Dreams: a framework for distributed synchronous
coordination’

José Proenca Dave Clarke
IBBT-DistriNet, KUL
Leuven, Belgium

{jose.proenca,dave.clarke}@cs.kuleuven.be

ABSTRACT

Synchronous coordination systems, such as Reo, exchange
data via indivisible actions, while distributed systems are
typically asynchronous and assume that messages can be de-
layed or get lost. To combine these seemingly contradictory
notions, we introduce the Dreams framework. Coordination
patterns in Dreams are described using a synchronous model
based on the Reo language, whereas global system behaviour
is given by the runtime composition of autonomous actors
communicating asynchronously. Dreams also exploits the
use of actors in the composition of coordination patterns to
allow asynchronous communication whenever possible, in-
creasing the scalability of the implementation.

Keywords

Reo, synchronous coordination, actor model, distributed sys-
tems

1. INTRODUCTION

Synchronous languages, such as Reo [4] and Esterel [9],
are useful for programming reactive systems, but they seem
less suited for coordinating distributed systems. For exam-
ple, existing implementations based on Reo [6] do not scale
up and have expensive reconfiguration costs, mainly due to
the global synchronisation constraints imposed by Reo.

To remedy this situation, the GALS model [12] has been
adopted, GALS abbreviating globally asynchronous and lo-
cally synchronous, wherein local computation is synchronous
but communication between actors running on different ma-
chines is asynchronous. Our work contributes to the field
of coordination, in particular to Reo, by incorporating the
ideas underlying GALS into our approach to execute syn-
chronisation models, thereby increasing scalability and al-
lowing inexpensive reconfiguration.

*This research is supported by FCT grant 22485 — 2005,
Portugal, and by the K.U.Leuven BOF-START project
STRT1/09/031 DesignerTypeLab, Belgium.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

SAC’12 March 25-29, 2012, Riva del Garda, Italy.

Copyright 2011 ACM 978-1-4503-0857-1/12/03 ...$10.00.

Erik de Vink
TUE, Eindhoven,
The Netherlands

evink@win.tue.nl

Farhad Arbab

CWI, Amsterdam,

The Netherlands
farhad.arbab@cwi.nl

“\»'
- ~

Figure 1: Distributed coordination of web services.

This paper introduces Dreams, an acronym for distributed
runtime evaluation of atomic multiple steps), a decentralised
framework that supports the execution of multiple concur-
rent threads, each describing part of the global coordination
behaviour. Furthermore, we statically partition the con-
current threads performing coordination into smaller sets,
called synchronous regions. This partitioning allows com-
munication among threads within a synchronous region to
be handled synchronously, having asynchronous communica-
tion between synchronous regions only. In short, the main
contributions of this paper are:

— support for decoupled execution of Reo,
— improved scalability, and
— possibility of inexpensive reconfiguration.

Dreams uses an underlying actor model [1, 2]. Primitive
coordinators, which we simply call actors, exchange asyn-
chronous messages. In the Reo setting, an actor of Dreams
manages one or more Reo channels, nodes, or connectors.
The communication among actors follows the graph struc-
ture of the corresponding Reo connector, which restricts the
potential communication partners of each actor to its neigh-
bours. Figure 1 illustrates the main idea behind Dreams. It
depicts the coordination of four different services, connecting
a phone-based and an Internet-based service to book hotels.
Each hotel provides its own reservation service. A cloud
represents an actor, an independent thread of execution of
the coordination layer which cooperates with it neighboring
actors via asynchronous messages.

Each actor has an associated behavioural automaton [23]
that describes its behaviour. The global coordination be-
haviour is given by the composition of the automata of all
actors. The Dreams framework supports the distributed ex-
ecution of the coordination mechanism. The network is rep-
resented by the net of clouds in Figure 1.

In this paper we focus on the key design decisions in the
development of Dreams and evaluate its performance, but do

not describe the protocol that the actors use to impose the
global synchronous constraints, which can be found in [23].
Moreover, at present the Dreams framework does not address
failure, and assumes that the exchange of messages between
actors always succeeds in finite time. However, we envisage
failure addressed orthogonally at a later stage, as suggested
by existing techniques for distributed programming [15].

We provide an overview of Reo in §2. The Dreams frame-
work is explained in §3, and the current state of its imple-
mentation is briefly described in §4. We include also a small
benchmark to compare our implementation with another ex-
isting Reo engine. We compare Dreams with related work
in §5, and conclude in §6.

2. REO OVERVIEW

‘Reo is a channel-based coordination language with a graph-
ical notation, introduced by Arbab in 2001 [3], wherein com-
plex connectors are built out of an open set of primitive con-
nectors, also simply called primitives. Reo is synchronous,
exogenous, and composable, yielding an expressive and in-
tuitive coordination model. Channels are special primitives
with two ports, which can either send or receive data. For
example, the Sync channel ‘a — > b’ is a primitive
that receives data through port a and sends it through port
b atomically, that is, it only receives data if it can also send
it. The LossySync channel ‘a------- >b’ can either for-
ward data from a to b atomically, as the Sync channel, or
discard data received through port a. The SyncDrain chan-
nel ‘a>——=<b’ has two input ports, and requires both
ports to have dataflow atomically, or no dataflow is possi-
ble. The FIFO; ‘a—{L—1F—¥’ is a stateful channel: when
empty it can receive a data token through the port a, becom-
ing full, and when full it can send the previously received
data through the port b.

Connectors are composed via Reo nodes. A Reo node,
depicted as @, is a primitive with a set of input ports and
a set of output ports. Semantically, a Reo node receives a
data item from only one of its input ports at a time, and
atomically, replicates this data item to all of its output ports.
The left side of Figure 2 depicts a sequencer connector, used
as a running example throughout this paper. This connector
has three input ports, a, b, and ¢, which send data atomically
to the three output ports d, e and f, respectively. The Sync-
Drain channels and the loop of FIFO; channels enforce the
alternation between the atomic sending of data. Initially,
only a can send data to d, and only in a following step can
b send data to e.

The Dreams framework uses behavioural automata [23] to
give semantics to Reo. We do not present here behavioural
automata, and describe only the main concepts behind this
model. Each label of a behavioural automaton describes
an atomic step that the corresponding connector can per-
form. A label in this model represents, among other things,
a set P of known ports and a set F© C P of ports with
dataflow. When composing two connectors, the labels of
each automata are composed in a pairwise fashion via a par-
tial function ®, which is undefined when the actions in the
two labels cannot be performed in the same atomic step.
Furthermore, the actions in some labels can be performed
without being composed with another label, according to a
predicate associated with each of the states of a behavioural
automaton.

3. COORDINATION VIA ACTORS

The distribution mechanism introduced by the Dreams
framework addresses the limitations of centralised approa-
ches for implementing synchronous languages. Primitive en-
tities in Dreams are actors [1, 2]. An actor is an active entity
that runs concurrently with other actors and communicates
with them using a reliable, order-preserving asynchronous
message passing mechanism. Each actor has an associated
behavioural automata, used to describe the synchronous se-
mantics of the coordination layer.

We now briefly summarise the protocol used to impose the
global synchronous constraints. Dreams evolves in rounds,
in a manner similar to other Reo engines [7, 14|, where each
round consists of four distinct phases. In the request phase
a subset of actors, defined later in this section, sends a mes-
sage to each of its neighbours asking for the part of their
behavioural automata relevant for the current round. In
turn, the neighbours will also ask the behavioural automata
of their own neighbours, and so on. In the atomic com-
mitment phase a single actor succeeds in collecting the au-
tomata of all actors, and selects a transition to be executed
in the current round. The selected transition is propagated
to all actors along with the appropriated data in the prop-
agation phase. Finally, each actor updates the state of its
behavioural automaton according the selected transition in
the update phase.

This paper focuses on choosing the actors involved and
on the properties of the exchanged behavioural automata,
carving out the essence of the protocol used to coordinate
the actor system [23]. Intuitively, actors propagate requests
for the behavioural automaton of their neighbours, starting
by at least one actor, until all the system is covered. Re-
quests have an associated rank value, based on the actor that
started to propagate the request, which is used to resolve
race conditions. After collecting and deciding the atomic
step of the global system, actors propagate this step, possi-
bly including also the data value flowing through the asso-
ciated port or a data request. After all actors perform their
associated steps, the state of their behavioural automata is
updated, and a new round starts.

3.1 Reo as a system of actors

The existing implementation of the Dreams framework
currently incorporates two concrete incarnations of behav-
ioural automata: one based on connector colouring [13] and
one on constraint-based models of Reo [14]. Each Reo chan-
nel is mapped directly to an actor with a concrete incarna-
tion of the behavioural automaton given by its Reo seman-
tics. Merging and replicating of dataflows are performed by
Reo nodes with multiple input and output ports, each of
which is also mapped to a single actor.

We depict a possible encoding of the sequencer Reo con-
nector into the Dreams framework in Figure 2, according
to the extreme scenario where every node and channel is
mapped to a separate actor. The sequencer connector for-
wards data from a to d, then from b to e, and finally from
¢ to f, returning to its original state. Alternatively, we can
also define a single actor with the combined behavioural au-
tomaton of the full connector, resulting in a centralised im-
plementation of this connector. The sequencer connector is
a variation of some of van Der Aalst’s workflow patterns [24].
Following the ideas behind our motivating hotel example, a

Figure 2: Sequencer connector in Reo (left) and its
encoding into Dreams (right).

possible usage of this connector is to alternate the connec-
tion to different receptionists in a single hotel.

Proactive actors

A proactive actor, depicted with thick borders Q in Fig-

ure 2, is a special actor that can produce or receive data
through one of its ports independently of any of its other
ports. Intuitively, an actor is proactive if it has a port, the
proactive port, that, in a particular reachable state, sends
or receives data that is independent of the data at any of the
other ports. Proactive actors are responsible for starting to
send requests in each round, and for selecting the transition
to be performed.

Example. In the case of the empty FIFO1 channel, its in-
put port is proactive because for any possible value flowing
through a, this atomic step does not depend on the data flow-
ing on b. In turn, its output port is not proactive when the
FIFO: channel is empty because it cannot have dataflow.

The Dreams framework makes two additional assumptions
to avoid the scenario where proactive actors constantly try
to send or receive data without success. First, a transition
without dataflow, i.e., labeled with an empty set of ports,
does not change the state of a behavioural automaton. Sec-
ond, during the atomic commitment phase a transition with-
out dataflow can be selected only if there is no transition
with dataflow possible.

3.2 Synchronous regions

Scalability in Dreams is achieved via a true decoupling of
the execution. The specification of a Dreams configuration
as a set of connected actors that can execute concurrently
already provides a basic decoupling of the execution. We go
beyond this basic decoupling by analysing the behavioural
automata of the actors involved and identifying links be-
tween actors that require only asynchronous communication.
We depict these truly asynchronous connections using dot-
ted lines, as shown between some of the clouds in Figure 3.

The presence of asynchronous communication yields what
we call synchronous regions, depicted in Figure 3 by a grey
background grouping actors from the same region. Actors
in the same synchronous region must reach consensus in
each round of communication, but actors from different syn-
chronous regions can communicate asynchronously over sev-
eral rounds. Reducing the number of actors involved in the
search for a consensus reduces the complexity of this search,
which is confirmed by our benchmarks.

Synchronous regions communicate with each other only
using asynchronous messages. In Figure 3 we divided the se-

Figure 3: Division of the sequencer connector into
synchronous regions.

quencer connector, introduced in Figure 2, by splitting each
actor associated with a FIFO; channel into two new actors
that communicate only asynchronously. The splitting of ac-
tors is performed at compile time, based on the behavioural
automata of the actors.

Splitting actors

The behavioural automata of an actor may execute asyn-
chronously at their ports. For example, the behavioural au-
tomaton of the FIFO; channel can evolve each of its ports
asynchronously: if the source and sink ports can perform
steps with labels ¢; and ¢2, respectively, then performing
the composed step with label /1 ® ¢2 is equivalent to per-
form ¢; and /> one at a time. The criteria for deciding if
ports behave asynchronously is formalised by Proenca [23],
and omitted in this paper. When ports from an actor ex-
hibit asynchronous behaviour we can split the actor into two
smaller actors, each with its own set of ports, that commu-
nicate with each other using asynchronous messages only.

We split the behavioural automaton of an actor with ports
P by duplicating it, and by restricting each copy of the
automaton to two disjoint sets of ports X and Y, such
that X UY = P. Each split actor communicates with the
other split actor only by sending it an asynchronous message
whenever its state is updated.

4. IMPLEMENTATION

We developed a prototype Dreams engine to experiment
with our approach, using an actor library for the Scala lan-
guage [16]. The current version of the source code of the
prototype is available in the Reo repository." Deploying a
Reo connector creates an actor for each Reo primitive and
node, which run in concurrent threads. Deployed FIFO;
channels are split, as explained in §3.2. Note that the al-
though we deploy split actors, we did not yet automate the
splitting process. We also implemented data producers and
data consumers of a given number of data values. Data con-
sumers, data producers, and FIFO; channels are deployed as
proactive actors, while the other Reo primitives and nodes
are non-proactive.

The actor library for Scala allows actors to execute on
different machines connected through IP. Using this func-
tionality, our implementation allows the deployment of the

lreo .project.cwi.nl/cgi-bin/trac.cgi/reo/browser/
reo-engine

reo.project.cwi.nl/cgi-bin/trac.cgi/reo/ browser/reo-engine
reo.project.cwi.nl/cgi-bin/trac.cgi/reo/ browser/reo-engine

actors of a single connector onto different machines. Fur-
thermore, we developed a graphical deployment plug-in for
Eclipse. It uses the Reo editor included in the ECT frame-
work? [6, 19] to extract information from the connectors
under construction. The user, the developer of a Reo ap-
plication, can then deploy and run actors associated with
primitives in the editor using a graphical interface. How-
ever, in our benchmark all actors of a connector execute
concurrently on a single machine as the Reo engine that we
use for comparison is centralised.

Evaluation

We evaluate the performance of our implementation of the
Dreams framework by considering the time to create a Reo
connector and to perform the communication to pass a se-
quence of data values from some writers to some readers.
Each of the writers in our experiments produce exactly four
small strings. For comparison, we use the constraint au-
tomata-based implementation of Reo [7], which we call the
CA engine. To the best of our knowledge this is the most
complete and well supported Reo engine, and no other dis-
tributed engine for Reo exists. Our main concern is the per-
formance of a connector that evolves in time, acknowledging
the time to deploy a connector and the time to send data
through the connector. We present a generalisation of our
running example of the sequencer connector, and two sim-
pler examples with best- and worse-scenarios for each engine.
More details about the two engines used in our benchmark
follow below.

CA engine. The CA engine is a code generator and in-
terpreter of Reo connectors included in the suite of
Eclipse® plug-ins for Reo [6].* Tt uses a context inde-
pendent semantics of Reo, following the ideas of port
automata [18] extended with memory and data trans-
fer functions.

Dreams engine. The Dreams engine implements the frame-
work using the behavioural automata of Reo primitives
and nodes. We use the constraint-based approach with
context dependency [14]. In this benchmark we con-
sider the extreme (and less efficient) case where every
node, channel, and component is deployed as an inde-
pendent actor. The Dreams engine uses specific data
constraints that describe how data should be routed
within a channel or node, similar to the CA engine.

By associating each node, channel, and component to an
independent actor we emphasise the differences between the
CA and the Dreams engines. More optimal scenarios for
the Dreams engine would deploy one actor for a group of
connected Reo primitives, using their combined behavioural
automaton. For example, we can group actors from the same
synchronous region, as we will discuss later in this section.

We present three test cases. The first is a chain of n syn-
chronous channels,Syncs, the second a chain of FIFO; chan-
nels, Fifos, and the third is our running example of the se-
quencer connector generalised to a sequencer with n FIFO;
channels, Seq. Note that the sequence of synchronous chan-
nels is the optimal scenario for the CA engine and the worst

2reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools
3www.eclipse.org

4reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/
ea-codegen

scenario for the Dreams engine, due to its stateless nature.
In turn, the sequence of FIFO; channels is the optimal and
worst scenarios for the Dreams and CA engines, respecively.
The third test case is a more realistic, although still simple
example, that favours the Dreams engine due to the presence
of synchronous regions.

Results

All benchmarks were executed on a PC with an Intel® Core 2
Quad CPU Q9550 processor at 2.83GHz and with 7.8GB of
RAM, running Fedora release 10. For each value of n, we
performed 10 different executions and used the averages of
the measurement values. For each test case we evaluate two
different aspects, the time to build a connector and the time
to exchange data.

Build time. The creation of the connector is performed
once, after which the connector can be executed multi-
ple times. In the CA engine this comprises joining the
automata representations of all channels and nodes,
deploying a centralised engine, and connecting the en-
gine to the components. In the Dreams engine, creating
a connector consists of deploying each actor and estab-
lishing connections between them. Note that measur-
ing the build time in the Dreams engine requires the
use of a variable shared by all actors that is locked
whenever updated, introducing an unfair handicap ne-
cessitated only by our need for measurement.

Exchange time. After a connector is deployed and con-
nected, the exchange time consists of the time required
to exchange a sequence of messages between the com-
ponents until no more data can be exchanged. The
exchange time is calculated in both engines by mea-
suring the time when the first message is sent, and the
time when the last message is processed.

The results for our small benchmark are presented in Fig-
ure 4. In the CA engine, the sequence of synchronous chan-
nels achieves its best results, with a linear growth of the
build time, taking less than 3 seconds to compose 3000
channels with constant send time. The constant time is
easily explained by the fact that the composition of the au-
tomata of two Sync channels is again the automaton of a
Sync channel. The main problem is shown in the build times
of the FIFO; channels in the Fifos connector. An automa-
ton with 6 FIFO; channels already takes around 35 seconds
to generate. An automaton resulting from the composition
of 6 FIFO:’s (without hiding any intermediate node) has
2% = 64 states and 274 transitions, increasing the time to
compose the automata exponentially.® Note that, in the
case of the sequencer, once the loop of n FIFO; channels is
closed, the number of states drops to n.

Discussion

The main conclusion of our benchmarks is that the cen-
tralised engine cannot handle connectors even with a rel-
atively small number of FIFO; channels. The CA engine
builds the entire state space before perming any of the tran-
sitions, while the Dreams engine simply calculates how each
pair of FIFO;’s communicate in runtime. This gives the

5Since our evaluation several optimisations have been made
to the CA engine, improving its performance, but not affect-
ing our conclusions.

reo.project.cwi.nl/cgi-bin/trac.cgi/reo/wiki/Tools
www.eclipse.org
reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/ea-codegen
reo.project.cwi.nl/cgi-bin/trac.cgi/reo/browser/ea-codegen

CA engine Dreams engine

T T T T T
3 -]
2 | .
2) 8
= HEES
10 N ! 2
1
| | s S S
0 1000 2000 3000 200 400 600 800
T T T T T
30|
Q 2 -
&
— 20 =]
9 N
g 1h i
S 10 N
O Il L | | A ! x
2 4 6 0 500 1000 1500 2000
T T T T
10
2 -]
5]
5| 1 L 18
| |
2 4 6 8 10 12 1000 2000
size

Figure 4: Accumulative graph with results of the
evaluation of the build and send times for the Syncs,
Fifos and Seq connectors, using the CA and Dreams
engines. The top part represents the exchange time,
and the bottom part represents the build time.

Dreams engine a huge advantage over connectors that per-
form asynchronous communication. Furthermore, the Dreams
engine takes very little time to build and deploy its com-
ponents, making it more suitable for systems that are fre-
quently reconfigured. Observe also that reconfiguration of
part of a connector does not affect the runtime or even con-
current execution of the rest of the connector, because of
their decoupled execution.

Centralised implementations have an advantage over dis-
tributed implementations with respect to the runtime coor-
dination overhead. For some scenarios, the lower overhead
is more relevant than considerations for scalability or easy
reconfiguration. This suggests that some complex scenarios
may benefit from a hybrid deployment, where some parts of
a connector can be compiled using a centralised approach
(e.g., constraint automata), and deployed in a different lo-
cation as an actor. Ideally, a connector would be partitioned
automatically into its synchronous regions by an automatic
splitting mechanism, and each region would be compiled sep-
arately to run as a single actor. Note that although we call
this an ideal scenario, the developer of a system may still
desire to force a single synchronous region to be distributed
across a network, for example, because of hardware or soft-
ware requirements.

S. RELATED WORK

‘We now compare Dreams with other approaches to imple-
ment Reo, we refer to some of the most popular formalisms
used in industry, and we then look at some other languages

and tools that involve distributed coordination.

We distinguish five existing implementation approaches
for Reo, plus our approach. The speculative approach con-
sists of trying to send data through the channels and rolling
back when an inconsistency arises. The automata-based ap-
proach [20] pre-computes all future behaviour at compile
time. Implementations based on connector colouring [13]
compute all solutions for the behaviour of each round, de-
scribed as colouring tables, and deal with data transfer or-
thogonally. Existing search-based implementations are based
on SOS models and implemented either in Maude or in Al-
loy [22, 17], and can also be based on the Tile models [5].
Finally, the constraint-based approach [14] utilises SAT solv-
ing techniques to search for single solutions in each round.

The speculative approach is the only approach prior to
Dreams that aims to achieve a distributed implementation
of Reo. However, this approach was never successfully im-
plemented. Hence, Dreams is the first successful implemen-
tation of a distributed engine for Reo, and is based on a
commit and send approach.

The industry standard for coordination of web services,
the business process execution language (BPEL) [10], is a
block-structured language that uses a centralised execution
model, much like the automata-based implementations of
Reo. Reo has also been used for the composition of web
services. The mashup environment SABRE [20] built using
Reo, provides tools to combine, filter and transform web
services and data sources like RSS and ATOM feeds.

The two phase commit protocol, as well as some of its
variants, is well known in the context of fault tolerance in
distributed systems. Usually a centralised coordinator is in-
volved that exchanges asynchronous messages with a set of
participants. The protocol checks if all participants agree
to perform some transaction, or if there is any that aborts,
and communicates this decision back to the participants.
The distributed two phase commit (d2pc) protocol [11], in-
troduced by Bruni et al. as an extension of the 2pc protocol,
can be compared to the distributed agreement protocol in
the Dreams framework. Both approaches try to achieve a
global consensus, which consists of a commit or abort in
the case of the d2pc protocol and a description of a step
in the case of Dreams. Their work served as inspiration for
the development of the Dreams framework. Baragati et al.
developed a prototype application [8] for two different plat-
forms based on the d2pc protocol, using as a case study a
rescue unit composed of a central base and several teams.
Experiments in the Dreams framework involving real case
studies have not been performed yet.

Minsky and Ungureanu developed the Law-Governed In-
teraction (LGI) mechanism [21], implemented by the Moses
toolkit. This mechanism coordinates distributed heteroge-
neous agents, using a policy that enforces extensible laws.
Agents execute events that are regulated by some controllers
that enforce the laws. Laws are specified in a Prolog-like lan-
guage, but as opposed to Reo, they reflect local properties
only and do not require non-local synchronisation. The au-
thors emphasise the need to replace a centralised controller
imposing the laws of the full system by certified controllers,
one for each connection. As with the 2pc protocol, this re-
flects a need to decentralise coordination, which is the main
concern of the Dreams framework.

6. CONCLUSIONS

This paper introduces Dreams, a framework that provides
a distributed implementation based on the Actor Model for
coordination models that can be encoded with behavioural
automata, and how it is used in the context of Reo. We
summarise below our analysis of how the Dreams framework
meets the goals set out in the above.

Decoupling The basic building blocks of the Dreams
framework are actors, which execute concurrently. Dreams
takes advantage of this concurrency by identifying parts of
the connector that can be executed independently. We call
these parts synchronous regions. We propose a simple ap-
proach to exploit synchronous regions, yielding a true de-
coupling of execution.

Scalability As a consequence of decoupling the execution
of the instances of synchronous models such as RReo con-
nectors, no global consensus is required. Furthermore, the
behaviour is computed per step, avoiding the state space ex-
plosion that would result from computing all possible future
behaviour. These two factors form the basis for a scalable
implementation. The implementation of Dreams also allows
different parts of a connector to execute across physical ma-
chine boundaries.

Reconfiguration The single-step semantics provides a
very low deployment overhead, reducing the cost of recon-
figuration. Furthermore, reconfiguring a connector affects
only the synchronous regions that it modifies, while the rest
of the connector continues to execute.

Currently we have a functioning implementation of the
Dreams framework. The distributed implementation ben-
efits from specific implementation optimisations offered by
centralised schemes, in particular the compilation of con-
nectors into the automata of its synchronous regions. The
details of the implementation are described elsewhere [23].

7. REFERENCES

[1] G. Agha. Actors: a model of concurrent computation
in distributed systems. The MIT Press, 1986.

[2] G. Agha and P. Thati. An algebraic theory of actors
and its application to a simple object-based language.
In O. Owe, S. Krogdahl, and T. Lyche, editors, Essays
in Memory of Ole-Johan Dahl, pages 26-57. LNCS
2635, 2004.

[3] F. Arbab. Coordination of mobile components.
Electronic Notes in Theoretical Computer Science,
54:1-16, 2001.

[4] F. Arbab. Reo: a channel-based coordination model
for component composition. Mathematical Structures
in Computer Science, 14(3):329-366, 2004.

[5] F. Arbab, R. Bruni, D. Clarke, I. Lanese, and
U. Montanari. Tiles for Reo. In A. Corradini and
U. Montanari, editors, Recent Trends in Algebraic
Development Techniques, pages 37-55. LNCS 5486,
20009.

[6] F. Arbab, C. Koehler, Z. Maraikar, Y.-J. Moon, and
J. Proenga. Modeling, testing and executing Reo
connectors with the Eclipse Coordination Tools. In
Proceedings of FACS, 2008.

[7] C. Baier, M. Sirjani, F. Arbab, and J. J. M. M.
Rutten. Modeling component connectors in Reo by

8]

(12]

(13]

(14]

(15]

(16]

(17]

(18]

(19]

20]

(21]

(22]

23]

24]

constraint automata. Science of Computer
Programming, 61(2):75-113, 2006.

A. Baragatti, R. Bruni, H. Melgratti, U. Montanari,
and G. Spagnolo. Prototype platforms for distributed
agreements. Flectronic Notes in Theoretical Computer
Science, 180(2):21-40, 2007.

G. Berry. The foundations of Esterel. In G. D. Plotkin,
C. Stirling, and M. Tofte, editors, Proof, Language,
and Interaction, pages 425-454. The MIT Press, 2000.
BPEL4WS. Business Process Execution Language for
Web Services, May 2003.

R. Bruni, C. Laneve, and U. Montanari. Orchestrating
transactions in Join calculus. In L. Brim, P. Jancar,
M. Kretinsky, and A. Kucera, editors, CONCUR,
pages 321-337. LNCS 2421, 2002.

D. M. Chapiro. Globally-Asynchronous
Locally-Synchronous Systems. PhD thesis, Standford
University, 1984.

D. Clarke, D. Costa, and F. Arbab. Connector
colouring I: Synchronisation and context dependency.
Science of Computer Programming, 66(3):205-225,
2007.

D. Clarke, J. Proencga, A. Lazovik, and F. Arbab.
Channel-based coordination via constraint satisfaction.
Science of Computer Programming, 76, 2011.

R. Guerraoui and L. Rodrigues. Introduction to
Reliable Distributed Programming. Springer, 2006.

P. Haller and M. Odersky. Scala actors: Unifying
thread-based and event-based programming.
Theoretical Computer Science, 410(2-3):202-220, 2009.
R. Khosravi, M. Sirjani, N. Asoudeh, S. Sahebi, and
H. Iravanchi. Modeling and analysis of Reo connectors
using Alloy. In D. Lea and G. Zavattaro, editors,
COORDINATION, volume 5052, pages 169—183.
LNCS 5052, 2008.

C. Koehler and D. Clarke. Decomposing port
automata. In Proc. SAC ’09, pages 1369-1373, New
York, NY, USA, 2009. ACM.

C. Krause. Reconfigurable component connectors. PhD
thesis, LIACS, Faculty of Mathematics and Natural
Sciences, Leiden University, 2011.

7. Maraikar, A. Lazovik, and F. Arbab. Building
mashups for the enterprise with SABRE. In

A. Bouguettaya, I. Kriiger, and T. Margaria, editors,
1CSOC, pages 70-83. LNCS 5364, 2008.

N. H. Minsky and V. Ungureanu. Law-governed
interaction: a coordination and control mechanism for
heterogeneous distributed systems. ACM Transactions
on Software Engineering and Methodology,
9(3):273-305, 2000.

M. Mousavi, M. Sirjani, and F. Arbab. Formal
semantics and analysis of component connectors in
Reo. Electronic Notes in Theoretical Computer
Science, 154(1):83-99, 2006.

J. Proencga. Synchronous Coordination of Distributed
Components. PhD thesis, LIACS, Faculty of
Mathematics and Natural Sciences, Leiden University,
2011.

W. M. P. van der Aalst, A. H. M. ter Hofstede,

B. Kiepuszewski, and A. P. Barros. Workflow patterns.
Distributed Parallel Databases, 14(1):5-51, 2003.

	Introduction
	Reo overview
	Coordination via actors
	Reo as a system of actors
	Synchronous regions

	Implementation
	Related work
	Conclusions
	References

