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Abstract

Formal verification of cryptographic software implementations poses significant chal-
lenges for off-the-shelf tools. This is due to the domain-specific characteristics of the
code, involving aggressive low-level optimizations and non-functional security require-
ments, namely the critical aspect of countermeasures against side-channel attacks. In
this paper we extend previous results supporting the practicality of self-composition
proofs of non-interference and generalisations thereof. We tackle the formal verifi-
cation of high-level security policies adopted in the implementation of the recently
proposed NaCl cryptographic library. We propose a formal verification framework to
address these policies, extending the range of attacks that could previously be han-
dled using self-composition. We demonstrate our techniques by addressing functional
correctness and compliance with security policies for a practical use case.

Keywords: Cryptographic algorithms, program verification, program equivalence,
self-composition, side-channel countermeasures.

1. Introduction

Software implementations of cryptographic algorithms and protocols are at the core
of security functionality in many IT products. However, the development of this class
of software products is understudied as a domain-specific niche in software engineer-
ing. The development of cryptographic software is clearly distinct from other areas
of software engineering due to a combination of factors. Cryptographic software en-
gineering is interdisciplinary, drawing on skills from mathematics, computer science
and electrical engineering; it requires developing aggressively optimised code, as light
as possible in terms of computational and communications load, to compensate for
the typically low perceived benefits; finally, it requires writing and optimising code
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for heterogeneous architectures, ranging from embedded processors with very limited
computational power, memory and autonomy, to high-end servers with low-latency.

Deductive program verification is the area of Formal Methods that attempts to
check properties of software statically with the help of an axiomatic semantics of the
underlying programming language (such as Hoare logic [17]) and a proof tool. An
alternative static approach is software model checking [18], which is path-sensitive and
focused on full automation, and has been applied to try to solve problems similar to the
ones that concern us here.

Deductive program verification has greatly benefited from recent evolutions, in-
cluding theoretical developments in the treatment of linked data structures; the adop-
tion of standard interface specification languages for writing contracts annotated into
the programs; and significant developments in automated proof technology, in particu-
lar SMT solvers. Consequently, verification tools for languages like C [8], C# [6], or
Java [19] have in recent years become more and more popular.

This paper follows a series of publications where the authors have explored the
application of deductive program verification techniques to prove diverse properties of
cryptographic software [2, 3]. Summarising these background results:

• We proposed a composition-based methodology for proving the functional equiv-
alence of programs, inspired by the self-composition technique [7] for proving
information flow properties of programs. Our approach targets the general prob-
lem of proving the correctness of concrete implementations with respect to spec-
ifications given as reference implementations.

• We employed natural invariants as a device to establish a correspondence be-
tween axiomatic properties of programs and their operational semantics. This
takes us beyond the usual scope of deductive verification, enabling automatic
proofs relying on a battery of lemmas, interactively proved once-and-for-all.

• We showed how natural invariants are useful for reasoning about pairs of pro-
grams with similar control structures, which in practice is a useful technique to
enable proofs about program equivalence. It also allows for the automation of
the self-composition technique, previosuly identified as a major problem [29].

• We employed an off-the-shelf verification tool to reason about functional cor-
rectness, and safety and security properties of a C implementation of the RC4
encryption scheme, included in the well-known open-source library openSSL.

In this paper we revise and extend this background to demonstrate the power of our
methodology in formally addressing a pressing issue in the implementation of crypto-
graphic software: minimising exposure to side-channel attacks.

Contributions. We focus our attention on the recently proposed NaCl [10] (read salt)
cryptographic library. We analyse a set of high-level security policies adopted by the
developers with the goal of minimizing exposure to side-channel attacks in the C im-
plementation of this library . We propose to formally verify compliance with these
security policies using the methodology outlined above. To this end, we propose a
formal framework that can be summarised as follows:
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• We define the operational semantics of a While language with applicative arrays,
which explicitly captures the flavour of side-channel leakage addressed by the
security policies. Concretely, the semantics constructs traces of the memory
addresses read or written to by a program, including program and data memory.

• We propose a definition of secure program in the sense intended by the NaCl
developers. This is essentially a termination-sensitive non-interference require-
ment stating that the address traces should be independent of secret data. Tech-
nically, our security notion can be seen as an extension of the Program Counter
Model of [22, 28], where we add the capability to handle a wider range of attacks,
including cache timing attacks [26] and branch prediction analysis attacks [1].

• We propose a generic technique for formally verifying that a program meets the
previous security definition using self-composition and deductive verification,
in two steps: 1) one first transforms the original program into one that explic-
itly collects (minimal) additional information about the execution of the original
program in its output state; and 2) one then formally verifies (using the method-
ology outlined above) that this extra information is independent of secret data.
Regarding this global structure, our approach is similar to that proposed in [28].

• We prove that a proof of safety (including termination) of a program and a proof
of non-interference for the corresponding transformed program together imply
the original program is indeed secure with respect to the intended security policy.

We then discuss how our proof technique can be deployed using real-world deductive
verification tools, namely the Frama-c framework. We apply this technique to a prac-
tical example extracted form the NaCl cryptographic library. We highlight the practical
relevance of our results by formally verifying two properties that are representative of
recurring problems in cryptographic software:

1. The NaCl implementation complies with the claimed security policies; and
2. the NaCl implementation (which is blatantly unreadable due to the side-channel

countermeasures and optimizations) is functionally correct with respect to its
high-level specification.

In both exercises we use self-composition and natural invariants, and answer questions
raised in [28, 29] regarding the feasibility of addressing these problems using off-the-
shelf verification tools. Concretely, we show that it is possible to carry out verification
directly over the composed program, eliminating the need to first transform it into a
more convenient form that goes around the limitations of the verification framework.

Organisation. In the next Section we briefly discuss and provide motivation for the
properties of cryptographic software covered in this paper. In Section 3 we revise
the methodology for proofs by composition of [2, 3]. Then Section 4 introduces our
framework for the formal verification of side-channel countermeasures, and Section 5
presents the details of a case study extracted from the NaCl cryptographic libary. Fi-
nally, in Section 6 we discuss related work, and conclude the paper in Section 7.
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2. On the Correctness and Security of Cryptographic Software

Correctness. The standard scenario in deductive verification is that specifications are
written as contracts on the function and procedure interfaces. This may involve prop-
erties of the output values (typically written in first-order logic), as well as relations
between input and output values. For cryptographic software, however, specifications
are typically given as operational descriptions (i.e. as algorithms). This is the case, not
only in symmetric-key techniques such as ciphers, message authentication codes and
cryptographic hash functions; but also in the implementation of algebraic calculations
supporting public-key techniques such as digital signature and encryption schemes.

When producing an implementation, the programmer will follow the operational
description but is free to introduce optimisations or internal reorganisations, say for
improving efficiency or maintainability, or satisfying non-functional security proper-
ties (as described below), as long as the input-output behaviour is preserved. To some
extent, the specification acts as a reference implementation: verifying functional cor-
rectness is reduced to proving program equivalence. This is a difficult (and undecid-
able) problem, unless we can rely on the fact that implementation and specification
share most of their internal structure, which is the case here: the sort of equivalence
proof required for cryptographic software correctness corresponds to what is usually
known in software engineering as code refactoring.

Safety. A widespread verification approach that aims at increasing the level of assur-
ance that can be placed on software implementations is to confine the analysis to a
restricted class of properties that rule out the occurrence of some recognisable “bad
things”. This less ambitious form of verification is called a safety analysis, and cov-
ers common vulnerabilities arising from coding errors, such as de-referencing invalid
pointers, accessing containers with invalid indexes, or calculation errors due to over-
flows. The advantage of focusing on such simple properties, which are sufficient for
a wide class of application scenarios, is that a significant degree of automation can be
achieved, minimising user intervention and the impact on development time.

In formal verification tools safety verification is often seen as a prerequisite to more
advanced verification tasks, ensuring that the tool will produce valid results for the
program under analysis. This is the case of Frama-c, adopted in this work.

Security. The notion of a secure implementation of a cryptographic algorithm is an
interesting one. At first sight it would appear that functional correctness (in terms
of safety and input/output behavior) should imply than an implementation is secure.
However, it is well known that physical attacks targeting the computational platform
where the algorithm is executing, e.g. side-channel attacks, can succeed in breaking an
apparently correct implementation. This means that non-functional security require-
ments must typically be associated to cryptographic implementations, depending on
the specific computational environment in which they are expected to execute.

In this paper we consider a particular instance of such requirements that is adopted
in the implementation of the NaCl cryptographic library [10]. Figure 1 contains a
quotation from the NaCl documentation, where two high-level security policies are
claimed for the library implementation in C. The strategy we adopt to formally verify
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No data-dependent branches
The CPU’s instruction pointer, branch predictor, etc. are not designed to keep information secret. For per-
formance reasons this situation is unlikely to change. The literature has many examples of successful timing
attacks that extracted secret keys from these parts of the CPU. NaCl systematically avoids all data flow from
secret information to the instruction pointer and the branch predictor. There are no conditional branches
with conditions based on secret information; in particular, all loop counts are predictable in advance. This
protection appears to be compatible with extremely high speed, so there is no reason to consider weaker
protections.

No data-dependent array indices
The CPU’s cache, TLB, etc. are not designed to keep addresses secret. For performance reasons this
situation is unlikely to change. The literature has several examples of successful cache-timing attacks that
used secret information leaked through addresses. NaCl systematically avoids all data flow from secret
information to the addresses used in load instructions and store instructions. There are no array lookups
with indices based on secret information; the pattern of memory access is predictable in advance.
The conventional wisdom for many years was that achieving acceptable software speed for AES required
variable-index array lookups, exposing the AES key to side-channel attacks, specifically cache-timing at-
tacks. However, the paper “Faster and timing-attack resistant AES-GCM” by Emilia Käsper and Peter
Schwabe at CHES 2009 introduced a new implementation that set record-setting speeds for AES on the
popular Core 2 CPU despite being immune to cache-timing attacks. NaCl reuses these results.

Figure 1: : NaCl Security Policies

compliance to these policies is to formalise them as information flow security restric-
tions. Information flow security refers to a class of security policies that constrain
the ways in which information can be manipulated during program execution. These
properties can be formulated in terms of non-interference between high-confidentiality
input variables and low-confidentiality output variables. A dual formulation permits
capturing security policies that constrain information flow from non-trustworthy (or
low-integrity) inputs, to trusted (or high-integrity) outputs. In Section 6 we provide an
overview of developments in this area related to the work in this paper.

Information flow properties are usually verified using a special extended type sys-
tem [32, 23, 5]. Type-based analyses, which track assignments to low security vari-
ables, can be too restrictive [7]. An alternative, less conservative approach, based on
the language semantics, is to define a program as secure if different terminating execu-
tions, starting from states that differ only in the values of high-security variables, result
in final states that are equivalent regarding the values of low-security variables.

Formally, let VH and VL denote the sets of high-security and low-security variables
of program C, and V ′L = Vars(C) \VH . We write (C,σ) ⇓ τ to denote the fact that when
executed in state σ , C stops in state τ (states are functions mapping variables to values;
⇓ is the evaluation relation in a big-step semantics of the underlying language). We
consider termination insensitive and termination sensitive definitions of security. The
former says nothing about information leaked when the initial state causes the program
to not terminate. The latter, stronger notion, requires (for deterministic programs) that
low-equivalent initial states have consistent termination behavior (either all terminate
or none terminate). C is said to be secure if for arbitrary states σ , τ ,

(termination-insensitive) σ
V ′L= τ ∧ (C,σ) ⇓ σ ′ ∧ (C,τ) ⇓ τ ′ =⇒ σ ′

VL= τ ′

(termination-sensitive) σ
V ′L= τ ∧ (C,σ) ⇓ σ ′ =⇒ (C,τ) ⇓ τ ′ ∧ σ ′

VL= τ ′

where σ
X
= τ denotes that σ(x)= τ(x) for all x∈X , i.e. σ and τ are X-indistinguishable.
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3. Proofs by Composition

In this section we first review self-composition, a technique for proving non-inter-
ference based on deductive verification, and then a generalisation that can be used to
prove program equivalences, motivated by the notion of “correctness with respect to
a reference implementation”, as explained in Section 2. The difficulties of applying
self-composition in practice are well-known, and apply also to proofs of equivalence.
To overcome these difficulties, we will introduce in Section 3.2 the notion of natural
invariant, and a technique that establishes a correspondence between program annota-
tions and an underlying formalisation of the operational semantics of the programs.

3.1. Self-Composition and Equivalence by Composition

The operational definition of non-interference involves two executions of the pro-
gram. The self-composition technique [7] allows this to be reformulated considering
a single execution of a transformed program. Given a (deterministic) program C, let
Cs be the program that is equal to C except that every variable x is renamed to a fresh
variable xs. Termination insensitive non-interference can be stated considering a single
execution of the self-composed program C;Cs as follows:

If σ(x) = σ(xs) for all x ∈V ′L and (C;Cs,σ) ⇓ σ ′, then σ ′(x) = σ ′(xs) for all x ∈VL.

In other words, C is information-flow secure if starting from a state in which pairs of
variables x, xs may have different values only if x is high-security, any terminating ex-
ecution of the self-composed program results in a final state in which pairs of variables
x, xs, with x low-security, have necessarily the same value. This allows for a shift to an
axiomatic semantics-based definition, as the following partial correctness Hoare triple:{∧

x∈V ′L
x = xs

}
C;Cs

{∧
x∈VL

x = xs
}

Note that strengthening this to a total correctness specification yields a notion of non-
interference that is stronger than termination sensitive non-interference.

This method can be extended to handle program equivalence [3]. Let V be the
union of the sets of variables occurring in two programs C1 and C2. We want to capture
the idea that if the programs are executed from indistinguishable states with respect to
V , they terminate in states that are also indistinguishable. Thus every execution of the
composed program C1;Cs

2, starting from a state in which the values of corresponding
variables are equal, must terminate in a state with the same property. This can be
expressed as the following Hoare logic total correctness specification:

[
∧

x∈V x = xs]C1;Cs
2 [

∧
x∈V x = xs]

Note that in fact any arbitrary relation can be considered instead of equivalence:

[R1(σ ,σ s)]C1;Cs
2 [R2(σ ,σ s)]

where σ and σ s denote state partitions associated with C1 and Cs
2 respectively.
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3.2. Natural Invariants

In both scenarios identified above, an obvious difficulty in carrying out the verifica-
tion comes from the absence of appropriate loop invariants. In what follows we revise
our general approach to this problem [2, 3]. In short, it consists of the following steps:

1. Extracting a specification of a program from its relational semantics. The critical
point of the verification process is the automatic construction of appropriate loop
invariants that constitute the natural specification of the program. Each invariant
is turned into a predicate, used to annotate the respective loop in the source code.

2. Identifying and interactively proving additional facts involving the named invari-
ant predicates, typically corresponding to basic refactoring steps that are recur-
rently used in the development of cryptographic software. These are written as
lemmas that capture the non-trivial parts of the proofs required for verification.

3. Augmenting the source file with the previous lemmas, which are justified once-
and-for-all by interactive proofs. The availability of these lemmas will allow
automatic provers to carry out the verification process, validating the verification
conditions generated by a potentially large number of (self-)composition proofs.

When both programs share much of the underlying control structure, the user may
easily guide the interactive verification process by providing hints on the relevant code
refactorings. The remaining parts can be checked with a high degree of automation.

Relational Specification. For concreteness, we consider a simple While language with
integer expressions and arrays. Its syntax is given by:

Operators op ::= + | - | * | = | != | <
Expressions e ::= n | x | e op e | a[e]

Commands C ::= skip | x:=e | a[e]:=e | if e then C1 else C2 | while (e) C |C1; C2

Instead of a distinct syntactic class for boolean expressions, we adopt the C convention
of interpreting zero/non-zero integer expressions as truth values. Literals are ranged
by n, and integer and array variables are ranged by x and a respectively. Instead of
variable declarations, we consider a fixed State type that keeps track of all the variable
values during execution. Integer variables are interpreted as (unbound) integers, and
arrays as functions from integers to integers (no size/range checking). Array operations
acc : (Z→ Z)×Z→ Z and upd : (Z→ Z)×Z×Z→ (Z→ Z) are axiomatised as usual:

acc(upd(a,k,x),k) = x acc(upd(a,k′,x),k) = acc(a,k) if k 6= k′.

The State type is defined as the cartesian product of the corresponding interpretation
domains (each variable is associated to a particular position). We also consider an
equivalence relation ≡ that captures equality on states. Integer expressions are inter-
preted in a particular state following the standard mathematical meaning by a function
[[e]] : State→ Z. The interpretation of division is totalised (division by 0 returns 0), and
boolean operations return 0 or 1 (for false and true). We take the big-step semantics of
a program as its natural specification. For states σ and σ ′ we define:
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specskip(σ ,σ ′) = σ ≡ σ
′

specC1;C2
(σ ,σ ′) = ∃σ ′′, specC1

(σ ,σ ′′)∧ specC2
(σ ′′,σ ′)

specx:=e(σ ,σ ′) = σ
′ ≡ σ{x← [[e]](σ)}

speca[e1]:=e2
(σ ,σ ′) = σ

′ ≡ σ{a← upd(a, [[e1]](σ), [[e2]](σ))}
specif e then C1 else C2

(σ ,σ ′) = (([[e]]σ 6= 0)∧ specC1
(σ ,σ ′))∨ (([[e]]σ = 0)∧ specC2

(σ ,σ ′))

specwhile (e) C(σ ,σ ′) = ∃n, loopn
e,specC(σ ,σ ′)(σ ,σ ′)∧ ([[e]](σ ′) = 0)

where the relation loopn
B,R(σ ,σ ′) denotes the loop specification for the body R under

condition B and is inductively defined by

loop0
B,R(σ ,σ ′)⇐= σ ≡ σ

′

loop
S(n)
B,R (σ ,σ ′)⇐= ∃σ ′′, loopn

B,R(σ ,σ ′′)∧ ([[B]](σ ′′) 6= 0)∧R(σ ′′,σ ′)

This relation provides a natural choice for a loop’s invariant; we thus call it the natural
invariant for the loop. The definition makes explicit the iteration rank (iteration count)
in superscript – we will see that this will often be convenient in the proofs (when
omitted, it should be considered as existentially quantified). Subscripts will be omitted
(both in loop and spec) when the corresponding programs are clear from the context.
By construction, spec enjoys the following properties.

Lemma 1 ([3]). Let R(σ ,σ ′) be a deterministic relation on states, and B a boolean
condition. Then, loopB,R(σ ,σ ′) is deterministic whenever [[B]](σ ′) 6= 0, i.e.

loop synchronisation: ∀n1 n2 σ1 σ2 σ
′
1 σ
′
2,

σ1 ≡ σ2∧ loopn1
B,R(σ1,σ

′
1)∧ ([[B]](σ ′1) = 0)∧ loopn2

B,R(σ2,σ
′
2)∧ ([[B]](σ ′2) = 0) =⇒ n1 = n2;

loop determinism: ∀n σ1 σ2 σ
′
1 σ
′
2,

σ1 ≡ σ2∧ loopn
B,R(σ ,σ ′1)∧ loopn

B,R(σ ,σ ′2) =⇒ σ
′
1 ≡ σ

′
2.

Proposition 2 ([3]). spec is a morphism that preserves ≡ and is deterministic. More
precisely, for every program fragment C and states σ1, σ2,σ

′
1,σ

′
2,

• If σ1 ≡ σ2, σ ′1 ≡ σ ′2 and specC(σ1,σ
′
1) then specC(σ2,σ

′
2).

• If specC(σ ,σ ′1) and specC(σ ,σ ′2) then σ ′1 ≡ σ ′2.

Our strategy for reasoning about multiple executions (for self-composition or to
justify interesting refactorings) is based on identifying a set of general lemmas that
can be proven once-and-for-all, and then included in the annotations provided to the
verification platform, allowing other proof obligations to be automatically discharged.

Self-composition Lemmas. The determinism property is not relevant to reason about a
non-interference property by self-composition: it merely states that the two instances
of the program will produce the same outputs when all of their inputs are equal. What
is needed is a rephrasing of that property using an equality relation on low-security
variables. If the control structure of the program does not depend on high-security
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variables, the determinism property proof can be carried over to non-interference lem-
mas. More explicitly, we recast each loop synchronisation lemma as follows

∀n1 n2 σ1 σ2 σ
′
1 σ
′
2, π

B(σ1)≡ π
B(σ2)∧ loopn1

B,R(σ1,σ
′
1)

∧ ([[B]](σ ′1) = 0)∧ loopn2
B,R(σ2,σ

′
2)∧ ([[B]](σ ′2) = 0) =⇒ n1 = n2

where πB projects the fragment of the state that influences the control structure (i.e. the
loop conditions) – note that this can be obtained by a simple dependency analysis. A
non-interference result for each loop follows easily from non-interference in its body:

(∀σ1,σ2,σ
′
1,σ
′
2, σ1 ≡L σ2∧R(σ1,σ

′
1)∧R(σ2,σ

′
2)⇒ σ

′
1 ≡L σ

′
2)

⇒ ∀σ1,σ2,σ
′
1,σ
′
2, σ1 ≡L σ2∧ loopn1

B,R(σ1,σ
′
1)∧ ([[B]](σ ′1) = 0)

∧ loopn2
B,R(σ2,σ

′
2)∧ ([[B]](σ ′2) = 0)⇒ σ

′
1 ≡L σ

′
2

Observe that proving non-interference for loop-free programs by self-composition can
be easily automated. The precondition for this lemma can be seen as an additional
proof-obligation that must be verified.

Justifying Loop Refactorings. Justifying code refactorings is difficult only when the
refactorings affect loops. For the sake of presentation, we restrict our attention to
specifications obtained from single loops with loop-free bodies. That is, we consider
natural invariants of the form loopB,spec(C)(σ ,σ ′) where C contains no loops. This is
sufficient to cover the refactorings needed for the case-study of Section 5.

The simplest loop refactoring that can be addressed using our technique is loop
unrolling, which detaches instances of the loop body. This transformation is justified
by the following property that results from direct inversion of the definition of loop:

∀n n′ σ σ
′, loopn(σ ,σ ′1)∧n′ < n =⇒ ∃σ ′′, loopn′(σ ,σ ′′)∧ loopn−n′(σ ′′,σ ′)

Simple transformations like these are in fact better handled directly at the annotation
level, rather than through explicit lemmas. A single natural invariant can be defined
for the original loop, and then used in the annotations of the unrolled loop, in order to
establish the necessary relation between the execution of the two programs.

Loop body refactorings. To justify more significant code refactorings such as loop
body changes that preserve the functionality of the program, we need to rely on an
explicit lemma. Consider the equivalence between two programs that have the same
control structure, each with its own loop but where the loop-bodies follow different
strategies to achieve the same goal. Let us denote the natural invariants of these loops
by loop1 and loop2. Since the loops share the same control structure (loop condition
and the state on which it depends), one can prove mixed synchronisation lemmas like

∀n1 n2 σ1 σ2 σ
′
1 σ
′
2,

π
B(σ1)≡ π

B(σ2)∧ loopn1
1 (σ1,σ

′
1)∧¬[[C]](σ ′1)∧ loopn2

2 (σ2,σ
′
2)∧¬[[C]](σ ′2) =⇒ n1 = n2

The proof is a straightforward generalisation of the single loop version. Once this has
been established, one can prove the following main lemma and use it to justify the loop
body refactoring (relation Ψ relates states from the original loop and its refactoring):
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∀n σ1 σ2 σ
′
1 σ
′
2,

BodyRefactorΨ(body1,body2)⇒ σ1 Ψ σ2∧ loopn
1(σ1,σ

′
1)∧ loopn

2(σ2,σ
′
2) =⇒ σ

′
1 Ψ σ

′
2

BodyRefactorΨ will correspond to simple properties concerning the loop bodies which,
as was the case with the self-composition lemmas, are all non-recursive and can thus
be regarded as additional proof-obligations, easily discharged by automatic provers:

BodyRefactorΨ(R1,R2) = ∀σ1 σ2 σ ′1 σ ′2. σ1 Ψ σ2∧R1(σ1,σ
′
1)∧R2(σ2,σ

′
2) =⇒ σ ′1 Ψ σ ′2.

4. Formalisation and Verification of Side Channel Countermeasures

In this section we illustrate how the previously presented framework might be used
to attest adherence to non-functional security policies such as the ones put forward by
the developers of the NaCl library. To do so, we first instrument the semantics of the
language to faithfully capture the security policy under scrutiny. Later, we will show
how a simple transformation reifies the instrumented semantics, turning the security
verification problem into a standard non-interference problem. In Section 5 we pro-
vide additional details on how adherence to such a policy can be verified using the
framework presented earlier, with off-the-shelf verification tools.

4.1. Instrumented Semantics

We consider two simple additions to the language used before, namely:

• Commands, with the exception of sequential compositions, are now labelled.
This is equivalent to labeling every atomic statement and every boolean condi-
tion. We further assume that all considered programs are well-labelled, meaning
that all the labels in a program are distinct. Labels can then be thought of as
abstractions of the instruction-pointer to the corresponding code.

• A new syntactic class of list-expressions is considered (together with the corre-
sponding variables and assignment statements). Its use is postponed to the last
part of this section, where it is shown how the security policy can be captured by
a standard non-interference property.

The syntax of the extended language is given as follows.

Operators op ::= + | - | * | = | != | <
Expressions e ::= n | x | e op e | a[e]

List expressions le ::= nil | cons(e, le)

Commands C ::= [skip]l | [x:=e]l | [a[e]:=e]l | [xl:= le]l

| [if e then C1 else C2]
l | [while (e) C]l |C1; C2

We will use the notation stmtC(l) to refer to the statement annotated with label l in
program C (recall that labels are assumed to be distinct). Moreover, we remark that
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(n,σ) ⇓e (n,ε) (x,σ) ⇓e (σ(x),(x,0))
(e,σ) ⇓e (v,γ)

(a[e],σ) ⇓e (acc(σ(a),v),γ · (a,v))

(e1,σ) ⇓e (v1,γ1) (e2,σ) ⇓e (v2,γ2)

(e1 op e2,σ) ⇓e (v1 [[op]] v2,γ1 · γ2)

(nil,σ) ⇓e (nil,ε)

(e,σ) ⇓e (v,γ1) (le,σ) ⇓e (lv,γ2)

(cons(e, le),σ) ⇓e (cons(v, lv),γ1 · γ2)

([skip]l ,σ) ⇓ (σ , l,ε)

(e1,σ) ⇓e (v1,γ1) (e2,σ) ⇓e (v2,γ2)

([a[e1]:=e2]
l ,σ) ⇓ (σ [a← upd(σ(a),v1,v2)], l,γ1 · γ2 · (a,v1))

(e,σ) ⇓e (v,γ)

([x:=e]l ,σ) ⇓ (σ [x← v], l,γ · (x,0))
(le,σ) ⇓e (lv,γ)

([xl:= le]l ,σ) ⇓ (σ [xl← lv], l,γ · (xl,0))

(e,σ) ⇓e (v,γ) (C1,σ) ⇓ (σ1,δ1,γ1)

([if e then C1 else C2]
l ,σ) ⇓ (σ1, l ·δ1,γ · γ1)

if v 6= 0

(e,σ) ⇓e (v,γ) (C2,σ) ⇓ (σ2,δ2,γ2)

([if e then C1 else C2]
l ,σ) ⇓ (σ2, l ·δ2,γ · γ2)

if v = 0

(e,σ) ⇓e (v,γ) (C,σ) ⇓ (σ1,δ1,γ1) ([while (e) C]l ,σ1) ⇓ (σ2,δ2,γ2)

([while (e) C]l ,σ) ⇓ (σ2, l ·δ1 ·δ2,γ · γ1 · γ2)
if v 6= 0

(e,σ) ⇓e (v,γ)

([while (e) C]l ,σ) ⇓ (σ , l,γ)
if v = 0

(C1,σ) ⇓ (σ1,δ1,γ1) (C2,σ1) ⇓ (σ2,δ2,γ2)

(C1;C2,σ) ⇓ (σ2,δ1 ·δ2,γ1 · γ2)

Figure 2: Evaluation semantics

by construction every program should use a non-empty set of labels. We denote the
leftmost label used in a program C by firstLabel(C).

To capture the memory locations accessed during the execution of a program, the
operational semantics is instrumented in order to keep track of the sequence of per-
formed accesses – the memory trace, ranged by γ . Each element of the memory trace
consists of a pair (v,offset) where v is the variable identifier and offset is the index
of the accessed memory location (0 for non-array variables). The control-flow is also
made explicit by computing the sequence of labels executed during the computation —
the control-flow trace, ranged by δ .

We will then consider judgements of the form (C,σ) ⇓ (σ ′,δ ,γ) meaning that pro-
gram C executed in state σ terminates in state σ ′, having followed the control-flow path
δ and performed memory accesses γ . An auxiliary judgment is used for expressions:
(e,σ) ⇓e (n,γ) means that expression e evaluated in state σ returns the value n, having
performed accesses γ . When the traces in the final configuration are not important they
will be omitted as in (C,σ) ⇓ σ ′. Figure 2 presents the big-step rules for both expres-
sions and programs, where ε denotes the empty sequence, · denotes concatenation of
sequences, and the singleton sequence is identified with its element (e.g. l · δ denotes
the addition of l in front of δ ).
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We now state a few useful lemmas (proofs can be found in Appendix A). A first
observation that can be made is that, for a given program C, the execution trace con-
strains significantly the correspondent memory access trace. In fact, if an execution
path is fixed, only indices for array accesses are allowed to vary. Let us denote by
projFst(γ) the function that projects the first component of a memory trace γ , returning
a list of variable identifiers.

Lemma 3. Let C be a program, e an expression, and σ1,σ2 states.

1. If (e,σ1) ⇓e (v1,γ1) and (e,σ2) ⇓e (v2,γ2), then projFst(γ1) = projFst(γ2).

2. If (C,σ1) ⇓ (σ ′1,δ ,γ1), (C,σ2) ⇓ (σ ′2,δ ,γ2), then projFst(γ1) = projFst(γ2).

Another way of looking at the previous lemma is to state that the differences be-
tween two memory traces γ1, γ2 obtained through the same execution path concern only
the sequences of indexes accessed in one or more arrays. Denoting by projArra(γ) the
function that returns the list of indexes accessed in an array a, we have:

Lemma 4. Let C be a program such that (C,σ1) ⇓ (σ ′1,δ ,γ1) and (C,σ2) ⇓ (σ ′2,δ ,γ2).
Then, γ1 = γ2 if and only if for all array variables a in C, projArra(γ1) = projArra(γ2).

The execution traces of a program C are severely constrained: there are specific
points where different executions may diverge, which correspond exactly to the boolean
conditions tests performed by the program (if and while statements).

Lemma 5. Let C be a program such that (C,σ1)⇓ (σ ′1,δ1,γ1) and (C,σ2)⇓ (σ ′2,δ2,γ2).
Then, δ1 = δ2 if and only if testsC(δ1) = testsC(δ2).

Here, function testsC(·) extracts the outcomes of these tests from a given execution
trace (for convenience, seen here as snoc-lists).

testsC(ε) = ε

testsC(δ · l) =



testsC(δ ) , if stmtC(l) is not an if nor a while
testsC(δ ) ·1 , if stmtC(l) = [if e then C1 else C2]

l ,
δ = δ ′ · l′ and l′ = firstLabel(C1)

testsC(δ ) ·1 , if stmtC(l) = [while (e) C]l ,
δ = δ ′ · l′ and l′ = firstLabel(C)

testsC(δ ) ·0 , otherwise.

4.2. Security Definition and Verification
The security policy can now be expressed as a non-interference-like property.

Definition 6. Let C be a program, H high-security variables and V ′L = Vars(C) \H.
We say it is secure, in the sense that it complies with the NaCl side-channel security
policies in Figure 1, if

σ1
V ′L= σ2 ∧ (C,σ1) ⇓ (σ ′1,δ1,γ1) =⇒

For some σ ′2, δ2, and γ2, (C,σ2) ⇓ (σ ′2,δ2,γ2) ∧ (δ1 = δ2 ∧ γ1 = γ2).
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〈n〉= 〈nil〉= 〈x〉= 〈xl〉= [skip]l (l a fresh label)

〈a[e]〉= 〈e〉 ; [xla:=cons(e,xla)]l (l a fresh label)

〈e1 op e2〉= 〈e1〉 ;〈e2〉
〈cons(e, le)〉= 〈e〉 ;〈le〉

〈
[skip]l

〉
= [skip]l〈

[x:=e]l
〉
= 〈e〉 ; [x:=e]l〈

[xl:= le]l
〉
= 〈le〉 ; [xl:= le]l〈

[a[e1]:=e2]
l
〉
= 〈e1〉 ;〈e2〉 ; [xla:=cons(e1,xl

a)]l
′
; [a[e1]:=e2]

l (l′ a fresh label)〈
[if e then C1 else C2]

l
〉
= 〈e〉 ; [control:=cons(e,control)]l

′
;

[if e then 〈C1〉 else 〈C2〉]l (l′ a fresh label)〈
[while (e) C]l

〉
= 〈e〉 ; [control:=cons(e,control)]l

′
;[

while (e) 〈C〉 ;〈e〉 ; [control:=cons(e,control)]l
′
1
]l

(l′, l′1 fresh labels)

〈C1;C2〉= 〈C1〉 ;〈C2〉

Figure 3: Transformation for internalising trace information

A weaker termination insensitive variant is also considered, namely

σ1
V ′L= σ2 ∧ (C,σ1) ⇓ (σ ′1,δ1,γ1) ∧ (C,σ2) ⇓ (σ ′2,δ2,γ2) =⇒ (δ1 = δ2 ∧ γ1 = γ2).

In order to apply standard non-interference verification techniques to our defini-
tion, we reduce the security verification problem to a proper non-interference problem
by means of a program transformation. The transformation internalises a minimum
amount of information from the semantics that is sufficient to guarantee that no secret
information is leaked to the control-flow and memory access traces.

Figure 3 contains the definition of the transformation 〈·〉 for both expressions and
programs. The transformation makes use of fresh list variables control and xla (for
each array variable a). Informally, given an expression e and a command C, 〈e〉 is a
program that stores the indexes of arrays accessed during the evaluation of e (in the
corresponding variables xla), and 〈C〉 is a program that is similar to C but also keeps
track of all the conditional tests performed during the execution (in variable control),
and of all array access indexes (in xla). The following proposition relates in precise
terms the final values of these variables of the transformed program, and the memory
and execution traces of the original.

Proposition 7. Let C be a program such that (C,σ) ⇓ (σ ′,δ ′,γ ′). Consider moreover
that σ

0 is the environment that assigns to variable control and xla (for every array
variable a in C) the empty sequence ε . Then, (〈C〉 ,σ ]σ

0) ⇓ σ , where:
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• σ = σ ′]σ
′, with dom(σ0) = dom(σ ′),

• σ
′(control) = testsC(δ ′),

• σ
′(xla) = projArra(γ ′).

PROOF. By structural induction on the derivation of (C,σ) ⇓ (σ ′,δ ,γ). It is clear
from the definition of the transformation that the inserted code only affects variables
introduced by it, hence the partition of the final state is immediate. Moreover, every
conditional test performed during the execution is explicitly stored in variable control
(notice that, for the case of while loops, the transformation inserts code before the loop
and at the end of the loop body). Finally, every evaluated expression of the original
program is preceded by the execution of the transformation of that same expression.

Theorem 8. Let C be a program, H high-security variables, 〈V 〉 the set of variables
introduced by transforming C to 〈C〉, and 〈V ′L〉 = Vars(C)\H ∪ 〈V 〉. The program C
is (termination insensitive) secure with respect to Definition 6 if for states σ1, σ2,

σ1
〈V ′L〉
= σ2 ∧ (〈C〉 ,σ1) ⇓ σ

′
1 ∧ (〈C〉 ,σ2) ⇓ σ

′
2 =⇒ σ

′
1
〈V 〉
= σ

′
2

PROOF. Follows directly from Proposition 7 and Lemmas 4 and 5.

The formulation given by Theorem 8 can be readily verified by the self-compo-
sition technique, as explained in Section 3. A similar result could be derived for the
termination sensitive variant of security, but that would not be directly usable with self-
composition. In our approach we separately handle the proof of termination, which
together with the previous result trivially yields the termination sensitive variant.

5. Case Study: NaCl Cryptographic Library

The high-level security policies adopted in the implementation of the NaCl crypto-
graphic library, which serve as motivation for this work, were introduced in Section 2.
We now present an example of how the techniques proposed in this paper can be used
in practice to formally verify compliance to these policies. We selected a small exam-
ple from the core of the NaCl library, which we will describe in detail. The function
we selected is called crypto verify and is presented in Listing 1, top.

It may be surprising to know that the high-level specification for this function is to
compare the contents of two 16-byte arrays x and y, whose contents are high-security
and must not be leaked. The introduced optimizations aim to ensure compliance to the
security policies we have described. We will show how we can, not only formally verify
that this function complies with said policies, but also that it is functionally correct. To
establish the former, we will adopt the trace-based approach described in the previous
section. To establish functional correctness, we will use the framework introduced in
Section 3 to prove functional equivalence with a readable and non-optimized reference
implementation of the same algorithm. This can be found in Listing 1, bottom.
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i n t c r y p t o v e r i f y ( c o n s t unsigned char ∗x , c o n s t unsigned char ∗y )
{

i n t d i f f e r e n t b i t s = 0 ;
# d e f i n e F ( i ) d i f f e r e n t b i t s |= x [ i ] ˆ y [ i ] ;

F ( 0 ) F ( 1 ) F ( 2 ) F ( 3 ) F ( 4 ) F ( 5 ) F ( 6 ) F ( 7 )
F ( 8 ) F ( 9 ) F ( 1 0 ) F ( 1 1 ) F ( 1 2 ) F ( 1 3 ) F ( 1 4 ) F ( 1 5 )
re turn (1 & ( ( d i f f e r e n t b i t s − 1) >> 8 ) ) − 1 ;

}

i n t c r y p t o v e r i f y ( c o n s t unsigned char x [ 1 6 ] , c o n s t unsigned char y [ 1 6 ] )
{

i n t r e s = 0 , i = 0 ;
whi le ( i < 16) {

i f ( x [ i ] != y [ i ] ) r e s = (− 1 ) ;
i ++;

}
re turn r e s ;

}

Listing 1: NaCl implementation (top) and reference implementation (bottom) of crypto verify function

5.1. Verification Infrastructure

In this work, we have used Frama-c [8], a tool for the static analysis of C programs
that contains a multi-prover verification condition generator [15]. We also employed a
set of proof tools that included the Coq proof assistant, and the Simplify, Alt-Ergo,
and Z3 automatic theorem provers. C programs are annotated using the ANSI-C Spec-
ification Language (ACSL [8]). Both Frama-c and ACSL are work in progress; we
have used the Boron release of Frama-c.

Frama-c contains the gwhy graphical front-end that allows to monitor individual
verification conditions. This is particularly useful when combined with the possibility
of exporting the conditions to various proof tools, which allows users to first try dis-
charging conditions with one or more automatic provers, leaving the harder conditions
to be studied with the help of an interactive proof assistant. An additional feature of
Frama-c that we have found useful is the declaration of Lemmas. Like axioms, lem-
mas can be used to prove goals, but unlike axioms, which require no proof, lemmas
originate themselves new goals. In the proofs we developed, it was often the case that
once an appropriate lemma was provided (and proved interactively with Coq), all the
verification conditions could be automatically discharged. The Coq library described
in [3] provides support for proving lemmas such as those introduced in Section 3. As
a rule, this library embeds each lemma and respective proof in a functor parameterised
by the basic facts it depends on. All the results needed as inputs for the functors are
non-recursive (they concern the loop body only) and can be expected to be proved
successfully by an automatic prover.

5.2. Verifying compliance to side-channel-related security policies

The first observation we make is that for this simple example one can, not only
check by inspection that the NaCl implementation indeed complies with stated poli-
cies, but also that the reference implementation is in fact insecure under our definition.
Indeed, the NaCl implementation has completely static control flow and array indices,
whereas one can infer from the control flow of the reference implementation which (if
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/∗@ ax iomat i c l i s t { type l i s t ;
@ l o g i c l i s t n u l l ;
@ l o g i c l i s t cons ( i n t e g e r n , l i s t s ) ; } ∗ /

/∗@ ghos t i n t mem contro l , mem x , mem y ;
@ ax iomat i c lmem{ l o g i c l i s t l m e m c o n t r o l{L} r e a d s mem cont ro l ;
@ l o g i c l i s t lmem x{L} r e a d s mem x ;
@ l o g i c l i s t lmem y{L} r e a d s mem y ; } ∗ /

/∗@ a s s i g n s mem cont ro l ;
@ ensures l m e m c o n t r o l{Here} == cons ( c o n d i t i o n , l m e m c o n t r o l{Pre } ) ; ∗ /

void a p p e n d c o n t r o l ( i n t c o n d i t i o n ) ;
/∗@ a s s i g n s mem x ;

@ ensures lmem x{Here} == cons ( x , lmem x{Pre } ) ; ∗ /
void append x ( i n t x ) ;
/∗@ a s s i g n s mem y ;

@ ensures lmem y{Here} == cons ( y , lmem y{Pre } ) ; ∗ /
void append y ( i n t y ) ;

void c r y p t o v e r i f y ( c o n s t unsigned char ∗x , c o n s t unsigned char ∗y ) {
i n t d i f f e r e n t b i t s = 0 , i = 0 ;

/ /@ ghos t a p p e n d c o n t r o l ( i <16);
whi le ( i < 16) {

F ( i ) / /@ ghos t append x ( i ) ; ghos t append y ( i ) ;
i ++;
/ /@ ghos t a p p e n d c o n t r o l ( i <16);

}
re turn (1 & ( ( d i f f e r e n t b i t s − 1) >> 8 ) ) − 1 ;

}

Listing 2: Transformed version of crypto verify function

any) bytes caused the function to detect a difference in its inputs. In order to apply
the formal verification approach introduced in the previous section to this example,
the first step is to verify safety (and termination) of the NaCl implementation for all
valid inputs. This can be easily achieved in Frama-C by annotating the code with ap-
propriate pre-conditions, imposing the validity of input arrays in the proper range, and
adding some simple lemmas that allow the tool to recognize the correct output range
of the used bit-wise operations. This is needed because a sufficiently expressive ax-
iomatic semantics for these operations is typically not included in off-the-shelf formal
verification tools, as such operations are rarely used in general-purpose software.

The second step in our methodology involves reifying the program according to the
transformation defined in the previous section. Here we take advantage of a feature
of Frama-c that is extremely advantageous to our goals. Indeed, the ability to use
ghost code in annotations enables us to include all the extra code introduced by our
transformation as comments to the original program. This means, in particular, that we
do not require a concrete implementation of the list type, which we can model using
the logical extensions available in ACSL. Furthermore, using ghost code, we have the
guarantee that the semantics of the original program are preserved, as this is imposed
as a necessary condition by the deductive verification tool.

In Listing 2 we show the result of transforming a slightly refactored version of the
original function. In this version, we use a while loop, since this allows for both a more
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compact presentation and a more in-depth demonstration of our technique. Note that
this version of the crypto verify function is actually one of the refactoring steps re-
quired to prove functional correctness of the NaCl implementation as we will describe
later in the paper, where compliance to the security policies has already been achieved.

We emphasize that the annotated program incorporates the formalism we have in-
troduced in the previous section in a direct way, and that this is made possible by the
capability of implementing the necessary lists as logical types. Note the declaration
of C functions that allow the construction of the lists within ghost code, and whose
semantics is axiomatized so that, at the end of execution, the final state of the ghost
variables is essentially a logical term evidencing a sequence of cons operations. Our
experience shows that this implementation is highly suitable for passing down to auto-
matic provers.

For this simple example, the proof of non-interference by self-composition is fully
automatic. We include the Frama-c input in Listing 3. Note that the pre-conditions
include only the necessary restrictions to complete the proof, and need not refer to all
the non-high parts of the initial state. In order to complete this proof automatically,
Frama-c requires the following lemma to be included:
/∗@ lemma e q l o o p p r e d{L1 , L2 , L3 , L4} :

@ \ f o r a l l i n t i1 , i2 , i3 , d i f f b i t s 1 , d i f f b i t s 2 , unsigned char ∗x ,∗ y ,∗ x1 ,∗ y1 ;
@ \ f o r a l l l i s t l 1 x , l 2 x , l 1 y , l 2 y , l 1 c o n t r o l , l 2 c o n t r o l , l 1 x1 , l 2 x 1 ;
@ \ f o r a l l l i s t l 1 y1 , l 2 y1 , l 1 c o n t r o l 1 , l 2 c o n t r o l 1 ;
@ l 1 x == l 1 x 1 ==> l 1 y == l 1 y 1 ==> l 1 c o n t r o l == l 1 c o n t r o l 1 ==>
@ l o o p p r e d{L1 , L2}( i1 , i2 , x , y , 0 , d i f f b i t s 1 , l 1 x , l 2 x ,
@ l 1 y , l 2 y , l 1 c o n t r o l , l 2 c o n t r o l ) ==>
@ l o o p p r e d{L3 , L4}( i1 , i3 , x1 , y1 , 0 , d i f f b i t s 2 , l 1 x1 , l2 x1 ,
@ l1 y1 , l2 y1 , l 1 c o n t r o l 1 , l 2 c o n t r o l 1 ) ==>
@ i 2 == i 3 ==> l 2 x == l 2 x 1 && l 2 y == l 2 y 1 && l 2 c o n t r o l == l 2 c o n t r o l 1 ; ∗ /

This is an instance of the self-composition lemmas, introduced in Section 3. The
instantiation of this lemma in our Coq library is accomplished by invoking the appropri-
ate functor, as shown in Listing 4. The listing also illustrates the definitions contained
in the modules Body and SCI (modules State, Cond, and Loop analogously contain
the relevant definitions). Note that the body definition does not include the update to
the loop iterator, as this is handled separately in the generic loop pattern in our formal-
ization. Also note that the relation on states matches the pre- and post- conditions in
the annotated C code for the self-composition presented above.

5.3. Verfying functional correctness
As mentioned in section 2, our approach to proving functional correctness consists

of proving a sequence of program equivalences, starting from a reference implemen-
tation, and ending in the target program. Each equivalence corresponds to a simple
refactoring that can be addressed using our technique. Listings 1 (top), 5, 6, and 1 (bot-
tom), in that order, comprise the sequence of refactorings we have used for our case
study. All of the required equivalence proofs, except for the last one, correspond to
loop body refactorings such as those described in Section 3. The final step is a simple
unfold of all the loop iterations, also described in the same Section.

We will present only the details related to our use of natural invariants, since the
proof-by-composition technique itself is essentially the same as that adopted for the
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/∗@ p r e d i c a t e body{L1 , L2}( unsigned char ∗x , unsigned char ∗y ,
@ i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2 ,
@ l i s t l1x , l i s t l2x , l i s t l1y , l i s t l2y ,
@ l i s t l 1 c t r l , l i s t l 2 c t r l , i n t e g e r i1 , i n t e g e r i 2 ) =
@ i 2 == i 1 +1 && ( d i f f b i t s 2 ==( d i f f b i t s 1 | (\ at ( x [ i 1 ] , L1 ) ˆ\ at ( y [ i 1 ] , L1 ) ) ) ) &&
@ l 2 c t r l == cons ( i2 <16?1:0 , l 1 c t r l ) && l 2 x == cons ( i1 , l 1 x ) && l 2 y == cons ( i1 , l 1 y ) ; ∗ /

/∗@ i n d u c t i v e l o o p p r e d{L1 , L2}( i n t e g e r i1 , i n t e g e r i2 , unsigned char ∗x ,
@ unsigned char ∗y , i n t e g e r d i f f b i t s 1 ,
@ i n t e g e r d i f f b i t s 2 , l i s t l 1 x , l i s t l 2 x ,
@ l i s t l 1 y , l i s t l 2 y ,
@ l i s t l 1 c o n t r o l , l i s t l 2 c o n t r o l ){
@ case b a s e c a s e{L} :
@ \ f o r a l l l i s t lx , ly , l c o n t r o l , i n t e g e r i , d i f f b i t s , unsigned char ∗x ,∗ y ;
@ l o o p p r e d{L , L}( i , i , x , y , d i f f b i t s , d i f f b i t s , lx , lx , ly , ly , l c o n t r o l , l c o n t r o l ) ;
@ case i n d c a s e{L1 , L2 , L3} :
@ \ f o r a l l unsigned char ∗x ,∗ y , l i s t l 1 x , l 2 x , l 3 x , l 1 y , l 2 y , l 3 y ;
@ l i s t l 1 c o n t r o l , l 2 c o n t r o l , l 3 c o n t r o l , i n t e g e r i1 , i2 , i 3 ;
@ i n t e g e r d i f f b i t s 1 , d i f f b i t s 2 , d i f f b i t s 3 ;
@ l o o p p r e d{L1 , L2}( i1 , i2 , x , y , d i f f b i t s 1 , d i f f b i t s 2 , l 1 x , l 2 x ,
@ l 1 y , l 2 y , l 1 c o n t r o l , l 2 c o n t r o l ) ==>
@ body{L2 , L3}( x , y , d i f f b i t s 2 , d i f f b i t s 3 , l 2 x , l 3 x ,
@ l 2 y , l 3 y , l 2 c o n t r o l , l 3 c o n t r o l , i2 , i 3 ) ==>
@ l o o p p r e d{L1 , L3}( i1 , i3 , x , y , d i f f b i t s 1 , d i f f b i t s 3 , l 1 x , l 3 x ,
@ l 1 y , l 3 y , l 1 c o n t r o l , l 3 c o n t r o l ) ; } ∗ /

/∗@ r e q u i r e s l m e m c o n t r o l == l m e m c o n t r o l 1
@ && lmem x == lmem x1 && lmem y == lmem y1 ;
@ ensures l m e m c o n t r o l == l m e m c o n t r o l 1
@ && lmem x == lmem x1 && lmem y == lmem y1 ; ∗ /

void c r y p t o v e r i f y ( c o n s t unsigned char ∗x , c o n s t unsigned char ∗y ,
c o n s t unsigned char ∗x1 , c o n s t unsigned char ∗y1 ,
i n t r e s u l t , i n t r e s u l t 1 ) {

i n t d i f f e r e n t b i t s = 0 , d i f f e r e n t b i t s 1 = 0 , i = 0 , i 1 = 0 ;

/∗@ ghos t a p p e n d c o n t r o l ( i <16);
@ ghos t L1 :
@ loop i n v a r i a n t 0<=i <=16 &&
@ l o o p p r e d{L1 , Here } (0 , i , x , y , 0 , d i f f e r e n t b i t s , lmem x{L1} , lmem x ,
@ lmem y{L1} , lmem y , l m e m c o n t r o l{L1} , l m e m c o n t r o l ) ; ∗ /

whi le ( i < 16) {
F ( i ) / /@ ghos t append x ( i ) ; ghos t append y ( i ) ;
i ++;
/ /@ ghos t a p p e n d c o n t r o l ( i <16);

}
r e s u l t = (1 & ( ( d i f f e r e n t b i t s − 1) >> 8 ) ) − 1 ;

/∗@ ghos t a p p e n d c o n t r o l 1 ( i1 <16);
@ ghos t L2 :
@ loop i n v a r i a n t 0<=i1 <=16 &&
@ l o o p p r e d{L2 , Here } (0 , i1 , x1 , y1 , 0 , d i f f e r e n t b i t s 1 , lmem x1{L2} , lmem x1 ,
@ lmem y1{L2} , lmem y1 , l m e m c o n t r o l 1{L2} , l m e m c o n t r o l 1 ) ; ∗ /

whi le ( i 1 < 16) {
F1 ( i 1 ) / /@ ghos t append x1 ( i 1 ) ; ghos t append y1 ( i 1 ) ;
i 1 ++;
/ /@ ghos t a p p e n d c o n t r o l 1 ( i1 <16);

}
r e s u l t 1 = (1 & ( ( d i f f e r e n t b i t s 1 − 1) >> 8 ) ) − 1 ;

}

Listing 3: Annotated self-composed crypto verify transformed function
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Module Ver i fyNaCl := Bui ldSel fComp S t a t e Cond Body Loop SCI .

Ver i fyNaCl . s e l f c o m p l o o p :
f o r a l l ( r1 r2 : n a t ) ( c : C . S t ) ( x1 x2 y1 y2 : S . S t ) ( d1 d2 : C . S t ) ,

SCI . s e l f c o m p P r o p x1 x2 →
Loop . loopN r1 x1 c y1 d1 → ∼ C . cond d1 →

Loop . loopN r2 x2 c y2 d2 → ∼ C . cond d2 →
SCI . s e l f c o m p P r o p y1 y2 ∧ C . eqS t d1 d2

Module Body .
D e f i n i t i o n body ( s1 : S t a t e . S t ) ( c1 : Cond . S t ) ( s2 : S t a t e . S t ) : Prop :=

match s1 , c1 , s2 with
( i1 , x1 , y1 , d i f fB1 , l c1 , lx1 , l y 1 ) , n , ( i2 , x2 , y2 , d i f fB2 , lc2 , lx2 , l y 2 )
⇒ d i f f B 2 = bw or d i f f B 1 ( bw xor ( a r r S e l x1 i 1 ) ( a r r S e l y1 i 1 ) )
∧ eqA x2 x1 ∧ eqA y2 y1 ∧ i 2 = i 1
∧ l x 2 = i 1 : : l x 1 ∧ l y 2 = i 1 : : l y 1 ∧ l c 2 = ( l t i n t b o o l i 2 1 6 ) : : l c 1

end .
· · ·
End Body .

Module SCI .
D e f i n i t i o n s e l f c o m p P r o p ( s1 s2 : S t a t e . S t ) : Prop :=

match s1 , s2 with
| ( i1 , x1 , y1 , di fB1 , l c1 , lx1 , l y 1 ) , ( i2 , x2 , y2 , di fB2 , lc2 , lx2 , l y 2 )
⇒ i 1 = i 2 ∧ eqA x1 x2 ∧ eqA y1 y2 ∧ l c 1 = l c 2 ∧ l x 1 = l x 2 ∧ l y 1 = l y 2

end .
· · ·
End SCI .

Listing 4: Instantiation of self-composition lemma in the Coq library

security verification presented before. The natural invariants for the loop in the original
program and in refactoring #1 can be found in Listing 7, along with the loop-refactoring
lemma (c.f. Section 3) and the contract for the composed program.

The instantiation of this lemma in our Coq library is similar to the one presented
for the self-composition example. This is because the two loops have the same control
structure, which means that in our formalization the two examples are identical with
the caveat that two different body definitions are required, and a different equivalence
relation on states is defined. The relevant definitions are shown in Listing 8.

The verification of equivalence for the other refactorings follows in the same lines
as this. Overall, the previous formal verification exercises in Frama-c implied the
(fully automatic) discharge of over 600 proof obligations.

6. Related Work

A good survey of language-based information flow security can be found in [27].
Information flow policies were first introduced by Denning et. al [13] and tend to be
formalised as noninterference properties. Information flow type systems, have been
used to enforce noninterference in different contexts [32, 24, 23, 30, 31]. The main
challenge in designing these systems is that they are often too conservative in prac-
tice, so that secure programs may be rejected. Leino and Joshi [20] were the first to
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i n t r e s = 0 , i = 0 ;
i n t d i f f e r e n t b i t s = 0 ;
whi le ( i < 16) {

d i f f e r e n t b i t s |= x [ i ] ˆ y [ i ] ;

i ++;
}
i f ( d i f f e r e n t b i t s ! = 0 ) r e s = (− 1 ) ;
re turn r e s ;

Listing 5: Refactoring step #1

i n t r e s , i = 0 ;
i n t d i f f e r e n t b i t s = 0 ;
whi le ( i < 16) {

d i f f e r e n t b i t s |= x [ i ] ˆ y [ i ] ;

i ++;
}
r e s = (1&(( d i f f e r e n t b i t s−1)>>8))−1 ;
re turn r e s ;

Listing 6: Refactoring step #2

/∗@ p r e d i c a t e body loop1{L1 , L2}( unsigned char ∗x , unsigned char ∗y , i n t e g e r i1 ,
@ i n t e g e r i2 , i n t e g e r r e s1 , i n t e g e r r e s 2 ) =
@ i 2 == i 1 + 1 && ( (\ at ( x [ i 1 ] , L1 ) != \at ( y [ i 1 ] , L1 ) && r e s 2 == 1 ) | |
@ (\ at ( x [ i 1 ] , L1 ) == \at ( y [ i 1 ] , L1 ) && r e s 2 == r e s 1 ) ) ; ∗ /

/∗@ p r e d i c a t e body loop3{L1 , L2}( unsigned char ∗x , unsigned char ∗y ,
@ i n t e g e r i1 , i n t e g e r i2 , i n t e g e r d i f f b i t s 1 , i n t e g e r d i f f b i t s 2 ) =
@ i 2 == i 1 +1 && d i f f b i t s 2 == ( d i f f b i t s 1 | (\ at ( x [ i 1 ] , L1 ) ˆ \at ( y [ i 1 ] , L1 ) ) ) ; ∗ /

/∗@ lemma e q l o o p s{L1 , L2 , L3 , L4} :
@ \ f o r a l l i n t e g e r i , i n t b i t s 1 , r e s , unsigned char ∗x ,∗ y , ∗x1 , ∗y1 ;
@ \ f o r a l l i n t e g e r j ; \at ( x [ j ] , L1)==\ at ( x1 [ j ] , L3 ) ==>
@ \ f o r a l l i n t e g e r j ; \at ( y [ j ] , L1)==\ at ( y1 [ j ] , L3 ) ==>
@ l o o p p r e d{L1 , L2} (0 , i , x , y , 0 , r e s ) ==> l o o p p r e d 3{L3 , L4} (0 , i , x1 , y1 , 0 , b i t s 1 ) ==>
@ ( ( r e s ==0 && b i t s 1 ==0) | | ( r e s = = 1 && b i t s 1 ! = 0 ) ) ; ∗ /

/∗@ r e q u i r e s (\ f o r a l l i n t e g e r j ; 0<=j <16 ==> x [ j ]== x1 [ j ] ) &&
@ (\ f o r a l l i n t e g e r j ; 0<=j <16 ==> y [ j ]== y1 [ j ] ) ; ∗ /

void c r y p t o v e r i f y ( unsigned char ∗x , unsigned char ∗y ,
unsigned char ∗x1 , unsigned char ∗y1 , i n t r e s , i n t r e s 1 ) ;

Listing 7: Lemma for first refactoring step

D e f i n i t i o n body ( s1 : S t a t e . S t ) ( c1 : Cond . S t ) ( s2 : S t a t e . S t ) : Prop :=
match s1 , c1 , s2 with ( i1 , x1 , y1 , r e s1 , d i fB1 ) , n , ( i2 , x2 , y2 , r e s2 , d i fB2 ) ⇒

( r e s 2 = −1 ∧ ( a r r S e l x2 i 1 ) <> ( a r r S e l y2 i 1 )
∨ ( r e s 2 = r e s 1 ∧ ( a r r S e l x2 i 1 ) = ( a r r S e l y2 i 1 ) )
∧ eqA x2 x1 ∧ eqA y2 y1 ∧ i 2 = i 1 ∧ d i fB2 = d i fB1 )

end .

D e f i n i t i o n body ( s1 : S t a t e . S t ) ( c1 : Cond . S t ) ( s2 : S t a t e . S t ) : Prop :=
match s1 , c1 , s2 with ( i1 , x1 , y1 , r e s1 , d i fB1 ) , n , ( i2 , x2 , y2 , r e s2 , d i fB2 ) ⇒

d i fB2 = bw or d i fB1 ( bw xor ( a r r S e l x1 i 1 ) ( a r r S e l y1 i 1 ) )
∧ r e s 2 = r e s 1 ∧ eqA x2 x1 ∧ eqA y2 y1 ∧ i 2 = i 1

end .

D e f i n i t i o n s e l f c o m p P r o p ( s1 s2 : V e r i f y S t a t e . S t ) : Prop :=
match s1 , s2 with
| ( i1 , x1 , y1 , r e s1 , d i fB1 ) , ( i2 , x2 , y2 , r e s2 , d i fB2 ) ⇒

i 1 = i 2 ∧ eqA x1 x2 ∧ eqA y1 y2
∧ ( r e s 1 = 0 ∧ d i fB2 =0 ∨ r e s 1 = -1 ∧ d i fB2 <> 0)

end .

Listing 8: Coq definitions (functional correctness)
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propose a semantic approach to checking secure information flow, with several desir-
able features: a more precise characterisation of security; it applies to all programming
constructs whose semantics are well-defined; and it can be used to reason about indi-
rect information leakage through variations in program behaviour (e.g., whether or not
the program terminates). An attempt to capture this property in program logics using
the Java Modelling Language (JML) [19] was presented by Warnier et al. [33], who
proposed an algorithm, based on the strongest postcondition calculus, that generates
an annotated source file with specification patterns for confidentiality in JML. Dufay
et al. [14] have proposed an extension to JML to enforce non-interference through
self-composition. This extended annotation language allows for a simple definition
of non-interference for Java programs. However, the generated proof obligations are
complex, which limits the general applicability of the approach.

Terauchi and Aiken [29] identified problems in the self-composition approach, ar-
guing that automatic tools (software model checkers like SLAM [4] and BLAST [16])
are not powerful enough to verify this property over programs of realistic size. To
compensate for this, the authors propose a program transformation technique for an
extended version of the self-composition approach. Rather than replicating the original
code, the renamed version is interleaved and partially merged with it. Naumann [25]
extended Terauchi and Aiken’s work to encompass heap objects, presented a systematic
method to validate the transformations proposed in [29], and reported on the experience
of using these techniques with the Spec# and ESC/JAVA2 tools.

Natural Invariants provide an explicit rendition of program semantics. In [21] a
similar encoding of program semantics in logical form can be found, which advocates
the use of second-order logic as appropriate to reason about programs, since it allows
to capture the inductive nature of the input-output relations for iterative programs. To
some extent, our use of Coq’s higher-order logic may be seen as an endorsement of that
view. However, we have made an effort to combine the strengths of higher-order logic
reasoning with facilities provided by automatic first-order provers.

Relational Hoare Logic [9] has been used to prove the soundness of program analy-
ses and optimising transformations. Its scope is thus similar to our proofs-by-composition
setting. The main difference is the fact that we do not need to move away from tradi-
tional Hoare Logic, which allows us to rely on off-the-shelf verification tools.

Svenningsson and Sands [28] first proposed proving resistance against side-channel
attacks using self-composition. The authors present a semantic model of security for
programs based on the program counter model [22] which captures the behavior of an
attacker capable of observing the sequence of program counter positions. A technique
to achieve declassification through timing channels is also proposed. Our approach ex-
tends the previous work in several directions. We enrich the formal framework to cap-
ture more powerful side-channel attacks, namely cache timing attacks, and we provide
a formal proof that our program reification technique is sound and guarantees side-
channel attack resistance under a termination-sensitive flavour of non-interference. We
also address the practical problems associated with this approach reported in [28],
demonstrating that our methodology permits handling real-world examples without
modifying the target program.

The security policies we have addressed in this paper can also be seen as integrity
preserving information-flow restrictions. Indeed, it is well known that one can see high
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variables as untrusted inputs, where the goal is to check that such low-integrity inputs
do not interfere with the control flow and addresses accessed by the program. Intu-
itively, one is showing that attackers manipulating these inputs cannot influence the
behavior of the program. This sort of security policy is sometimes addressed through
so-called taint-analysis. Static taint analysis techniques tend to be based on type sys-
tems [11] or on control-dependency graphs (CFG) [12]. Our work can be seen as an
alternative approach to taint analysis.

7. Conclusion

We have shown how an off-the-shelf deductive verification platform can be used to
validate real-world cryptographic software implementations, using the the NaCl cryp-
tographic library as a representative example. Our results focus on three security-
relevant properties, with increasing degrees of verification complexity: (1) safety prop-
erties and termination; (2) implementation of security policies aiming to reduce expo-
sure to side-channel attacks, formalised as non-interference; and (3) functional equiva-
lence with respect to a reference implementation.

Our approach to proving resistance to certain classes of side-channel attacks, namely
timing attacks, extends previous work in several directions. Not only do we extend
the range of side-channel attacks that were previously addressed, but we also show
how reasonably automated verification can be made practical using off-the-shelf for-
mal verification frameworks. The general approach we adopt consists of reifying the
target program to make explicit in its output state the execution traces that may po-
tentially leak information. We reduce this explicit information to a minimum, proving
that our approach is still sound, and then use non-interference and self-composition to
verify security. We presented these new results as new application scenarios for the
general methodology introduced in [2, 3], with promising results. We have also con-
firmed that the same method introduced to prove non-interference can be applied to the
more general case of equivalence proofs, to prove the correctness of real implementa-
tions with respect to reference implementations. We believe that our technique has a
high potential for mechanisation, and we aim to pursue this goal in future work.
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Appendix A. Proofs

Lemma 3. Let C be a program, e an expression, and σ1,σ2 states.

1. If (e,σ1) ⇓e (v1,γ1) and (e,σ2) ⇓e (v2,γ2), then projFst(γ1) = projFst(γ2).

2. If (C,σ1) ⇓ (σ ′1,δ ,γ1), (C,σ2) ⇓ (σ ′2,δ ,γ2), then projFst(γ1) = projFst(γ2).

PROOF. (1) By structural induction on e. The only case that does not follow directly
by induction hypothesis is the access of an array element. But, since we are projecting
the first components of the memory access traces, the possibly distinct array indexes
accessed are irrelevant. (2) Observe that the assumption of distinct labels in C together
with the premise that both executions share the control-flow trace δ force the shape
of both derivations to be equal (in particular, branching conditions are evaluated to
the same truth value). Then, a simple induction on the structure of C allows us to
conclude the argument (again, the only case that does not follow immediately from
induction hypothesis and (1) is array assignment, and again the first component is state
independent).

Lemma 4. Let C be a program such that (C,σ1) ⇓ (σ ′1,δ ,γ1) and (C,σ2) ⇓ (σ ′2,δ ,γ2).
Then, γ1 = γ2 if and only if for all array variables a in C, projArra(γ1) = projArra(γ2).

PROOF. The left-to-right implication is trivial. For the converse, observe that the com-
mon execution trace in both final configurations implies, by Lemma 3, that projFst(γ1)=
projFst(γ2) (in particular, γ1 and γ2 have the same length). Now, assume that γ1 6= γ2
and let γ ′ be the greatest common prefix of γ1 and γ2. Since γ1 6= γ2, the length of γ ′

is strictly smaller than that of γ1 and γ2. Consider that the first element where both
sequences diverge is now added to this prefix, i.e. γ ′1 = γ ′ · (a,v1) and γ ′2 = γ ′ · (a,v2)
(again, by Lemma 3 we know that the first components are equal). By construction,
v1 6= v2 which implies that projArra(γ1) 6= projArra(γ2).

Lemma 5. Let C be a program such that (C,σ1)⇓ (σ ′1,δ1,γ1) and (C,σ2)⇓ (σ ′2,δ2,γ2).
Then, δ1 = δ2 if and only if testsC(δ1) = testsC(δ2).

PROOF. The left-to-right implication is trivial. For the converse, assume δ1 6= δ2 and
let δ ′ be the greatest common suffix of both traces. We firstly observe that δ ′ is
nonempty (its last element is necessarily firstLabel(C)), and that the first label of δ ′

must be the label of an if or while statement (in any other case, the control flow is
state-independent and thus leads to a common follow-up on both executions). Sum-
marising, we have δ1 = δ ′1 · δ ′, δ2 = δ ′2 · δ ′, δ ′ = l′ · δ ′′ and the common suffix of δ ′1
and δ ′2 is ε . Since δ1 6= δ2, it cannot be the case that both δ ′1 and δ ′2 are empty. Without
loss of generality, assume δ ′1 is nonempty with l′1 as its last element. Since δ ′1 6= δ ′2, l′1
cannot be the last element of δ ′2, and hence testsC(δ ′1 · l′) 6= testsC(δ ′2 · l′). It follows
then that testsC(δ1) 6= testsC(δ2).
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