
A Framework for Modular and Customizable
Software Analysis

Pedro Martins1?, Nuno Carvalho2, João Paulo Fernandes1,3, José João
Almeida2, and João Saraiva1

1 High-Assurance Software Laboratory (HASLAB/INESC TEC),
Universidade do Minho, Portugal

2 Computer Science and Technology Center (CCTC),
Universidade do Minho, Portugal

3 Reliable and Secure Computation Group ((rel)ease),
Universidade da Beira Interior, Portugal

{prmartins,narcarvalho,jpaulo,jj,jas}@di.uminho.pt

Abstract. This paper presents a framework for the analysis of software
artifacts. We revise and propose techniques that aid in the manipulation
and combination of target-language specific tools, and in handling and
controlling the results of such tools. We also propose to integrate un-
der our framework techniques that are capable of performing language
independent analyses.
The final result of our work is an analysis environment that is modular
and flexible and that allows easy and elegant implementations of complex
analysis suites.
We finally conduct a proof of concept for our framework by analyzing a
well-known, widely used open-source software package.

Keywords: Software Analysis, Software Certification, Combinator Lan-
guages

1 Introduction

Building software has historically always been considered a challenging engineer-
ing task. And this is particularly true nowadays, where programming involves
not only reusing libraries that are provided by our programming language of
choice, but also trusting and reusing libraries that have been built by other
programmers and that are available on the Internet as open source software.

While software reuse has evident benefits such as rapid development, one of-
ten needs to make sure that the reused libraries satisfy certain properties. In our
context, we refer to analyzing a property of piece of software as its certification

? This work is partly funded by ERDF - European Regional Development Fund
through the COMPETE Programme (operational programme for competitiveness)
and by National Funds through the FCT - Fundação para a Ciência e a Tecnologia
(Portuguese Foundation for Science and Technology) within projects FCOMP-01-
0124-FEDER-010049, and FCOMP-01-0124-FEDER-022701.

2

and indeed choosing between many available libraries with the same purpose is
often influenced by the properties that each one holds.

This paper consolidates our ongoing effort to provide a customizable frame-
work for the certification of (reusable) software packages under the Certification
and Re-engineering of Open Source Software (CROSS) project4. Indeed, when one
tries to come up with a solution for dealing with all packages, under any pro-
gramming language and using potentially any analysis tool, multiple issues arise:

i) how can we provide a setting for users to easily and elegantly combine differ-
ent tools, each one providing a concrete and desirable analysis for the same
package?
A solution for this problem was achieved by us with a combinator language
that allows programmers to describe at an abstract level how software tools
can be combined into powerful software certification processes [1].

ii) with such a language at hand, we turned our focus into providing a globally
accessible framework where users could define and store their customized
certification processes and that could work as a repository for a wide range
of analysis tools that would otherwise need to be installed locally.
With this in mind, we have developed a web portal that relies on the domain-
specific language of i) as its core [2], and that provides a common storage
location for multi-purpose analysis tools.5

iii) finally, we have realized the need to customize the results produced by dif-
ferent certifications. Indeed, in our context certification results may assume
different formats ranging from simple text to complex images or charts,
and producing impactful results (or reports) again may require manual cus-
tomization.
In order to satisfy this need, we have also developed an embedded domain-
specific language for combining reports [3].

In this paper we now propose to build on these results and to improve on
them. In particular, we make the following contributions:

1. we propose a single and coherent framework that elegantly integrates the
combinator languages described in i) and iii). This is a framework that is
currently under integration in the portal provided in ii);

2. while the tools that have already been integrated in our web portal allow for
language-specific analyses only (i.e., they target one specific language such as
C or Java and they focus on one specific characteristic of it), we now propose
the integration of a set of analyses that are language independent. This
analyses include inspecting elements other than source code that must be
available on any software ecosystem, such as README files or even comments
within the source code itself. This further extends the potential practical
interest of our certification environment;

4 http://twiki.di.uminho.pt/twiki/bin/view/Research/CROSS/
5 While the portal already stores a significant number of analysis tools, still we rely

on further inputs from the community to enlarge this set.

A Framework for Modular and Customizable Software Analysis 3

3. we provide a detailed case study that fully illustrates, one by one, the steps to
undergo in order to certify a realistic software package. By this, we also hope
to demonstrate the expressive and practical power of the global certification
scenario that we envision in this paper.

This paper is organized as follows. In Sections 2 and 3 we revise the combina-
tor languages described previously in items i) and iii), respectively. In Section 4,
we propose and describe the set of analyses for elements other than source code
that we have considered extending our certification environment with, i.e., we
describe contribution 2 of the paper. In Section 5 we refer to contribution 1
of the paper, i.e., we describe how we have integrated in a single and coherent
framework all the independent pieces that are necessary to provide customizable
software certifications. The case study that we have used to demonstrate the
power of the framework that we finally obtain, in the line of contribution 3 is
described in Section 6. Finally, in Section 7 we conclude the paper and point
some possible directions for future research.

2 Combining Software Analysis Tools

We start by revising the combinator language that is used in our web portal
to allow the creation and customization of analysis schemas, that we call Certi-
fications. Such combinator language, which has been proposed and thoroughly
explained in [1], allows an easy and modular implementation of flows of infor-
mation through different analysis tools that are integrated in our web server.
Furthermore, the results of these tools always end up being collected and trans-
formed into a report, contained on a XML file to which the users also have access.

In order to briefly introduce the reader to the combinator language of our
portal, we present next a simple yet illustrative example of all the combinators in
the language, using them in the construction of a concrete Certification. The ex-
ample shown is a snippet of Haskell [4] code, which is the programming language
that we have used to implement our combinators.

Example of a Certification defined with combinators:

certification =

Input >- (slicer,"-j","-jpg")

>- (jpeg2Report,"-jpeg","-r") >|

Input >- (memoryCheck,"-j","-r") >|>

(aggregator,"-r","-r")

+> "Certification"

This example certification is called certification, and has two main flows
of information, both started by the primitive Input. After Input is used, the

4

user can create a flow of information by intercalating tools with the primi-
tive >-. As long as he/she continues to use this primitive, the initial infor-
mation will be consumed by the first tool, whose result will be consumed by
the second one, and so on. In this particular example, we have one sequence:
Input >- (slicer,"-j","-jpg") >- (jpg2Report,"-jpeg","-r"), where the
initial input is processed by the tool ’slicer’, which fuels information to jpeg2Report.

The combinators >| and >|> are used for parallel computation: the first one
appears between linear flows of information, and splits the certification into parts
that are autonomous and can run in parallel. The combinator >|> appears only
once per parallel computation, and marks a point where all the results of all the
parallel processes are combined using one tool whose responsibility is only to
aggregate all these results.

In this particular example, we have two flows of information both started
with the primitive Input. These are split with >-, meaning they will constitute
two sets of tests that will run in parallel, and terminated with >|>, meaning that
their result will be aggregated with the tool aggregator.

The last combinator is +>. The only purpose of this combinator is to create
a Certification, by giving it a name, which in this case is ”certification”, and
making it available on our web portal.

Our Certifications web portal is a collection of bash tools created and main-
tained by any user, with the only limitations of being capable of running in an
UNIX-based shell and using the the standard UNIX streams, STDIN and STD-
OUT to process and return information. Our combinator language works on top
of this standard ambient and provides, through the web portal, a set of primitives
that channels information through tools.

This combinators language is powerful enough to allow parallel chains of
analysis, for example, when a user wants to integrate into the report two different
results from two different types of analysis which are in no way related, while
isolating them (failures in one chain do not necessarily imply the failure of the
whole analysis, as the system tries to isolate errors). This is achieved through
a meta-script that is generated by these combinators and controls systems calls
and the flow of information through the tools that integrate the analysis.

Another important feature of our analysis combinators language is type
checking. Tools by themselves are not type-constrained - they are just bash
tools consuming and returning information through standard streams, but on
practice tools have specific limitations according to the analysis they perform:
some might work on Java or C, others on Haskell or even on XML, so there is a
need to constrain these specifications on our combinators language.

In the previous example, we can see that tools are called with parameters,
such as in: (slicer,”-j”,”-jpeg”). This parameters are used to indicate the types
this tool will deal with. In this case, the tool will read Java code and produce a
JPEG.

To avoid potential type errors, we force tools to have, in our web portal
database, a set on input and output types, which can be triggered by the argu-
ments when calling the tools. When creating a Certification, the user is forced to

A Framework for Modular and Customizable Software Analysis 5

Combinator
Language

Perl Script

System
Call

System
Call

System
Call

Final
Report

Language
Dependent
Certification

U
pl

oa
de

d
So

ftw
ar

e

Fig. 1. The combinator language for tools.

say explicitly the types of information one expects the tools to handle, and the
machinery inherent to this language checks if the tools support the given types
and if the types match between the flow on information throughout the tools.

Figure 1 shows an overview of the whole process: the user defines an analysis
schema on the web portal using the combinators primitives, which is transformed
into a Perl script, which does a set of systems calls to the tools that constitute
the analysis and produces a report that the user can visualize on the web portal.

Through this combinator language one can easily create analysis suits on
our web portal, which are self-contained but modular and can be further used
to create more analysis. In [1] we explain in detail the creation, the usage and
the inherent mechanisms that support this combinators, such as our Attribute
Grammar-based type checker.

3 Report Combinators

In the previous section we have reviewed a combinator language that allows
a user to easily create test suits using combinator primitives that specify an
underlying script responsible for making controlled system calls and transform
them into a report.

We have showed how powerful and simple a combinator language can be for
controlling and creating test suits, but there is still one important part of that
analysis - the report - where the user has no control whatsoever. This might
not seem like a big problem for small analysis, but for situations when the user
wants to perform a huge set of analysis, being able to organize their results is
very important for being able to understand the analysis itself.

In this section we will review a combinator language that allows precisely this:
through it, the user is capable of organizing and customizing the layout of the

6

report and even personalizing it with custom titles and notes. This language,
together with its implementation as well as the algorithms that support it is
further analyzed in [3].

Next, we present an example of a report specified with our combinator lan-
guage for reports. Similarly to the previous example, it is also written in Haskell.

Example of a report defined with combinators:

report = Init >| ("Memory Tests",

(beginSubsection $ cert1)

)

>- ("Usability Tests",

(beginSubsection $ cert2)

>-- ("Result of Cert3", cert3)

>-- (cert4)

)

These combinators are used to specify reports, so through them the user can
defined wether a certain certification should fit into a section, or a subsection or if
should have a customized title. In the particular case of report, it is composed by
4 different certifications, here named cert1 to cert4 for simplicity, whose results
are organized through sections and subsections.

The report starts with >|, whose only purpose is to start a report. This
combinator is mandatory and its single usage represents the smallest report
possible, composed by one section only.

In this particular example, the combinator is immediately followed by the
string ”Memory Tests”, which represents the name of this section, and by another
primitive, beginSubsection that, as the name clearly states, creates a subsection.
This subsection is unnamed, because it is followed directly by a certification,
and not by a string and a certification. The machinery responsibly for the im-
plementation of these combinators gives standard names such as ”Subsection 1”
in cases like these.

The primitive >| can be followed by an infinite number of >-. Each of these
create a new section, with the exact same rules we have seen: it’s name can
be customized by writing a string immediately after and it can be followed
by the primitive beginSubsection to further structure the report. In this case,
report is composed by two sections, named ”Memory Tests” and ”Usability Tests”
respectively.

There is also the option to create an infinite number os subsections for each
section in the report. In this case, the results is cert3 and cert4 are both integrated
into subsections of ”Usability tests”, using the combinator >--. It is important
to note that in the case of the result of cert3, a custom name is given to the
subsection that integrates its result: ”Result of Cert3”. The programmer chose
not to customize the title of the result of cert4.

A Framework for Modular and Customizable Software Analysis 7

Next, we present the XML file created by the combinators that implement
report.

Example of a report generated with combinators:

<?xml version="1.0" encoding="ISO-8859-1"?>

<section title="Memory Tests">

<subsection>

c1_result

</subsection>

</section>

<section title="Usability Tests">

<subsection>

c2_result

</subsection>

<subsection title="Result of Cert3">

c3_result

</subsection>

<subsection>

c4_result

</subsection>

</section>

As stated earlier, reports in our web portal environment are represented by
XML files. The user is presented with an HyperText Markup Language (HTML)
report in our portal, but it is just an transformation using eXtensible Stylesheet
Language Transformations (XSLT) of the XML file, to which the user always has
access. This also holds for the tool combinators presented in the previous section.

4 Non Source Code Software Analysis

Besides source code, another fundamental source of information about open
source software lies in documentation, and other non source code files, like
README, INSTALL, or HowTo files, commonly available in the software ecosys-
tem. These documents, written in natural language, provide valuable informa-
tion during the software development stage, and also in future maintenance and
evolution tasks.

The CROSS research project aims at developing software analysis techniques
that can be combined to assess open source software projects. Although most of
the effort is spent analyzing source code, non-source code content found in pack-
ages can have a direct impact on the overall quality of the software. Forward
et al survey [5] about the general opinion of software professionals regarding
the relevance of documentation and related tools, highlights the general con-
sensus that documentation content is relevant and important. It also highlights

8

that software documentation technologies should be more aware of professionals’
requirements, opposed to blindly enforce documentation formats and tools.

Documentation analysis is also relevant in other research areas. Program
Comprehension is an area of Software Engineering concerned with gathering
information and providing knowledge about software, to help programmers un-
derstand how a program works in order to ease software evolution and main-
tenance tasks [6]. Many of the techniques and methods used rely on mappings
between program elements and the real world concepts these elements are ad-
dressing [7]. Non-source code content included in software packages can provide
clues and valuable information to enhance the creation of these mappings. Pro-
gram maintainers often rely on documentation to understand some key aspects
of the software [8].

DMOSS6 is a toolkit designed to systematically assess the quality of non
source code text found in software packages. The goal of the toolkit is to provide
a systematic approach to gather metrics about this content and assess its quality.
It starts by gathering content written in natural language found in the package,
process this content to compute metrics, and finally reason about these metrics
to draw conclusions about the overall software quality. The toolkit handles a
software package as an attribute tree, and the major engines for processing a
package are implemented using tree transversal techniques. The specific metric
calculations are made using a specialized set of plugins, that are responsible
for: (1) analyzing a specific chunk of text and produce a metric, (2) reduce
and aggregate sets of metrics to produce intermediate and final results, and
(3) use templates for creating report snippets. Adding features to the analysis
workflow is just a matter of adding a new plugin. This approach has allowed the
development of a modular and pluggable toolkit, easy to maintain and extend.
The toolkit can process any package, regardless of programming language used,
but the text extracting tool (from files) can require update for some specific
archiving technologies or documentation formats.

Assessing software quality for any given definition of quality is not easy [9]
mainly due to subjectivity. DMOSS evaluates the non-source code files included
in a software package. This set of files can include README files, INSTALL
files, HTML documentation pages, or even UNIX man(ual) pages. Instead of
trying to come up with a definition for quality, we select three main traits that
we are concerned about. We envisage that these characteristics have a direct
impact in the overall documentation quality regardless of the degree of individual
subjectivity.

– Readability: text readability can be subjective, but there are linguistic char-
acteristics that generally make text harder to read. Some of them can even
be measured, as for example, the number of syntax errors or the excessive
use of abbreviations;

– Actuality: this is an important feature of documentation and other textual
files, they should be up-to-date, and refer to the latest version of the software;

6 Documentation Mining Open Source Software

A Framework for Modular and Customizable Software Analysis 9

– Completeness: this trait tells us how much the documentation is complete,
and if it addressees all the required topics.

DMOSS processes a software package to gather information about specific
metrics that are related with these traits.

The dmoss-process tool provided by the toolkit is used to process a package.
The result of processing a given package is a tree, decorated with attributes
storing the calculated set of features. Another tool provided by the toolkit is
dmoss-report, that uses the result of the previous tool to create a report in HTML
format. An example report, created for the tree7 software package (version 1.5.3)
is illustrated in Figure 2.

Fig. 2. Screenshot of a HTML report produced using DMOSS8.

This report shows metrics that are used to grade key features about the pack-
age. For example, many documents in software packages contain links to official
websites or discussion forums, one of the plugins included in the toolkit validates
that these link are still working. If all links included in the documentation are
working this feature is graded A. Another example is the number of comment
lines in order to the total source code lines. In this specific case the percentage of
comment lines per number of line codes is below 20%, which graded this feature
of documentation with grade F. Some of these features are based on thresholds,
that can be configured and adapted to specific contexts or packages. By clicking
on each specific feature in the HTML report, more information is shown regard-
ing each specific metric. A final grade is given to the package (C in this report),
which is the features’ grade average.

For more details about the DMOSS toolkit please refer to [10].

7 Available from http://mama.indstate.edu/users/ice/tree/.
8 Figure requires colored printing for optimal visualization.

10

5 Improving Software Analysis in CROSS

We have revised in Sections 2, 3 and 4 different technologies that aid in software
analysis by implementing techniques that are applied in the analysis customiza-
tion, in its resulting data and in the verification of important meta-information
orthogonal to most software systems.

Tools
Combinator
Language

Language
Dependent
Certification

Final
Report

Final
Customized

Report
Reports

Combinator
Language

La
ng

ua
ge

In
de

pe
nd

en
t

An
al

ys
is

Uploaded
Software

Fig. 3. A framework for software analysis.

In this section we describe how the integration of different technologies cre-
ates an inter-dependent ecosystem that is capable of producing important arti-
facts whose information can help in understanding, improving and expanding a
huge domain of programs written in various programming languages.

In Figure 3 we present the overall analysis framework that constitutes our
analysis environment. We can clearly see three technologies in action and how
they are interconnected:

– The tool combination language is being used to create language-dependent
certifications, which can, alone, evaluate and analyze software artifacts. These
certifications are built upon software tools existing in the web portal, and
represent controlled flows of information through these tools, until a desired
result is obtained.

– The report combination language is built upon the certifications created with
the tool combination language. Working in a similar fashion, this time we
are not controlling the analysis itself, but rather the data it provides. With
the introduction of this technology, different certifications can be structured
to create powerful and customized reports.

– The language-independent analysis works as a layer providing contextual
information for uploaded software resources. It is independent of the type of

A Framework for Modular and Customizable Software Analysis 11

analysis, being it a simple certification or a complex multi-certification set,
and provides important results about the uploaded software.

The analysis framework suggested in this paper is the result of the integration
of all these technologies into a setting that uses the main advantaged of which
one of them to support powerful software analysis.

5.1 Integrating the Report Combinators

The technology to customize certifications by creating flows of information across
heterogeneous tools in already integrated in our web portal [2], and is an im-
portant way in which software can be analyzed and studied in our environment.
The structure of the reports that results from that analysis, on the other way,
was predetermined and its structured was steady.

The machinery presented in Section 3 was explicitly created to solve this
issued, with its integration designed to be natural to our environment and its
usage intuitive and similar to the usage of other CROSS mechanisms, both for
analysis of specifications.

Specifying a report in our web portal works in parallel with creating a certi-
fication with the tools combinators: all certifications can be used and combined
into a custom report, but this task is done in two steps: first the user creates a
set of certifications he wants to compose into an analysis suite (or uses the ones
that already exist in the portal’s database) and then he specifies how this suite
of certifications is composed into a structured report.

Reports
Combinator
Language

Perl Script

System
Call

System
Call

Certification

Final
Customized

Report

Certification

Certification

System
Call

XML
Handler

U
pl

oa
de

d
So

ftw
ar

e

Fig. 4. The combinator language for reports customization.

Figure 4 shows how this machinery integrates into our web portal. It starts
with report customization based on previous existing certifications. Since certi-

12

fications represent by themselves analysis suites, these are applied in order until
all their results is obtained. The next step is to pass the results through an
XML Handler, whose responsibility is to arrange them according to the user
specification.

Similarly to the architecture sketched in Figure 1, the final report is presented
in HTML format, although it exists as raw XML to which the user has access.
The analysis engines also try to isolate errors and apply the analysis even if there
are problems with its constituting certifications.

With the introduction of this technology, we believe our analysis environment
becomes more powerful while maintaining it easy to use, by facilitating the
important step of analyzing the final data through which qualifiable results are
obtained.

The access to the XML file that results from analyzing software is also an
important feature since users might want to apply further automated analysis
to the results produces by our framework, being XML an optimum medium for
this analysis. This automation can even be performed by uploading the XML
report into capable certifications specified in the framework itself.

5.2 Integrating Language-Independent Analysis

Since a language-independent analysis is an important technology to be inte-
grated in any software analysis, the mechanics of our framework imply this tech-
niques constitutes a layer which, by being orthogonal to any software artifact, is
also orthogonal to any analysis.

The modular nature of our framework implies this analysis was easily inte-
grated, and its results are as customizable as the results of any other certification,
aiding in the quality and in the data of the final report.

6 Case Study

In this section, we apply our software quality framework to a software artifact of
practical interest: we analyze the VLC media player (VLC)9. This is a free, open
source and cross-platform multimedia player whose capability of playing various
multimedia encoded files and various streaming protocols make it a well-known
and widely used tool. We have used the source code from VLC version 2.0.510 that
is available from SourceForge11, a well-known, web-based source code repository
that hosts more than 300000 projects. The VLC version that we have used is of
size 18.4 MBytes and contains more than 3500 files.

To test VLC, we envisioned a test composed of:

1) Our default language-independent analysis to produce generic results regard-
ing the software documentation and the overall quality of its source code.

9 http://www.videolan.org
10 http://sourceforge.net/projects/vlc/files/2.0.5/vlc-2.0.5.tar.xz/

download (accessed in 2013-2-14).
11 http://sourceforge.net

A Framework for Modular and Customizable Software Analysis 13

2) A certification to compute the number of C source files (in particular, this
certification searches for *.c files).

3) A certification that identifies C source-code files in which function strcat()
is used. Unless care is taken, this function can cause memory overwriting,
and in extreme cases allows hacking of the target machine through buffer
overflow12. The use of this function in a program does not necessarily imply
that it is unsafe, but may raise improvement concerns.

4) A certification that produces the number of C++ lines of code throughout
the entire project to give a general overview of the amount of functionality
that is implemented in this language.

Certifications 1) to 4) are composed using our combinator language for re-
ports, with the results of certifications 1), 2) and 4) being shown in the first,
second and third sections of the report, respectively. The result of certification
3) is intended to be shown as a subsection of the second section, providing the
overall perspective illustrated as follows:

1) Language
Independent

Analysis

2) Certification
number of C

files

3) Certification
usage of
strcat()

4) Certification
number C++
lines of code

Section 1

Section 2

Subsection 2.1

Section 3

Report

VLC

Fig. 5. An example of an analysis.

The analysis that we have implemented is straightforward: VLC feeds a seri-
ous of certifications that analyze different aspects of it while producing a struc-
tured report. While certifications larger in number and in complexity and more
structured reports are possible within our framework, we have opted to maintain
our running example as simple and clear as possible.

In Figure 7 (page 16) we see the final resulting report that was produced
after analyzing VLC. The first thing to notice is the structure of the report:
it is easy to read and to understand, and we see the subdivision specified in

12 http://en.wikibooks.org/wiki/C_Programming/C_Reference/string.h/strcat

(accessed in 2013-2-14).

14

Figure 5. It is important to remember that the final report is always an XML
file, which we do not show here due to size constrains, and the layout presented
is the HTML file we choose to generate from the original XML report. The user
is free to personalized this transformation as he finds better suits his/her needs,
or even analyze the XML file directly.

Fig. 6. One example of the results provided by the language-independent analysis13.

The language-independent analysis is shown as a series of colored lists. This
lists represent the various fields that are analyzed, and that go from licenses veri-
fications to spell checking. These fields are colored depending on how critical the
results are, and are fully expandable to show details about each specific analysis.
Figure 6 shows an example of the expanded results of the field: ”Verify Links”.
These are green, meaning the results are good, and show each link individually
and its status, indicating if they are either online or offline. All the fields of the
language-independent are expandable to show details about its analysis.

Another interesting result is the number of files our analysis found which
use the function strcat(). We found thirteen files in the source code of VLC
that use this function, indicating good points for possible optimizations of the
software. It should be noticed that due to the high modularity of our framework,
the user could easily change this certification to show simpler results, such as
only indicating if it found any usage of strcat(), or more complex ones, where
the exact line and column of each file is presented in the report. Making these
modifications would imply only very simple transformations to the certification
that searches for these parameters.

By looking at the results presented in Figure 5 we can obtain interesting in-
formation about a random software package, VLC, even though we choose a very
simple analysis made by simple certifications. We believe such interesting re-
sults obtained by this simple analysis suite prove the potential of our framework
to support complex examinations and, more important, to produce important
information from software artifacts.

13 Figure requires colored printing for optimal visualization.

A Framework for Modular and Customizable Software Analysis 15

7 Conclusion

In this paper we have revised different technologies that aid in software analysis,
and which we have combined into an analysis framework that is modular and
flexible, allowing an easy implementation of software analysis both by integrating
new techniques and by re-organizing existing ones.

We have furthermore applied one example of such an analysis to a well known,
medium sized but realistic software product from the open source community,
whose results are promising and prove the potential of our framework.

As for future work, we will be focusing our attention on flexible and effective
ways of spreading the analysis results other than simply showing them on a
browser.

References

1. Martins, P., Fernandes, J.P., Saraiva, J.: A purely functional combinator language
for software quality assessment. In: Symposium on Languages, Applications and
Technologies (SLATE ’12). Volume 21 of OASICS., Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2012) 51–69

2. Martins, P., Fernandes, J.P., Saraiva, J.: A web portal for the certification of open
source software. In: 6th International Workshop on Foundations and Techniques for
Open Source Software Certification (OPENCERT ’12) (to appear). LNCS, Lecture
Notes in Computer Science (2012)

3. Martins, P., Fernandes, J.P., Saraiva, J.: A combinator language for software qual-
ity reports. International Journal of Computer and Communication Engineering
2 (2013)

4. Simon, Hughes, J., Augustsson, L., Barton, D., Boutel, B., Burton, W., Fasel,
J., Hammond, K., Hinze, R., Hudak, P., Johnsson, T., Jones, M., Launchbury,
J., Meijer, E., Peterson, J., Reid, A., Runciman, C., Wadler, P.: The Haskell 98
Report (1999)

5. Forward, A., Lethbridge, T.: The relevance of software documentation, tools and
technologies: a survey. In: Proceedings of the 2002 ACM symposium on Document
engineering, ACM (2002) 26–33

6. Nelson, M.L.: A survey of reverse engineering and program comprehension. CoRR
(2005)

7. Rajlich, V., Wilde, N.: The role of concepts in program comprehension. In: Pro-
ceesing of the 10th International Workshop on Program Comprehension, 2002.,
IEEE (2002) 271–278

8. Thomas, B., Tilley, S.: Documentation for software engineers: what is needed to aid
system understanding? In: Proceedings of the 19th annual international conference
on Computer documentation, ACM (2001) 235–236

9. Kitchenham, B., Pfleeger, S.: Software quality: the elusive target [special issues
section]. Software, IEEE 13(1) (1996) 12–21

10. Carvalho, N.R., Simões, A., Almeida, J.J.: Open source software documentation
mining for quality assessment. In: WorldCIST’13 - World Conference on Informa-
tion Systems and Technologies Proceedings (to appear). (2013)

16

Analysis report:
This report was validated by our XML Schema.

This report was generated on 2013-13-02.
The file uploaded was: vlc-2.0.5.tar.xz

Language Independent Analysis

Description:
Small descrition goes here. More information in:
http://eremita.di.uminho.pt/~nrc/cross/dmoss.html.

Result:

Number of C source files

Description:
This certification gives the number of files whose extension is '*.c'.

Result:

Number of C++ lines of code

Description:
This certification gives us the number of lines of code
in all the files whose extension is '*.cpp'.

Result:

This program has 89116 lines of C++ source code.

This program has 765 C files.

End of the report!

Files where the function strcat() is used

Description:

This certification shows all the files where the function strcat() is used.
A revision of these files is advised.

Result:

./doc/libvlc/vlc-thumb.c: 1

./modules/access/rtsp/real.c: 1

./modules/access/zip/zipaccess.c: 1

./modules/demux/mp4/drms.c: 1

./modules/demux/subtitle.c: 11

./modules/media_library/sql_monitor.c: 1

./modules/packetizer/vc1.c: 0

./modules/services_discovery/sap.c: 1

./modules/stream_filter/httplive.c: 1

./src/input/var.c: 1

./src/misc/update_crypto.c: 1

./src/playlist/loadsave.c: 1

./src/stream_output/sdp.c: 1

Fig. 7. The report produced after analyzing VLC.

