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Abstract We apply state-of-the art deductive verification
tools to check security-relevant properties of cryptographic
software, including safety, absence of error propagation, and
correctness with respect to reference implementations. We
also develop techniques to help us in our task, focusing on
methods oriented towards increased levels of automation, in
scenarios where there are clear obvious limits to such auto-
mation. These techniques allow us to integrate automatic
proof tools with an interactive proof assistant, where the latter
is used off-line to prove once-and-for-all fundamental lem-
mas about properties of programs. The techniques developed
have independent interest for practical deductive verification
in general.

Keywords Cryptographic algorithms · Program
verification · Program equivalence · Self-composition

1 Introduction

Software implementations of cryptographic algorithms and
protocols are at the core of security functionality in many
IT products. However, the development of this class of soft-
ware products is understudied as a domain-specific niche
in software engineering. The development of cryptographic
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software is clearly distinct from other areas of software engi-
neering due to a combination of factors.

– Firstly, cryptography is an inherently interdisciplinary
subject. The design and implementation of cryptographic
software draws on skills from mathematics, computer sci-
ence and electrical engineering. The assumption that such
a rich body of research can be absorbed and applied with-
out error is tenuous for even the most expert software
engineer.

– Secondly, security is notoriously difficult to sell as a fea-
ture in software products, even when clear risks such as
identity theft and fraud are evident. An important impli-
cation of this fact is that security needs to be as close
to invisible as possible in terms of computational and
communication load. As a result, it is critical that crypto-
graphic software be optimised aggressively, without alter-
ing the security semantics.

– Finally, typical software engineers develop systems
focused on desktop class processors within computers
in our offices and homes. The special case of crypto-
graphic software is implemented on a much wider range
of devices, from embedded processors with very limited
computational power, memory and autonomy, to high-
end servers, which demand high-performance and low-
latency. Not only must cryptographic software engineers
understand each platform and the related security require-
ments, they must also optimise each algorithm with
respect to each platform, since each one will have vastly
different performance characteristics.

Program Verification is the area of Formal Methods that
attempts to check properties of software statically, with the
help of an axiomatic semantics of the underlying program-
ming language and a proof tool. Specifically, we are
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interested in techniques based on Hoare logic [19], brought to
practice through the use of contracts—specifications consist-
ing of preconditions and postconditions, annotated into the
programs. In recent years verification tools based on con-
tracts have become more and more popular, as their scope
evolved from toy languages to very realistic fragments of
languages like C [6,17], C# [4], or Java [22]. We will use
the expression deductive program verification to distinguish
this approach from other ways of checking properties of pro-
grams, such as software model checking [2,18,21]. The goal
of this paper is to apply deductive program verification tech-
niques to prove diverse properties of cryptographic software.

Contributions We describe results obtained in our explora-
tion of existing verification techniques and tools (used to
construct high-assurance software implementations in other
domains) to the concrete case of cryptographic software. In
doing so we have also developed techniques that are of inde-
pendent interest. Our contributions are the following.

– We propose a composition-based methodology for prov-
ing the functional equivalence of programs. This is
inspired by the self-composition technique [5] that can be
used to prove information flow properties of programs.
Our methodology also enables self-composition proofs,
although it targets the more general problem of proving
the correctness of concrete implementations with respect
to specifications given as reference implementations

– We employ natural invariants as a device to establish
a correspondence between (annotation-level) axiomatic
properties of programs and (a formalisation of) their oper-
ational semantics. This device take us beyond the usual
scope of contract-based verification, enabling us to obtain
automatic proofs relying on a battery of lemmas which
are interactively proved once-and-for-all.

– We show how natural invariants are useful for reasoning
about pairs of programs with similar control structures.
In particular, this is a useful technique to enable program
equivalence proofs in practice. It also allows for the auto-
mation of the self-composition technique, which has been
identified as a major problem [31].

– We show how these results enable us to use an off-the-
shelf verification tool to reason about functional correct-
ness, safety properties, and security properties of a
C implementation of the RC4 encryption scheme, incl-
uded in the well-known open-source library openSSL
[33].

CACE (Computer Aided Cryptography Engineering [8]) is
an European Project that targets the lack of support currently
offered to cryptographic software engineers. The central
objective of the project is the development of a tool-box
of domain-specific languages, compilers and libraries, that

supports the production of high quality cryptographic soft-
ware. The aim is that specific components within the
tool-box will address particular software development prob-
lems and processes; and combined use of the constituent tools
is enabled by designed integration between their interfaces.
It is a 3-year project that started in 2008.

This article stems from CACE-Work Package 5, which
aims at adding formal methods technology to the tool-box,
as a means to increase the degree of assurance than can be
provided by the development process.

Organisation Section 2 introduces the area of cryptographic
software implementation, and identifies important security
properties that deserve attention from a formal verification
point of view. We then discuss in Sect. 3 methods to formalise
and verify the validity of these properties using a deductive
verification platform. Section 4 describes the development of
an infrastructure to support the automation of the proposed
approach, and Sect. 5 shows its application to a concrete case
study: the verification of the RC4openSSL implementation.
We conclude the paper with a discussion of related work in
Sect. 6 and some concluding remarks in Sect. 7.

2 A catalogue of software properties

2.1 Functional correctness

The goal of functional correctness verification is to establish
that a program performs according to some intended spec-
ification. More precisely, that the input/output behaviour of
the implementation matches that of the specification. This
is certainly the primary concern in program verification and
the context in which the deductive approach has been most
widely used. Verifying functional correctness within a deduc-
tive framework typically involves the following steps:

1. annotating the source code with specification contracts;
2. adding invariant information for loops (and possibly also

variants if total correctness is a concern);
3. producing, with the help of a verification condition gen-

erator tool (VCGen), a set of verification conditions; and
4. discharging them (i.e. proving them) using an automatic

or interactive prover.

The critical points are steps 2 and 4, since the user needs
to identify how certain properties are approximated during
the loop execution—this is where most of the user activ-
ity should be focused, since richer invariants will be harder
to prove, but will simplify the verification of the contract
(by providing a richer set of hypotheses). Indeed, an active
research area is invariant synthesis, which attempts to auto-
matically generate these invariants by analysing the program.
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However, it should be kept in mind that the problem is inher-
ently difficult, even if certain approaches seem to behave
quite well for specific domains.

Correctness with respect to a Reference Implementation
The standard scenario in deductive verification is that specifi-
cations are written as contracts on the function and procedure
interfaces. This may involve properties of the output values
(typically written in first-order logic), as well as relations
between input and output values.

In this work we take an alternative route. We are inter-
ested in verifying cryptographic software, whose specifica-
tions are typically given as operational descriptions (i.e. as
algorithms). This is the case, for example, in symmetric-key
techniques such as ciphers, message authentication codes,
cryptographic hash functions, etc. When implementing such
a technique, the programmer will follow this description, but
is free to improve the code, say by introducing optimisations
or internal reorganisations (e.g. to improve efficiency, main-
tainability, or to satisfy non-functional security properties),
as long as the input-output behaviour is the same as that pre-
scribed by the specification.

To some extent, the specification acts as a reference imple-
mentation: verifying functional correctness is reduced to
proving program equivalence. Again, this is a difficult (and
undecidable) problem, although in this concrete application
domain we can rely on the fact that implementation and spec-
ification share most of their internal structure (since the latter
has been adopted as a model for the former). Indeed, the sort
of equivalence proof required for cryptographic software cor-
responds to what is usually known in software engineering
as code refactoring.

2.2 Safety properties

Due to the inherent difficulty of the verification of functional
properties, less ambitious forms of verification are often used.
A widespread verification approach which aims at increasing
the level of assurance that can be placed on software imple-
mentations is to confine the analysis to a restricted class of
properties that rule out the occurrence of some recognisable
“bad things”. This is what is called a safety analysis, which
often includes properties associated with common vulner-
abilities arising from coding errors such as de-referencing
invalid pointers, accessing containers with invalid indexes,
calculation errors due to overflows, etc.

The advantage of focusing on such simple properties is
that a significant degree of automation can be achieved, min-
imising user intervention and impact on development time.
The resulting level of assurance, far from being absolute, is
nevertheless sufficient for a wide class of application sce-
narios. In this work, we also briefly review how a deductive
verification tool can be used to perform this sort of analysis.

2.3 Information flow security

Information flow security refers to a class of security pol-
icies that constrain the ways in which information can be
manipulated during program execution. These properties can
be formulated in terms of non-interference between high-
confidentiality input variables and low-confidentiality output
variables, and are usually verified using a special extended
type system [3,25,36]. A dual formulation permits captur-
ing security policies that constrain information flow from
non-trustworthy (or low-integrity) inputs, to trusted (or high-
integrity) outputs. In Sect. 6 we provide an overview of
developments in this area related to the work in this paper.

Consider the more common case of secure information-
flow that aims at preserving data confidentiality. Information
may flow from high-security to low-security variables either
directly via assignment instructions, or indirectly. The fol-
lowing code from Terauchi and Aiken [31] computes in f1
the nth Fibonacci number and then assigns a value to l that
depends on the value of f1.

f1 = 1; f2 = 0;
while (n > 0) {
f1 = f1 + f2;
f2 = f1 - f2;
n--; }

if (f1 > k) l = 1; else l = 0;

Letl be low security andn high security; then clearly there is
an indirect information leakage from n to l, since the assign-
ment l = 1 is guarded by a condition that depends on the
value of f1, and assignments to the latter variable are per-
formed inside a loop that is controlled by the high security
condition n > 0. The program is thus insecure. If nwere not
high security, the program would of course be secure.

Type-based analyses would address the problem by trac-
king assignments to low security variables. Observe,
however, that this fails to capture subtle situations where an
apparently insecure program is in fact secure. If the last line
of the program were changed to

if (f1 > k) l = E1; else l = E2;

where E1, E2 are two expressions that evaluate to the same
value, then the program should be classified as high security,
since there is no way to tell from the final value of l any-
thing about f1. Type-based analyses would typically fail to
distinguish this from the previous program: both would be
conservatively classified as insecure. An alternative approach
is to define a program as secure if different terminating exe-
cutions, starting from states that differ only in the values of
high-security variables, result in final states that are equiv-
alent with respect to the values of low-security variables.
This approach, based on the language semantics, avoids the
excessively conservative behaviour of the previous method.
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More formally, let VH and VL denote respectively the sets
of high-security and low-security variables of C , and V ′L =
Vars(C)\VH . We write (C, σ ) ⇓ τ to denote the fact that
when executed in state σ , C stops in state τ (states are func-
tions mapping variables to values;⇓ is the evaluation relation
in a big-step semantics of the underlying language). Then the
program C is secure if for arbitrary states σ , τ ,

σ
V ′L= τ ∧ (C, σ ) ⇓ σ ′ ∧ (C, τ ) ⇓ τ ′ �⇒ σ ′ VL= τ ′

where σ
X= τ denotes the fact that σ(x) = τ(x) for all x ∈ X ,

i.e. σ and τ are X -indistinguishable.

Variants and other uses of non-interference Non-interfer-
ence has been recognised to be very strict in the sense that
it excludes any form of information flow between high level
and low level security variables. Most of the times one needs
some mechanism for declassifying data, allowing controlled
flux of information between security levels. In Sect. 6 we
point to some related work in this direction.

We also point out that non-interference may be useful to
express properties that are not directly concerned with secu-
rity, but are nevertheless useful in characterising specific
aspects of cryptographic algorithms. As an example, con-
sider the error-propagation property of stream ciphers such
as RC4, describing how they behave when used to transfer
data over channels which may introduce transmission errors.

The way in which the decryption process reflects a wrong
ciphertext symbol in the resulting plaintext is relevant:
depending on the encryption scheme construction, a cipher-
text error may simply lead to a corresponding flip in a
plaintext symbol, or it may affect a significant number of sub-
sequent symbols. This property, sometimes called error prop-
agation, is usually taken as a criterion for selecting ciphers
for noisy communication media, where the absence of error
propagation can greatly increase throughput. Note that error
propagation can sometimes be seen as a desirable feature, as
it amplifies errors that may be introduced maliciously, mak-
ing them easier to detect.

The intuition underlying the formalisation of error-
propagation with non-interference is that secure information
flow can be guaranteed by checking that arbitrary changes in
low-integrity input variables cannot be detected by observ-
ing high-integrity output variables. We remark that the notion
of a low-integrity input variable can be naturally associated
with a transmission error over a communications channel.
Hence, we map the ith possibly erroneous ciphertext sym-
bol to a non-trusted low-integrity input (we are looking at the
decryption algorithm that, in the case of RC4, is identical to
the one used for encryption). The definition of non-interfer-
ence can then conveniently be used to capture the absence of
error propagation. For this, we associate the output plaintext

symbols starting at position i + 1 to trusted high-integrity
outputs.

More precisely, our formulation captures the following
idea: if an arbitrary change in the ith input ciphertext symbol
cannot be observed in the output plaintext symbols follow-
ing position i , this implies that the stream cipher does not
introduce error propagation in decryption.

3 Proofs by composition

In this section we first review self-composition, a technique
for proving non-interference based on deductive verification,
and a generalisation (composition of two programs) that can
be used to prove program equivalences. Our interest in rea-
soning about equivalence of programs is motivated by the
notion of “correctness with respect to a reference implemen-
tation”, as explained in Sect. 2.

The difficulties of applying self-composition in practice
are well-known, and they also apply to proofs of equiva-
lence. In Sect. 3.3 we will introduce the notion of natural
invariant to overcome these difficulties. The technique estab-
lishes a correspondence between program annotations and
an underlying formalisation of the operational semantics of
the programs. This allows us to prove (interactively) cer-
tain fundamental lemmas that can be used to automatically
prove properties based on the self-composition or composi-
tion techniques.

3.1 Self-composition

The operational definition of non-interference involves two
executions of the program but, using the self-composition
technique [5], it can be reformulated to consider a single exe-
cution (of a transformed program). Given some (determinis-
tic) program C , let Cs be the program that is equal to C except
that every variable x is renamed to a fresh variable xs . Non-
interference can be formulated considering a single execution
of the self-composed program C;Cs . Note that any state σ of
C;Cs can be partitioned into two states with disjoint domains
σ = σ o ∪ σ s where dom(σ o) = Vars(C) and dom(σ s) =
{xs |x ∈ Vars(C)}. C is information-flow secure if any termi-
nating execution of the self-composed program C;Cs , start-
ing from a state σ such that σ o and σ s differ only in the values
of high-security variables, results in a final state σ ′ such that
σ ′o and σ ′s are equivalent with respect to the values of low-
security variables. This can be formulated without referring
explicitly to the state partition: ifσ(x) = σ(xs) for all x ∈ V ′L
and (C;Cs, σ ) ⇓ σ ′, then σ ′(x) = σ ′(xs) for all x ∈ VL .

Self-composition allows for a shift from an operational
semantics-based to an axiomatic semantics-based definition,
since the former can be written as the following Hoare logic
partial correctness specification:
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⎧
⎨

⎩

∧

x∈V ′L

x = xs

⎫
⎬

⎭
C;Cs

⎧
⎨

⎩

∧

x∈VL

x = xs

⎫
⎬

⎭

Difficulties of applying self-composition. The example of
Sect. 2.3 would result in the following self-composed pro-
gram F; Fs .

f1 = 1; f2 = 0;
while (n > 0) {

f1 = f1 + f2; f2 = f1 - f2; n--;
}
if (f1 > k) l = 1; else l = 0;
f1s = 1; f2s = 0;
while (ns > 0) {

f1s = f1s + f2s; f2s = f1s - f2s;
ns--;

}
if (f1s > ks) ls = 1; else ls = 0;

This example was used in previous work by Terauchi and
Aiken [31] to show the difficulties of mechanising self-com-
position using software model checkers.

In order to use a VCGen, one would annotate the self-
composed code with the contract dictated by the following
Hoare triple
{
n = ns ∧ k = ks ∧ l = ls} F; Fs {

l = ls}

together with the obvious control invariants for each loop
(regarding the minimum value of the variables n and ns).

Some of the generated proof-obligations would not how-
ever be discharged by an automatic prover. Admittedly, the
control invariants do not sufficiently describe what the loops
do (in particular, the fact that they are calculating Fibonacci
numbers), and for this reason the post-condition cannot be
proved, whether n==ns is included in the precondition (stat-
ing that n is not considered high-security) or not. The verifi-
cation thus fails to recognize a secure program, even for such
an apparently trivial example.

3.2 Equivalence by composition

The above method can be extended to handle program equiv-
alence. Suppose we have two programs C1 and C2, and that
we are interested in proving their equivalence. Let V be the
set of variables occurring in both programs (we assume both
use the same set of variables, otherwise we may let V =
Vars(C1)∩Vars(C2)). The idea that we want to capture is that
if the programs are executed from indistinguishable states
with respect to V , they terminate in states that are also indis-
tinguishable. C1 and C2 will be defined as equivalent if every
execution of the composed program C1;Cs

2, starting from
a state in which the values of corresponding variables are
equal, terminates in a state with the same property. This can

be expressed as the following Hoare logic total correctness
specification:
[

∧

x∈V

x = xs

]

C1;Cs
2

[
∧

x∈V

x = xs

]

Weaker notions of equivalence can be handled by taking V
to be a subset of Vars(C1) ∩ Vars(C2). In fact, we are not
restricted to equivalence relations – arbitrary relations can
be considered between the two partitions of the state:
[
R1(σ, σ s)

]
C1;Cs

2

[
R2(σ, σ s)

]

where σ and σ s denote the state partitions associated with
C1 and Cs

2 respectively.
The verification of such assertions leads to similar diffi-

culties to those already mentioned for self-composition: in
general there is no means to relate the outcomes of both
programs, and automatic verification fails. This was to be
expected, since establishing program equivalence is in gen-
eral as undecidable problem.

3.3 Natural invariants

In both scenarios identified above, the most evident diffi-
culty of carrying out the verification comes from the absence
of appropriate loop invariants. Of course, after finding these
loop invariants we still need to establish the intended proper-
ties (ideally, with reasonable levels of automation). In what
follows we propose a general approach to this problem. In
short, it consists of the following steps:

1. Extracting a specification of each program from its rela-
tional semantics. We focus on the critical point of the ver-
ification process, which is the construction of appropriate
loop invariants, and propose to construct them automat-
ically. The invariants we extract constitute the natural
specification of each program, guaranteed to be satisfied
by it. Each invariant is named and turned into an pred-
icate, which is then used to annotate the corresponding
loop in the source code.

2. Identifying and interactively proving additional facts
involving the named invariant predicates. The critical
observation is that such lemmas correspond to basic
refactoring steps that are recurrently used in the develop-
ment of cryptographic software. Their purpose is to relate
the specifications of the composed programs, capturing
the non-trivial parts of the proofs required for verifica-
tion.

3. Augmenting the source file with the previous facts (writ-
ten as lemmas), which have been justified once-and-
for-all by interactive proofs. The availability of these
lemmas will allow automatic provers to carry out the ver-
ification process, validating the verification conditions
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generated by a potentially large number of (self-) com-
position proofs.

We recall that we are primarily interested in tackling self-
composition, as well as program equivalences when both
programs share much of the underlying control structure.
This makes it reasonable to assume that the user may easily
guide the interactive verification process by providing hints
regarding the exploited code refactorings. This will allow
them to take advantage of the high degree of automation that
can be deployed to handle the remaining parts of the verifi-
cation process.

Relational specification For concreteness, we consider a
simple While language with integer expressions and arrays.
Its syntax is given by:

P ::= {P} | skip | P1; P2

| V := Eint | A[Eint ] := Eint

| if (Ebool) then P1 else P2

| while (Ebool) P

Eint ::= Constint | Eint op Eint

| A[Eint ]op ∈ {+,−, ∗, /, ...}
Ebool ::= true |

false | ¬Ebool | Ebool ∧ Ebool | Ebool ∨ Ebool

| Eint opRel Eint opRel ∈ {=,<,>, ...}

We do not adopt any form of variable declaration. Instead,
we consider a fixed State type that keeps track of all the
variable values during the execution of the program. Integer
variables are interpreted as (unbound) integers, and arrays as
functions from integers to integers (no size/range checking).
Array operations are axiomatised as usual:

acc : (Z → Z)× Z → Z

upd : (Z → Z)× Z × Z → (Z → Z)

acc(upd(a, k, x), k) = x

acc(upd(a, k′, x), k) = acc(a, k) if k 
= k′.

The State type is defined as the cartesian product of the
corresponding interpretation domains (each variable is asso-
ciated to a particular position). We also consider an equiva-
lence relation ≡ that captures equality on states. Integer and
boolean expressions are interpreted in a particular state, that
is [[eI nt ]] : State → Z , [[eBool ]] : State → B. We take the
standard definition for the big-step semantics of a program
as its natural specification. For states σ and σ ′ we define:

specskip(σ, σ ′) = σ ≡ σ ′

spec{P}(σ, σ ′) = specP (σ, σ ′)
specP1;P2

(σ, σ ′) = ∃σ ′′, specP1
(σ, σ ′′) ∧ specP2

(σ ′′, σ ′)
specv:=E (σ, σ ′) = σ ′ ≡ σ {v← [[E]](σ )}
speca[E1]=E2

(σ, σ ′) = σ ′ ≡ σ {a← upd(a, [[E1]](σ ), [[E2]](σ ))}
specif C then P1 else P2

(σ, σ ′) = ([[C]]σ ∧ specP1
(σ, σ ′))

∨(¬[[C]]σ ∧ specP2
(σ, σ ′))

specwhile (C) P (σ, σ ′) = ∃n, loopn
C,specP (σ,σ ′)(σ, σ ′) ∧ ¬[[C]](σ ′)

where loopn
C,R(σ, σ ′) is the inductively defined relation

loop0
C,R(σ, σ ′)⇐� σ ≡ σ ′

loopS(n)
C,R (σ, σ ′)⇐� ∃σ ′′,

loopn
C,R(σ, σ ′′) ∧ [[C]](σ ′′) ∧ R(σ ′′, σ ′)

The relation loopn
C,R(σ, σ ′) denotes the loop specification

for the body R under condition C . We call such a relation the
natural invariant for the loop (strictly speaking, this is in fact
a relation that provides a natural choice for a loop’s invari-
ant). In this definition we have made explicit the iteration
rank (iteration count) in superscript – in fact, we will see that
it is often convenient to consider it explicitly in the proofs.
Nevertheless, when omitted, it should be considered as exis-
tentially quantified. Also, we will omit subscripts (both in
loop and spec) when the corresponding programs are clear
from the context.

Expressiveness and relative completeness Natural invariants
capture the input–output relational semantics of programs
at the logical level. Naturally, they depend on a sufficiently
expressive assertion language, as it should allow for the defi-
nition of new inductive relations. This corresponds essentially
to Cook’s expressiveness criteria in his relative completeness
result for Hoare Logic [12]. In fact, from natural invariants
we can easily recover the strongest liberal predicate as

slp(S, P) = {σ ′ | P(σ ) ∧ specS(σ, σ ′)}
An immediate consequence is that the verification of an arbi-
trary Hoare triple could be conducted logically, as follows

{P}S{Q} iff slp(S, P) ⊇ Q

iff ∀σσ ′, P(σ ) ∧ specS(σ, σ ′)⇒ Q(σ ′).

However, we note that the presence of loops immediately
forces the use of full-fledged inductive reasoning, compro-
mising the aim of relying on automatic provers to conduct
significant parts of the proof. We will thus confine such a
general use of induction to general lemmas that will justify
specific program transformations (refactorings).

Verifying trivial equivalences Let us focus for a moment on
the verification of the trivial equivalence by self-composition
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(any program is equivalent to itself). By construction, spec
enjoys the following properties.

Lemma 1 Let R(σ, σ ′) be a deterministic relation on states,
and C a boolean condition. Then, loopC,R(σ, σ ′) is deter-
ministic whenever ¬[[C]](σ ′), i.e.

loop synchronisation: ∀n1 n2 σ1 σ2 σ ′1 σ ′2,
σ1 ≡ σ2 ∧ loopn1

C,R(σ1, σ
′
1) ∧ ¬[[C]](σ ′1) ∧ loopn2

C,R(σ2, σ
′
2)

∧¬[[C]](σ ′2) �⇒ n1 = n2;
loop determinism: ∀n σ1 σ2 σ ′1 σ ′2,

σ1≡σ2 ∧ loopn
C,R(σ, σ ′1) ∧ loopn

C,R(σ, σ ′2)�⇒σ ′1≡σ ′2.

Proof Both statements are proved by a simple induction (on
max(n1, n2) in the first case, and n in the second). ��
Proposition 1 For every program fragment P and states σ1,

σ2, σ
′
1, σ
′
2,

– spec is a morphism that preserves ≡. More precisely, if
σ1 ≡ σ2,σ ′1 ≡ σ ′2 and specP (σ1, σ

′
1) then specP (σ2, σ

′
2).

– spec is deterministic. More precisely, if specP (σ, σ ′1)
and specP (σ, σ ′2) then σ ′1 ≡ σ ′2.

Proof By induction on the structure of P using Lemma 1.
��

Lemma 1 enables a fully automatic proof of equivalence
of the self-composed program: it can be proved once-and-for-
all and then included in the annotations provided to the ver-
ification platform, allowing all other proof obligations to be
discharged. Indeed, our strategy for reasoning about multiple
executions of the same (or related) program(s) is based on
this observation: it is possible to identify a set of general
lemmas that can be proven once-and-for-all, and that allow
us to reason about self-composition assertions or to justify
interesting refactorings (e.g. loop refactorings).

Self-composition lemmas The determinism property is not
relevant to reason about a non-interference property by self-
composition: it merely states that the two instances of the pro-
gram will produce the same outputs when all of their inputs
are equal. What is needed is a rephrasing of that property
using an equality relation on low-security variables. If the
control structure of the program does not depend on high-
security variables, the determinism property proof can be
carried over to non-interference lemmas. More explicitly, we
recast each loop synchronisation lemma as follows

∀n1 n2 σ1 σ2 σ ′1 σ ′2,
πC (σ1) ≡ πC (σ2) ∧ loopn1

C,R(σ1, σ
′
1)

∧¬[[C]](σ ′1) ∧ loopn2
C,R(σ2, σ

′
2) ∧ ¬[[C]](σ ′2)

�⇒ n1 = n2

where πC projects the fragment of the state that influences
the control state (i.e. the loop conditions)—note that this can
be obtained by a simple (syntactical) dependency analysis
that collects all variables accessed by C and all variables that
may interfere on the values of the latter through the loop
body. Then, a non-interference result for each loop follows
easily from non-interference in its body:

(∀σ1, σ2, σ ′1, σ ′2, σ1 ≡L σ2 ∧ R(σ1, σ ′1) ∧ R(σ2, σ ′2)⇒ σ ′1 ≡L σ ′2)

⇒ ∀σ1, σ2, σ ′1, σ ′2, σ1 ≡L σ2 ∧ loopn1
C,R(σ1, σ ′1) ∧ ¬[[C]](σ ′1)

∧loopn2
C,R(σ2, σ ′2) ∧ ¬[[C]](σ ′2)⇒ σ ′1 ≡L σ ′2

We observe that proving non-interference for loop-free pro-
grams by self-composition can be easily automated. The
precondition for this lemma can be seen as an additional
proof-obligation that must be verified.

Justifying loop refactorings. The main difficulty of justify-
ing code refactorings comes up when the refactorings affect
loops. For the sake of presentation, we restrict our attention
to specifications obtained from single loops with loop-free
bodies. That is, we consider natural invariants of the form
loopC,spec(P)(σ, σ ′) where P contains no loops. This case
is sufficient to cover the program refactorings needed for
establishing correctness of the RC4 openSSL implementa-
tion addressed in Sect. 5.

The simplest loop refactoring that can be addressed using
our technique is loop unrolling, in which we detach instances
of the loop body. This sort of transformation is justified by
the following property that results from direct inversion of
the definition of loop:

∀n σ σ ′,
loopS(n)

C,R (σ, σ ′) �⇒ ∃σ ′′,
loopn

C,R(σ, σ ′′) ∧ [[C]](σ ′′) ∧ R(σ ′′, σ ′).

or, in iterated form:

∀n n′ σ σ ′,
loopn(σ, σ ′1) ∧ n′ < n �⇒ ∃σ ′′,

loopn′(σ, σ ′′) ∧ loopn−n′(σ ′′, σ ′).

Simple transformations like these are in fact better handled
directly at the annotation level, rather than through explicit
lemmas. Let us illustrate this by a small example that mim-
ics an optimising transformation for the real-world example
presented in Sect. 5. Consider the program

i := 0;
while (i<N) {
x := x + y;
i := i + 1
}
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To implement it, the programmer chooses to unfold two
copies of the original loop body in each iteration, yielding

N2 := N/2;
i := 0;
if (i<N2) then {

while (i<N2) {
x := x + y;
x := x + y;
i := i + 1

};
if (2*N2 <> N) then x := x + y
else skip

}
else skip

To verify the equivalence between this implementation and
the original program it suffices to identify the second loop
invariant in the second program as the following,

loop2∗i (\old(x, y, i ∗ 2), (x, y, i ∗ 2))

where \old(x) evaluates x in the pre-state of the loop, and
loop(−) refers to the natural invariant of the loop in the first
program. By providing the invariant, we are making explicit
the correspondence between both loop executions. This kind
of guidance is reasonable to expect from someone intending
to prove correctness of the target implementation.

Alternatively, one could establish that both programs are
equivalent using direct logical arguments, as will now be
explained. This would be the only option for more complex
refactorings.

General loop fusions To justify more significant code
refactorings such as loop fusions (i.e. combining the bodies
of two consecutive loops with the same control structure),
we need to rely on an explicit lemma. Consider the equiv-
alence between two consecutive loops (loops 1 and 2) and
one single fused loop (loop 3). This is reminiscent of another
real-world code refactoring that will occur in our case-study
in Sect. 5.

Let us denote the natural invariants of these loops by
loop1, loop2 and loop3, respectively. Since we assume that
all the loops share the same control structure (loop condition
and associated state), it is possible to prove mixed synchro-
nisation lemmas such as

∀n1 n2 σ1 σ2 σ ′1 σ ′2,
πC (σ1) ≡ πC (σ2) ∧ loopn1

1 (σ1, σ
′
1) ∧ ¬[[C]](σ ′1)

∧ loopn2
2 (σ2, σ

′
2) ∧ ¬[[C]](σ ′2) �⇒ n1 = n2.

The proof is a straightforward generalisation of the single
loop version. Once this result has been established, one can
prove the following main lemma that can be used to justify

the fusion refactoring:

∀n σ1 σ2 σ ′1 σ ′′1 σ ′2,
BodyFusion(body1, body2, body3) ∧ BodySwap

(body1, body2)⇒
σ1 ≡ σ2 ∧ loopn

1(σ1, σ
′′
1 ) ∧ loopn

2(σ
′′
1 , σ ′1)

∧loopn
3(σ2, σ

′
2) �⇒ σ ′1 ≡ σ ′2,

where

BodyFusion(R1, R2, R3) = ∀k, Rk
3 ≡ (Rk

2 ◦ Rk
1)

BodySwap(R1, R2) = ∀kk′,
k′ < k ⇒ (Rk

2 ◦ Rk′
1 ) ≡ (Rk′

1 ◦ Rk
2)

BodyFusion and BodySwap denote simple properties con-
cerning the loop bodies which, as was the case with the self-
composition lemmas, are all non-recursive and can thus be
regarded as additional proof-obligations, easily discharged
by automatic provers.

4 Verification infrastructure

In this work, we have used Frama-c [6], a tool for the static
analysis of C programs that contains a multi-prover verifi-
cation condition generator [17]. We also employed a set of
proof tools that included the Coq proof assistant [32], and the
Simplify [15], Alt-Ergo [11], and Z3 [13] automatic
theorem provers. C programs are annotated using the ANSI-
C Specification Language (ACSL [6]). Both Frama-c and
ACSL are work in progress; we have used the Lithium release
of Frama-c.
Frama-c contains the gwhy graphical front-end that

allows to monitor individual verification conditions. This is
particularly useful when combined with the possibility of
exporting the conditions to various proof tools, which allows
users to first try discharging conditions with one or more
automatic provers, leaving the harder conditions to be studied
with the help of an interactive proof assistant. An additional
feature of Frama-c that we have found useful is the declara-
tion of Lemmas. Like axioms, lemmas can be used to prove
goals, but unlike axioms, which require no proof, lemmas
originate themselves new goals. In the proofs we developed,
it was often the case that once an appropriate lemma was pro-
vided (and proved interactively with Coq), all the verification
conditions could be automatically discharged.

In this section we describe our use of these tools to support
the approach proposed in Sect. 3.

4.1 Specification generation

The first step is to extract a relational specification from the
program code. This process proceeds by recursion on the
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program structure (Sect. 3.3) and produces the specification
as a logical formula.

In practice, it is convenient to produce the intended for-
mula in prenex-form. This is easily accommodated introduc-
ing new fresh state variables in each elementary statement:

specS1;S2;...;Sn
(x1, x2) = ∃w0 . . . wn,

w0 = x1 ∧ w1 = PS1(w0) ∧ . . . ∧ wn

= PSn (wn−1) ∧ x2 = wn

where PS(σ ) is the atomic state transformation associated
with statement S. The extracted specification is then used
according to the proof goal factoring method described in
the previous section:

1. It is encoded in the Coq proof assistant to provide the
context in which the required specific lemmas can sub-
sequently be proved interactively;

2. It is included as ACSL loop invariant annotations in the C
source code, to be fed to the Frama-cVCGen. For each
loop specification the corresponding invariant is included
in the ACSL code. In this step the lemmas proved in step
1 are also provided as ACSL lemmas in the annotated
code, which should allow the remaining proof goals to
be discharged automatically.

In the case study presented in Sect. 5 the specification was
extracted by hand (see Appendix B), but we remark that the
process is certainly amenable to mechanisation. Such a spec-
ification extraction tool will be developed for the domain-
specific crypto language CAO [28] as a deliverable of the
CACE project.

The Coq proofs mentioned in the first step above are
constructed with support from a library that will now be
described. Section 4.3 describes the second step above in
more detail.

4.2 Coq library

A Coq library was developed to support the proof of lemmas
such as those introduced in Sect. 3. The library consists of
several layers:

– Frama-c interface, which includes the logical theory
exported byFrama-c and basic definitions/facts for rea-
soning with the theory inside Coq;

– Basic loop support, for basic treatment of loops (deriva-
tion of determinism and synchronisation lemmas);

– Refactoring lemmas: derivation of self-composition lem-
mas and loop-fusion lemmas;

– Demos and applications, which includes the RC4 exam-
ple discussed in Sect. 5.

We have made extensive use of Coq’s module system [9]
in order to structure the development. As a rule, we embed
each lemma and respective proof in a functor parameterised
by basic facts it depends on. Concretely, we have defined the
following.

– BuildLoopFun: functor that builds the inductive
definitions for loops and derives the corresponding deter-
minism lemmas. It is parameterised by two modules
describing the loop state (the portion that affects the loop
condition and its complement) and the specification of
the loop body. These modules define the intended exten-
sional equivalence on states and assert the determinism
of the loop-body relation.

– BuildSyncFun: functor that establishes the synchroni-
sation of two loops that share the same boolean condition.
It is used, in particular, to derive a self-synchronisation
lemma for each loop.

– BuildSelfComp: generates and proves the self-com-
position lemma. It is parameterised by the self-compo-
sition property and the proof that the loop body satisfies
that property.

– BuildFusionFun: generates and proves the fusion
lemma for two loops. This accepts the description of
three loops (the loops to be fused and the resulting loop)
together with the following properties:

– body-fusion property—asserts that the body of the
third loop behaves as the composition of the bodies
of the first two loops;

– body-shift property—asserts that iteration k of the first
loop commutes with any of the first k − 1 iterations
of the second loop.

Note that all the results needed as inputs for the functors
are non-recursive (they concern the loop body only) and can
be expected to be proved successfully by an automatic prover.

4.3 Frama-c usage

Frama-c takes as input annotated C programs in the form
of ACSL files. In particular, loop invariants are mandatory
for the verification to succeed. This means that in order to
verify a property by composition, it is not enough to properly
construct the composed program and to specify the intended
contract (pre- and post-conditions)—this would certainly
generate unprovable verification conditions. It is also req-
uired to complement the ACSL file with definitions and anno-
tations. The following steps detail the procedure needed to
perform the verification:

1. Including ACSL definitions corresponding to the induc-
tive properties associated to each loop (see Sect. 4.1);
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2. For each loop specification, annotating the program with
a loop-invariant of the form

Invloop(σ ) = loopC,R(σ@Init, σ )

where C and R are the loop’s condition and body, and
σ@Init denotes the snapshot of the loop’s initial state
(Frama-c supports this notion through the use of
explicit state labels in annotations).

3. Augmenting the ACSL file with specific lemmas (proved
in Coq with the support of the library of Sect. 4.2);

4. Generating proof obligations with Frama-c;
5. Using an automatic prover (e.g. Simplify) to discard the

generated obligations.

The choice of the required lemma is based on the specific
property under scrutiny (e.g. a self-composition lemma for a
non-interference property). We remark that this user-depen-
dent choice is an important ingredient for the success of the
verification process. The goal of our method is to allow the
user to concentrate on this critical part of the verification pro-
cess by providing assistance in dealing with the remaining
tasks, which are tedious but luckily prone to automation.

5 Case study: openSSL implementation of RC4

RC4 is a symmetric cipher designed by Ron Rivest at RSA
labs in 1987. It is a proprietary algorithm, and its defini-
tion was never officially released. Source code that allegedly
implements the RC4 cipher was leaked on the Internet in
1994, and this is commonly known asARC4 due to trademark
restrictions. In this work we will use the RC4 denomination
to denote the definition adopted in literature [30]. RC4 is
widely used in commercial products, as it is included as one
of the recommended encryption schemes in standards such
as TLS, WEP and WPA. In particular, an implementation of
RC4 is provided in the pervasively used open-source library
openSSL, which we selected as the case study for this paper.

In cryptographic terms, RC4 is a synchronous stream
cipher, which means that it is structured as two indepen-
dent blocks, as shown in Fig. 1. The security of the RC4
cipher resides in the strength of the key stream generator,
which is initialized with a secret key SK . The key stream
output is a byte sequence kt that approximates a perfectly
random bit string, and is independent of plaintext and cipher-
text (we adopt the most widely used version of RC4, imple-
mented inopenSSL, which operates over byte-sized words).
The encryption operation consists simply of XOR-ing each
plaintext byte xt with a fresh key stream byte kt . Decryp-
tion operates in an identical way. The key stream genera-
tor operates over a state which includes a permutation table
S = (S[l])l=255

l=0 of (unsigned) byte-sized values, and two

Key Stream Generator
SK

x

y

t

tkt

Fig. 1 Block diagram of the RC4 cipher

(unsigned) byte-sized indices i and j . We denote the values
of these variables at time t by St , it and jt . The state and
output of the key stream generator at time t (for t ≥ 1) are
calculated according to the following recurrence, in which
all additions are carried out modulo 256.

it = it−1 + 1

jt = jt−1 + St−1[it ]
St [it ] = St−1[ jt ]
St [ jt ] = St−1[it ]
kt = St [St [it ] + St [ jt ]]

The initial values of the indices i0 and j0 are set to 0, and the
initial value of the permutation table S0 is derived from the
secret key SK . The details of this initialisation are immate-
rial for the purpose of this paper, as they are excluded from
the analysis.

We present in Appendix A the C implementation of RC4
included in theopenSSLopen-source. The function receives
the current state of the RC4 key stream generator (key), and
two arrays whose length is provided in parameter len. The
first array contains the plaintext (indata), and the second
array will be used to return the ciphertext (outdata). The
same function can be used for decryption by providing the
ciphertext in the indata buffer. We note that this imple-
mentation is much less readable than the concise description
provided above, as it has been optimised for speed using vari-
ous tricks, including macro inlining and loop unrolling. In the
rest of this section we briefly present the verification activi-
ties performed on this case-study. Full details of it, including
all the annotated source files used, can be found in [1].

5.1 Verification of safety properties

The Frama-cVCGen allows users to perform a safety anal-
ysis of C code, which may be run independently of functional
verification (see Sect. 2.2). This produces a special class of
verification conditions (called safety conditions) that are not
generated from contracts. Their validity implies that the pro-
gram will execute safely with respect to a restricted set of
common programming errors that may result in incorrect or
unreliable implementations, or even with respect to security
vulnerabilities. These comprise memory safety, including the
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absence of buffer overflows, and also absence of numeric
errors due to overflows in integer calculations.

Note that, even though the proof obligations generated
for the safety analysis do not result from explicit assertions
made by the programmer, it is usually necessary to annotate
the code with preconditions that permit justifying the proof
goals. These preconditions limit the analysis to function exe-
cutions for which the caller has provided valid inputs. For
example, in RC4 one must assume that the indata and
outdata arrays have a valid addressable range between 0
and len-1 for the safety conditions to be valid. The inclu-
sion of simple loop invariants to enable reasoning about the
program state before, during and after each loop execution
is also required. Finally, and given that cryptographic code
tends to make use of some arithmetic operators that are not
commonly used in other application domains, we noted that
Frama-c lacked appropriate support in some cases, namely
for bit-wise operators. To overcome this difficulty we added
some very simple axioms to the annotated RC4 code.

Running the Frama-c VCGen on the annotated source
code RC4 gave rise to 869 verification conditions. All of
these were automatically discharged using a set of automatic
provers that included Simplify, Alt-Ergo, and Z3.

5.2 Error-propagation property

We have used the self-composition technique described in
Sect. 2.3 to verify whether the RC4 implementation in
openSSL indeed satisfies a property which is common to all
synchronous stream ciphers: the absence of error
propagation. Recall that this amounts to verifying that an
erroneous (possibly tampered) input symbol, which will
unavoidably result in a corresponding erroneous output sym-
bol in the same position, will not affect subsequent outputs.
Formally, following the notation introduced in Sect. 2.3 that
associates VH with the set of low-integrity input variables
and VL with the set of high-integrity outputs, we have for
some i ∈ [0, len[:

VH = {indata[i]},
VL = {outdata[ j] | i < j < len}.

We have extracted natural invariants from the code and
annotated the source file according to the procedure presented
in Sect. 4. The verification with Frama-c resulted in the
generation of 17 proof obligations, all of which were auto-
matically discharged bySimplify. This was made possible
by the inclusion of a helper lemma in the ACSL annotations
(proved offline in Coq by instantiating the appropriate func-
tor from the developed library).

Fig. 2 RC4 reference implementation

5.3 Correctness of RC4 Openssl implementation

A direct transcription to a C implementation of the RC4 spec-
ification presented at the beginning of this section could look
something like the code in Fig. 2. Although this implementa-
tion is quite readable, and arguably verifiable by inspection, it
was created without the slightest consideration for efficiency.
This stands in contrast with the openSSL implementation
of RC4 (see Appendix A) where readability (and the inher-
ent assurance of correctness) was sacrificed to achieve better
performance.

This example supports the domain-specific motivation for
the discussion presented in this section: the natural way to
obtain assurance that an implementation of a cryptographic
algorithm is correct is to verify that it is functionally equiva-
lent to another (more readable) implementation of the same
algorithm. We have investigated how this goal can be
achieved for the particular case of RC4, by identifying refac-
toring steps that may require a proof of equivalence in order
to establish the correctness of different implementations.

A simple refactoring to capture key pre-processing The first
example we present of a possible refactoring of the RC4
specification in Fig. 2 is suggested by a common optimi-
sation performed when using stream ciphers. Indeed, one
of the ways to speed up the throughput of stream cipher
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Fig. 3 RC4 implementation with key pre-processing

processing is to compute (a portion of) the key stream before
the plaintext is available (or the ciphertext if one is decrypt-
ing). This means that the encryption operation to be per-
formed on-the-fly is then reduced to simple masking using
an XOR operation, which can be done extremely fast.

For synchronous ciphers such as RC4, the number of bits
in the key stream that can be pre-computed can be arbitrarily
large, as this is totally independent of the encrypted data. The
version of RC4 shown in Fig. 3 moves in this direction by
separating the key stream generation process from the plain-
text masking (or ciphertext unmasking) process. This is an
instance of the loop-fusion refactoring of Sect. 3.3. The infra-
structure described in Sect. 4 was used to prove equivalence
between the programs in Figs. 2 and 3. Appendix B shows an
example of how the deductive verification tool is interfaced
in this case.

A sequence of refactorings leading to the openssl imple-
mentation We discuss a more elaborate sequence of
refactoring steps that permit reaching the openSSL imple-
mentation of RC4 in Appendix A, departing from the ref-
erence implementation in Fig. 2. The first refactoring step,
leading to the RC4 function in Fig. 4, top, is not very interest-
ing from a verification point of view. It consists of a number
of simple transformations: (1) removing the auxiliary func-
tion by inlining the corresponding code in the main function
body; (2) rearranging local variables to match those in the

Fig. 4 RC4 refactoring steps 1 (top) and 2 (bottom)

openSSL implementation; (3) applying the transitivity prop-
erty of assignments in C to combine two statements; and (4)
replacing modular operations by equivalent bit-wise opera-
tions. A macro is also introduced to improve readability.
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The next refactoring steps, leading to the version shown in
Fig. 4, bottom, are more interesting examples of transforma-
tions involving loop refactorings. Concretely, the main loop
is first separated into two loops with the same body, which
are sequentially composed to realise the original number of
iterations. The first loop is then modified by explicitly com-
posing the original body with itself eight times, and altering
the increments accordingly.

The final refactoring steps, leading to the openssl ver-
sion of RC4 in Appendix A, are introduced to achieve addi-
tional speed-ups. Firstly, pointer arithmetic is used to reduce
the range of indexing operations, and loop counting is
inverted. Then, different control flow constructions are
applied: all while loops are reformulated using the break
statement to remove the final backward jump, and if con-
structions are introduced to detect termination cases. Equiva-
lence checking for these low-level refactorings was
performed directly in Frama-c.

6 Related work

A good survey of language-based information flow security
can be found in [29]. A good general view of self-compo-
sition can be found in [10]. Information flow policies were
first introduced by Denning et al. [14] and tend to be for-
malised as noninterference properties. Information flow type
systems, have been used to enforce noninterference in differ-
ent contexts [25,26,34–36]. The main challenge in design-
ing these systems is that they are often too conservative in
practice, so that secure programs may be rejected. Leino and
Joshi [23] were the first to propose a semantic approach to
checking secure information flow, with several desirable fea-
tures: a more precise characterisation of security; it applies
to all programming constructs whose semantics are well-
defined; and it can be used to reason about indirect informa-
tion leakage through variations in program behaviour (e.g.,
whether or not the program terminates). An attempt to cap-
ture this property in program logics using the Java Modelling
Language (JML) [22] was presented by Warnier et al. [37],
who proposed an algorithm, based on the strongest post-
condition calculus, that generates an annotated source file
with specification patterns for confidentiality in JML. Dufay
et al. [16] have proposed an extension to JML to enforce
non-interference through self-composition. This extended
annotation language allows for a simple definition of non-
interference for Java programs. However, the generated proof
obligations are complex, which limits the general applicabil-
ity of the approach.

Terauchi and Aiken [31] identified problems in the self-
composition approach, arguing that automatic tools (soft-
ware model checkers like SLAM [2] and BLAST [18]) are
not powerful enough to verify this property over programs

of realistic size. To compensate for this, the authors pro-
pose a program transformation technique for an extended
version of the self-composition approach. Rather than repli-
cating the original code, the renamed version is interleaved
and partially merged with it. Naumann [27] extended Ter-
auchi and Aiken’s work to encompass heap objects, pre-
sented a systematic method to validate the transformations
proposed in [31], and reported on the experience of using
these techniques with the Spec# [4] and ESC/JAVA2 [20]
tools.

Natural Invariants provide an explicit rendition of pro-
gram semantics. In [24] a similar encoding of program
semantics in logical form can be found, which advocates
the use of second-order logic as appropriate to reason about
programs, since it allows to capture the inductive nature of
the input-output relations for iterative programs. To some
extent, our use of Coq’s higher-order logic may be seen as
an endorsement of that view. However, we have made an
effort to combine the strengths of higher-order logic reason-
ing with facilities provided by automatic first-order prov-
ers.

Relational Hoare Logic [7] has been used to prove the
soundness of program analyses and optimising transforma-
tions. Its scope is thus similar to our proofs-by-composition
setting. The main difference is the fact that we do not need
to move away from traditional Hoare Logic, which allows us
to rely on standard available verification tools.

7 Conclusion

We have used an off-the-shelf verification platform to check
several classes of properties of a real-world example of a
cryptographic software implementation: the widely used C
implementation of the RC4 stream cipher available in the
openSSL library. Our results focus on three security-rele-
vant properties of this implementation, with increasing
degrees of verification complexity: (1) safety properties such
as the absence of numeric errors and memory safety; (2)
absence of error propagation formalised as non-interference;
and (3) functional equivalence with respect to a reference
implementation.

In more concrete terms, we have used Frama-c to prove
that the RC4 implementation does not cause null pointer
de-referencing exceptions, and always performs array acces-
ses with valid indices. In other words, the implementation
is secure against buffer overflow attacks. Additionally, we
demonstrated that the limited ranges of numeric variables
used in the RC4 implementation are guaranteed not to intro-
duce calculation errors for particular input values.

An important property of stream ciphers such as RC4
is their behaviour when a bit in the ciphertext is flipped
over a communication channel. The behaviour of RC4 is
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common to other synchronous ciphers: bit errors are not prop-
agated in any way, i.e. if a ciphertext bit is flipped during
transmission, then only the corresponding plaintext bit is
affected. We have formalised this property as a novel appli-
cation of the non-interference concept, widely used in the
formalisation and verification of secure information flow
properties, and subsequently proved that the RC4 implemen-
tation indeed enjoys this property.

Finally, we have also shown how the method introduced
to prove non-interference can be applied to the more gen-
eral case of equivalence proofs, to prove the correctness of
real implementations with respect to reference implemen-
tations. Cryptography is a prime candidate for equivalence
proofs, since specifications are usually given as reference
implementations rather then using some high level model or
language. In concrete terms we have proved the equivalence
between a reference implementation of RC4 and the realistic
implementation included in openSSL.

Program equivalences are difficult verification challenges
by nature, and automatic proof is of little help. Resorting to
an interactive proof tool to conduct inductive proofs involv-
ing loops is inevitable. Our approach can be summed up as
follows

1. Program equivalences in general can be expressed as
Hoare triples using a composition technique that simu-
lates the execution of two programs by a single program.
Such triples can be written in an interface specification
language like ACSL and fed to a standard VCGen like
Frama-c.

2. Natural invariants are good candidates for establishing
the connection between the interface specification lan-
guage and the proof assistant: the ACSL specification
language admits inductively defined predicates, thus the
natural invariants annotated into the specification files
(fed to the VCGen) can make use of them, and lemmas
can also be included in these files, to be (i) used by auto-
matic provers and (ii) exported to Coq for interactive
proof. These predicates/invariants (and some standard
lemmas) can be generated mechanically.
Note that since the typical first-order prover does not
support inductive predicates, Frama-c will replace them
by uninterpreted predicates in the verification conditions
generated for these provers (with axioms corresponding
to the interactively proved properties). This allows to
capture the program semantics through purely first-order
assertions.

3. Concluding the verification process is then a matter of
establishing and proving interactively a small number
of adequate lemmas that concentrate the more creative
parts of the proofs required in the verification process.
To assist users in this more demanding task, we have
developed a dedicated Coq library. Once a lemma has

been proved in Coq and annotated into the composed
specification of the refactoring step, all the proof obliga-
tions generated by Frama-c are discharged automati-
cally.

In addition to showing that deductive verification methods
are increasingly more amenable to practical use with reason-
able degrees of automation, our work answers some open
questions raised by previous work, which seemed to indicate
that proofs by (self-)composition were not directly applicable
in real-world situations. Our results are promising in that we
have been able to achieve our goal using only off-the-shelf
verification tools.

What is more, we believe that our technique has a high
potential for mechanisation. For instance, it is likely that the
procedure referred in Sect. 4.3 may itself be partially auto-
mated. Speculating a bit, it is conceivable to extend ACSL
with constructs that mechanise some of the steps:

\\@ lemma self_comp_lemma :
\SelfCompLemma(loop1, ...);

...
loop1:
\\@ loop invariant \natural_invariant
(loop1);

...

An advantage of such an integration is that these annotations
might trigger the generation of auxiliary proof obligations,
such as those required by the functor that generates the self-
composition lemma.

Acknowledgments This work was partially supported by the Euro-
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Appendix A: openSSL implementation of RC4

typedef struct rc4_key_st

{

unsigned char x,y;

unsigned char data[256];

} RC4_KEY;

void RC4(RC4_KEY *key,const unsigned long len,

unsigned char *indata,

unsigned char *outdata)

{

register unsigned char *d;

register unsigned char x,y,tx,ty;

int i;

x=key->x;

y=key->y;

d=key->data;

#define LOOP(in,out) \

x=((x+1)&0xff); \

tx=d[x]; \
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y=((tx+y)&0xff); \

d[x]=ty=d[y]; \

d[y]=tx; \

(out) = d[((tx+ty)&0xff)]ˆ (in);

#define RC4_LOOP(a,b,i) LOOP(a[i],b[i])

i=(int)(len>>3L);

if (i)

{

while(1)

{

RC4_LOOP(indata,outdata,0);

RC4_LOOP(indata,outdata,1);

RC4_LOOP(indata,outdata,2);

RC4_LOOP(indata,outdata,3);

RC4_LOOP(indata,outdata,4);

RC4_LOOP(indata,outdata,5);

RC4_LOOP(indata,outdata,6);

RC4_LOOP(indata,outdata,7);

indata+=8;

outdata+=8;

if (--i == 0) break;

}

}

i=(int)(len&0x07);

if(i)

{

while(1)

{

RC4_LOOP(indata,outdata,0); if (--i == 0) break;

RC4_LOOP(indata,outdata,1); if (--i == 0) break;

RC4_LOOP(indata,outdata,2); if (--i == 0) break;

RC4_LOOP(indata,outdata,3); if (--i == 0) break;

RC4_LOOP(indata,outdata,4); if (--i == 0) break;

RC4_LOOP(indata,outdata,5); if (--i == 0) break;

RC4_LOOP(indata,outdata,6); if (--i == 0) break;

}

}

key->x=x;

key->y=y;

}

Appendix B: ACSL loop specification

/*@ predicate eqAk{L1,L2}(integer k,
@ unsigned char u1[],
@ unsigned char u2[]) =
@ \forall integer l;
@ l!=k ==> \at(u1[l],L1)==\at(u2[l],L2);
@*/

/*@ predicate eqA{L1,L2}(unsigned char u1[],
@ unsigned char u2[]) =
@ \forall integer l; \at(u1[l],L1)==\at(u2[l],L2);
@*/

/*@ predicate RC4NextKeySymbol{L1,L2}(unsigned char *x,
@ unsigned char *y,
@ unsigned char d[],
@ unsigned char k) =
@ \exists unsigned char tx, unsigned char ty;
@ \at(*x,L2) == ((\at(*x,L1) + 1) & 0xff) ==>
@ tx == \at(d[\at(*x,L2)],L1) ==>
@ \at(*y,L2) == ((tx+\at(*y,L1)) & 0xff) ==>
@ ty == \at(d[\at(*y,L2)],L1) ==>
@ \at(d[\at(*x,L2)],L2) == ty ==>
@ \at(d[\at(*y,L2)],L2) == tx ==>
@ k == (\at(d[(tx+ty)&0xff],L1);
@*/

/*
* spec1{L,Here}((int)0,i,key,&(x),&(y),d);
* Invariant for the first loop in Fig.3.
*/

/*@
@ inductive spec1{L1,L2}(integer i1,integer i2,
@ unsigned char key[],
@ unsigned char *x,
@ unsigned char *y,
@ unsigned char d[]) {
@ case spec1_base{L} :
@ \forall integer i1,integer i2,
@ unsigned char key[],
@ unsigned char *x,
@ unsigned char *y,
@ unsigned char d[];
@ i1 == i2 ==> spec1{L,L}(i1,i2,key,x,y,d);
@ case spec1_step{L1,L2,L3} :
@ \forall integer i1,integer i2,integer i3,
@ unsigned char key[],
@ unsigned char *x,
@ unsigned char *y,
@ unsigned char d[],
@ unsigned char k;
@ spec1{L1,L2}(i1,i2,key,x,y,d) ==>
@ eqAk{L2,L3}(i2,key,key) ==>
@ RCNextSymbolKey{L2,L3}(x,y,d,k) ==>
@ \at(key[i2],L3) == k ==>
@ i3 == i2 +1 ==>
@ spec1{L1,L3}(i1,i3,key,x,y,d);
@ }
@*/
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