clients is shared by

our system. It would be interesting to check if current approaches are compatible

with DEDIS design and if there is any space for improving deduplication space

savings while maintaining privacy [Rashid et al. 2012].

Achieving optimized deduplication for sequential I/O is a challenge that is

out of the scope of this dissertation and that has been the focus of other sys-

tems [Ungureanu et al. 2010]. Similarly, we do not deal with the fragmentation

introduced by deduplication, which impacts directly sequential storage reads and

is also researched in the literature [Kaczmarczyk et al. 2012, Mao et al. 2014a].

Deduplication systems optimized for sequential I/O usually use chunks with larger

sizes, or group chunks into segments, to improve the throughput of stream I/O

operations and to reduce fragmentation. However, these optimizations perform

poorly for random block operations. Other systems, reduce fragmentation by do-

ing selective deduplication only over some chunks, or by rewriting some chunks

in order to maintain the sequential storage layout for the groups of blocks that

will su↵er most from fragmentation. Although these approaches trade o↵ some

of the deduplication space savings, it would be interesting to check if they can be

applied to DEDIS. As another contribution, building an hybrid system that bun-

dles these distinct researches and achieves low storage overhead, for both types

of I/O access patterns, is also an interesting challenge for future work.

Although our system is independent from the storage backend and does not
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have control over features like replication, it is also important to understand if

DEDIS deduplication may have any impact in the e�ciency of this feature. On

the other hand, it would be interesting to understand if storage replication could

be used to provide both fault-tolerance and, when possible, to asynchronously

replicate some blocks and place them in specific storage locations that would

ensure the sequential layout of some groups of blocks. Such would be useful for

reducing the storage fragmentation e↵ects.

Regarding our storage deduplication benchmark, several improvements are

still possible. Firstly, DEDISbench does not simulate storage properties like

locality, which is an important characteristic assumed by many deduplication

systems [Zhu et al. 2008]. Also, DEDISbench is a block-based benchmark so,

extending it to simulate file system semantics would be a valuable contribution.

For this task, several ideas from previous work could be used [Al-Rfou et al. 2010,

Tarasov et al. 2012]. Analyzing more real storage systems with DEDISgen and

building a public database with several workloads is also an important future

contribution. This will allow evaluating more accurately distinct deduplication

systems and comparing the ones with similar storage targets.

To conclude, we believe that deduplication systems and their benefits are

now widely accepted by the scientific and enterprise communities, but there are

still several interesting open research challenges. We envision that deduplication

research will continue to grow at an accelerated pace in the forthcoming years.
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Appendix A

CAL specification

module dedup

extends FiniteSets , Sequences , Naturals , TLC

constant vids , pids , cids , service, itt , istore

–algorithm Deduplication{

variable

\ ⇤ Logical to physical map initial values

tt = itt , \ ⇤ initial physical mapping

cow = [i 2 vids 7! false], \ ⇤ CoW marker is unset for all addresses

lock = [i 2 vids 7! false], \ ⇤ no addresses are locked

\ ⇤DDI is empty

dht 2 [{} ! {}], \ ⇤DDI hash to physical address map

rc 2 [{} ! {}], \ ⇤DDI reference counting map

\ ⇤ Free blocks queue and unreferenced queue

free = pids \ {i 2 pids : 9 vid 2 vids : tt [vid ] = i}, \ ⇤ free blocks addresses

queue = hi, \ ⇤ copied blocks addresses to be garbage collected

\ ⇤ Storage

store = istore; \ ⇤ current content of physical blocks

process(v 2 vids) \ ⇤ we use a logical process for each logical page

variable

p, \ ⇤ currently known physical address

c, \ ⇤ currently known content hash

r = store[tt [self ]], \ ⇤ last storage content read

w = store[tt [self ]]; \ ⇤ last storage content written

{
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request : while(true){ \ ⇤ wait here for OS request

either{ \ ⇤ Read request

lock [self ] := true; \ ⇤ lock logical address

p := tt [self ]; \ ⇤ get physical address from map

\ ⇤Wait for read storage callback

readcb : r := store[p]; \ ⇤ r has the content read from the storage

lock [self ] := false; \ ⇤ unlock logical address

}or{ \ ⇤Write request

with(i 2 cids){

c := i ; \ ⇤ choose one arbitrary value to write

};

lock [self ] := true; \ ⇤ lock logical address

if (cow [self ]){ \ ⇤ if address is marked for CoW

alloc : await(free 6= {}); \ ⇤ wait until free blocks queue has elements

p := choose i 2 free : true; \ ⇤ get a free block address

free := free \ {p}; \ ⇤ remove it from free blocks queue

\ ⇤ wait for write callback

cwritecb : store[p] := c; \ ⇤ content is written in the free block at the storage

queue := queue � htt [self ]i; \ ⇤ add CoW address to unreferenced queue

tt [self ] := p; \ ⇤ update map with the free block address

cow [self ] := false; \ ⇤ remove CoW marker

lock [self ] := false; \ ⇤ unlock logical address

w := c;

r := c;

}else{

\ ⇤ wait for regular write callback

nwritecb : store[tt [self ]] := c; \ ⇤ content is written at the storage address

lock [self ] := false; \ ⇤ unlock logical address

w := c;

r := c;

};
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}

}

};

process(srv = service) \ ⇤ we use a logical daemon process for share and GC

variable

v , \ ⇤ currently selected logical address

p; \ ⇤ currently selected physical address

{

step : while(true){ \ ⇤ Periodically

either{ \ ⇤Garbage collection

await(queue 6= hi); \ ⇤ wait for elements at unreferenced queue

with(q = Head(queue)){ \ ⇤ get first element from queue

queue := Tail(queue);

p := q ;

};

gcalc : with(hash = store[p]){ \ ⇤ read block and compute hash

if (rc[hash] = 1){ \ ⇤ if block has only this reference

if (dht [hash] 6= p){ \ ⇤ compare queue address with the DDI one

free := free [ {dht [hash], p}; \ ⇤ also free queue address if a match is not found

}else{

free := free [ {dht [hash]}; \ ⇤ free DDI address if a match is found

};

dht := [i 2 domain dht \ {hash} 7! dht [i ]]; \ ⇤ remove DDI entry address

rc := [i 2 domain rc \ {hash} 7! rc[i ]]; \ ⇤ remove DDI entry reference counter

}else{

if (dht [hash] 6= p){ \ ⇤ compare queue address with the DDI one

free := free [ {p}; \ ⇤ free queue address if a match is not found

};

rc[hash] := rc[hash]� 1; \ ⇤ decrement block reference at DDI

};

};
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}or{ \ ⇤ Sharing

with(vid 2 {i 2 vids : ¬cow [i ]^¬lock [i ]}){ \ ⇤ address is not locked or marked for CoW

v := vid ; \ ⇤ logical address to share

p := tt [vid ]; \ ⇤ corresponding physical address to share

cow [vid ] := true; \ ⇤ mark for CoW

}; \ ⇤ lock is released

scalc : with(hash = store[p]){ \ ⇤ read block and compute hash

if (hash 2 domain dht){ \ ⇤ if hash is at the DDI

rc[hash] := rc[hash] + 1; \ ⇤ increment reference counter at the DDI

if (¬lock [v ] ^ tt [v ] = p){ \ ⇤ lock address and check for concurrent modification

tt [v ] := dht [hash]; \ ⇤ update map with DDI address

free := free [ {p}; \ ⇤ free duplicate block

};

}else{

dht := dht @@(hash :> p); \ ⇤ insert new DDI entry physical address

rc := rc@@(hash :> 1); \ ⇤ insert new DDI entry reference counter

};

};

};

};

}

}

BEGIN TRANSLATION

END TRANSLATION

Correct
�
= ⇤8 vid 2 vids : r [vid ] = w [vid ]

NoAlias
�
= ⇤8 pid 2 free, vid 2 vids , hash 2 domain dht : tt [vid ] 6= pid ^ dht [hash] 6= pid
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