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Abstract

Orc and Reo are two complementary approaches to the problem of coordinating components or services. On
one hand, Orc is highly asynchronous, naturally dynamic, and based on ephemeral connections to services.
On the other hand, Reo is based on the interplay between synchronization and mutual exclusion, is more
static, and establishes more continuous connections between components (services). The question of how
Orc and Reo relate to each other naturally arises. In this paper, we present a detailed comparison between
the two models. We demonstrate that embedding non-recursive Orc expressions into Reo connectors is
straightforward, whereas recursive Orc expressions require an extension to the Reo model. For the other
direction, we argue that embedding Reo into Orc would require significantly more effort. We conclude with
some general observations and comparisons between the two approaches.
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1 Introduction

Although the field of coordination languages and models has been around for some
time, the recent interest in Service-oriented Computing (SoC) and Web-service
choreography and orchestration® has precipitated greater interest in the field,
resulting in both new models and new application domains for existing models.
Service-oriented computing is based on the idea that software is composed of ser-
vices which reside on third party machines. Web services are a common realization
of this idea. Since the conception of SoC, research has focussed on developing
languages to compose or coordinate services into either composite services or appli-
cations.

Coordination languages and models are based on the philosophy that an ap-
plication or system should be divided into the parts that perform computation
and the parts that coordinate the results and resources required to perform the
computations. The original coordination language, Linda [Gel85], played only a
passive role in coordination, by providing a blackboard (tuple space) to which data
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could be written and read. Since then many coordination models have been pro-
posed [PA98,AHM96], and the trend is towards developing models that play a more
active role in the coordination process. Two recent interesting coordination mod-
els, Orc [MCO07] and Reo [Arb04], sit diametrically opposite of each other in their
approaches to coordinating services or components. This paper sets out to explore
these in detail.

Orc is a simple orchestration language designed by Misra and Cook [MCO7],
based on a three connectives, and the simple notion of a site call to model
computations—the external actions to be orchestrated. Central to Orc’s design
is the idea that accessing (web) sites is an asynchronous activity which can fail, and
so the connectives are designed to be asynchronous and not susceptible to failure.

Reo is a channel-based coordination language designed by Arbab [Arb04] that
is based on a simple notion of channel composition. It differs from existing models
in that composition propagates synchronization and exclusion constraints through
connectors. In combination with stateful channels, an expressive coordination lan-
guage emerges.

This paper presents a comparison between Orc and Reo. By choosing two coor-
dination languages at different ends of the spectrum for our comparison, we hope to
gain insight into the design choices and the advantages and disadvantages of various
approaches. In the long run, we should hope for a synthesis of the two approaches,
to get the best of both worlds. We present a number of examples, compare features
and the underlying philosophies and design choices, and formally embed Orc into
Reo. We also discuss the difficulties of embedding in the other direction. Section 2
describes our encoding of Orc into Reo. Section 3 argues that the encoding in the
other direction is not as trivial. Section 4 compares the two models on a variety of
points. Section 5 discusses some related work, and Section 6 concludes and discusses
future work. But first, we introduce Orc and Reo, and give a small example.

1.1 Orc

In this section we present Orc’s syntax and reduction semantics, and simple examples
of Orc expressions. In work by Misra and others [MC07,KCMO06] Orc’s semantics is
described in more detail.

Orc expressions have the following syntax, where F is an expression name, M is
a site name, = is a variable, v is a constant value, and p is a tuple of p’s:

Jog:h € Eaprs=0 | M(p) | EG) | f>e>g | flg | f wherez:€g
pEACt’U,al::::U | v
Definition ::= E(T) d:eff

An Orc program consists on an Orc expression together with a set of definitions.
Basic services, such as data manipulation, are assumed to be provided by primitive
sites. An Orc expression can be a primitive site call, a reference to another Orc
expression, or a composition of Orc expressions.

A site call is written as M (p), where p is a tuple of arguments which can be
constants or variables. When executed all variables have to be instantiated, that is,
evaluation is strict, and the site returns at most one value. Examples of primitive
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sites are 0, which never responds, and let(v), which responds value v. We use E to
range over possibly recursive definitions of Orc expressions.

Three combinators exist for composing expressions f and g: symmetric compo-
sition, written as f | g; sequential composition, written as f >z> ¢; and asymmetric
composition, written as f where z :€ g. The combinator f | g executes f and g
independently in parallel; f >z> g executes f and several threads of g, one for each
result returned by f (where each value of f is substituted for x in a new g); and
f where z :€ g executes f and g in parallel, replacing = in f by the first returned
value of g, returning only the values of f.*

Instead of the standard, asynchronous semantics for Orc, we present a syn-
chronous semantics which allows multiple events to occur at the same time. This
approach enables a simpler formal comparison with Reo, without really changing
the essence of Orc. The reduction rules for Orc expressions have the form f = ¢
and are presented below. Here a is a set of observations of the following type:

BaseEvent ::= 1 | Mg(v) | k7v | lv

We use the silent observation 7 mainly to represent the binding of a variable to a
value. My (v) represents the call to site M, indexed by a fresh k and with arguments
v. k7v represents the return of value v by the site call indexed with k. lv repre-
sents that a value v was published. Finally, we use a and b to range over sets of

observations, following the convention that LN denotes —. Here are the reduction
rules:

k fresh
o) SITEC —_— LET 7 SITERET
M) M () (SITECALL) eto) 0 (LET) 5 2 er(o) (SITERET)
a / a / a i b !/
f — f/ (Sym1) - 9=9 — (Sym2) f— fa 5 99 (Sym3)
flg=1f'lg flg=1flg flg—=—=1Ff14g
a b [
g—9 (AsyM1IN) fof wib (Asym2)

g where z :€ f = ¢’ where z :€ f g where z :€ f % g where z :€ f/

lv,b
—

a b
g—9 fa? fllwgb (Asym3N) f f; (Asym1V)
g where z :€ f —— ¢’ where z :€ [’ g where z :€ f — [v/z].g
lv,b lvy,.., 1oy,
R A e (AsYm2V) f Pt f lwda >0 (SEQ)
g where o€ f % [v/a].g’ f>u>g % f >a> g | [or/alg | - | va/alg

Consider the following two examples, introduced by Kitchin et al. [KCMO06]:

def

EmailNews(d) = (CNN(uk,d) | BBC(uk)) >x> email(me, x)
EmailNewsOnce(d) & email(me, z) where  :€ (CNN (uk,d) | BBC(uk))

Here, uk and me are constant values, x and d are variables, and CNN (uk,d),
BBC(uk) and email(me, ) are site calls that retrieve the news for UK on the day
d from CNN, retrieve the news for UK from BBC for today, and send an email to
me with value z. Thus EmailNews(d) and EmailNewsOnce(d) invoke the news
service from CNN and BBC and send the content by e-mail to me. The difference

4 These operations appear to be closely related to Friedman and Wise’s frons constructor [FW80].
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between these two expressions is that Email News sends the news from both CNN
and BBC (when the services reply), while Email NewsOnce e-mails only the value
of the first reply, ignoring the second reply.

The expression Email NewsOnce reduces as follows. Here we assume a and b
are fresh, v is the value returned by the BBC site, and v’ is the value returned by
the Email site.

(me, x)

email(me, z) where z :€ (CNN(uk,d) | ?a)

————  email(me,z) where x :€ (CNN (uk,d) | let(v))
(me, v)

Emaily(me,v) 2
b7’

—  let(v')

v/
% 0

Infinite behaviour can be described by recursive definitions, as the following
example shows.

Metronome = Signal | (Rtimer(1) >z> Metronome)
Email NewsFrequently(d) < Metronome >x> Email N ewsOnce(d)

Metronome is an Orc expression that sends a signal returned by Signal every
time unit. The site Rtimer(t) waits ¢ time units before returning a signal. Therefore,
EmainNewsFrequently calls EmainNewsOnce every time unit, which in turn
sends me an email from either CNN or BBC.

1.2 Reo

Reo is a powerful coordination model arising from the propagation of synchroni-
sation and other constraints imposed by individual channels through connectors
formed by plugging channels together, in combination with mutual exclusive data
merging and synchronous data replication through nodes. A key characteristic of
Reo is that synchrony is propagated through composition. We present the semantics
of Reo connectors in an adaptation of the Q-automata model [CK06], which in turn
extends constraint automata [BSARO06].

Firstly, we assume that connectors are defined over a denumerable set of port
names, Port. Each connector C' will have a set of input ports I C Port, and
a (disjoint) set of output ports, O C Port.® The input and output ports of a
connector define its arity, denoted C : I — O. We define Names(C') to be I UO.

The semantics of a connector C' is given as a reduction relation of the form

c o , where N is a (partial) map from the set of boundary nodes to the values
that flow through those nodes. For example, we write I(v), O(v) to denote the map
from the boundary nodes I and O to the value v, and we write nodes(/V) to denote
the domain of N. We say that C evolves to C’ and fires nodes nodes(N). C’ is

5 For the purpose of this paper, we assume that primitive connectors are not plugged into themselves.

4



PROENCA AND CLARKE

Visualisation | Representation | Arity | Axioms
R —_— Synca,B A— B Synca.p M Synca,p

+»———= | SDrainap |{A,B}—10 SDraina g Al).Bw), SDraina.

<«—> | SSpouts,p |0 — {A B} SSpouta Al),B(w) SSpouta,p

A(v),B(v)

- — — Lossya,p A—B Lossya,B o) Lossya,B
Lossya,p — Lossya,B
ADrai A(v) ADrai
+>—H—=| ADrainap |{A B} —0 TAiNA, B ﬁ TAIN A, B
ADraina g — ADraina p
-—H— ASpout AW) ASpout
ASpO’LLtAyB 0 — {147 B} poutA,B m pouta B
ASpout o, g — ASpouty p
— FIFOlA,B A— B FIFOlA,BM’FIFolA7B(’U)
—{X}+— |FIFOl14 5(v)] A—B FIFO14 5 (v) B, FIFO1, 5

A(v),C(v)
————— Mergera B,c

M
>_> Mergera g,c |[{A,B} —» C €TgerA,B,C (e).C(x)

Mergera, p,c ——— Mergera p,c

-0 0-out 4 D— A —

-0 0-in4 A—0 —

-1 1Drain 4 A—9D 1Drain 4 —>A(v) 1Drain 4
Table 1

Arities and behaviour of some Reo primitives

the connector resulting from the particular step. Typically, C' and C’ will have the
same primitives, just in different states. Table 1 presents some Reo primitives, their
arity, and axioms describing their behaviour. Each axiom gives a valid reduction of
the corresponding primitive.

The composition of connectors C' and C” is denoted by C * C’. Well-formedness
of the composition and the calculation of its arity is given by the following rule:

C:.I—-0 c'. I - o
" ror or¥ouvo ono =0
CxC':(I"\ O") — O

This rule expresses that output and input nodes are plugged 1 : n, i.e., each output
node can be plugged into multiple input nodes. Regarding the behaviour, output
nodes act as n-replicators, where data must flow to every connected input channel
end. If n = 0, we assume that the data is consumed. The formal description we
present differs slightly from the original description of Reo, without fundamentally
changing anything, in order to simplify our formal results.

Notation 1 Given a map N and a set P. With a slight abuse of notation, define

def

NNPY{(n,de N|neP}and N\P={(n,d) € N |n¢P}.

The following two rules give the semantics for the composition of connectors
Ci:1; — O1 and Cy : I — O42. Note that a node set can only fire if it fires in
both C; and Cy, with the same data value flowing in both cases.
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C, AN C] Co Na, C% N1 NNames(Cz) = Na N Names(Ch) Cq 2, C1  NinNames(Cz) =0
CyxCy 2222, oy CyxCy 25 O Oy

Note that we do not address causality issues here, because the connectors we
will build deliberately avoid causal loops. These can be trivially dealt with. We
also introduce a restriction operator that hides the output nodes of a connector.
Given a connector C': I — O and a set of nodes , define C'[q= C : I — (O\Q).

Consider the services Politics, Sports and Email, that return news about pol-
itics or news about sport, or sends an email of a given message, respectively. In
Fig. 1 we present a connector that coordinates these three services. Initially the
connector receives data from the Politics and then the Sport services, and forwards
data from Politics to the Email in a single step. After that, the data previously
sent by the Sport service is sent to the Email. This way we guarantee that the two
services alternate, and that we can only have politics news if there is also sports
news.

Politics

e Email
Sport

Fig. 1. Example of a Reo connector

Formally, we consider two different states of the connector:
Ord = (FIFOlsport,X * SD"”ainPolitics,Spo'rt * MeTgerPolitics,X,Email) [ Emait and
OT‘d(I‘) = (FIFOl.S'port,X (l‘) * SDrainPolitic&Sport * Mergerpolitics,X,Email) [ Email -
The former corresponds to the connector depicted in Fig 1, while the latter cor-
responds to the same connector when the FIFO1 channel has data is full with
data x. Using the rules above, we can calculate the connector’s arity, Ord :
{Politics, Sport} — Email, and behaviour:

Ord Politics(v),Sport(w),Email (v) Ord(w)

OTd(I) X (w),Email(w)

Ord.

These transitions represent the only possible behaviour of the connector, given the
axioms of each primitive and the reduction rules. The first transition goes to a state
where the buffer is full, and indicates that data is flowing on the nodes Politics,
Sport, and Email. The second transition goes back to the original state, and
indicates that data is flowing on nodes X and Email.

2 A Static Encoding of Orc in Reo

We present two translations of Orc into Reo. The first translation, the merged-output
encoding, attempts to directly model Orc expressions, in particular, by merging the
multiple results of a sequential composition. The second encoding, the multiple-
output encoding, takes an alternative approach, duplicating the circuitry for each
output of the Orc expression. Note that we can only encode non-recursive Orc
expressions into a finite Reo connector. For the remainder of the paper, we restrict
ourselves to non-recursive Orc expressions, denoted Orc™. Basically, we assume that
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every invocation of a definition has been expanded. We also assume the existence
of a Reo component, with one input and one output node, for each primitive site.
Initially, the component is ready to receive some data over the input node; after an
unspecified amount of time, it may return a result over the output node.

Before presenting the encodings, we will introduce some useful Reo connectors.
We give some formal properties concerning the second encoding on Section 2.4, and
use weak bisimulation to prove its soundness with respect to Orc’s semantics.

2.1 Warming up

We now introduce the Reo connectors used in the translations. Each connector is
defined by presenting its arity and axioms, although they could equally have been
defined as the composition of primitives.® The connectors are defined in Table 2.

Representation | Arity | Axioms
® 10 0n) 0€{01,...,0n}
—01,...,0n I(z),0(=)
Q ——m &
DG {P,....,Pn} C{O1,...,0n}
CD I—>{01,...7On} ® I(z),Py(x),..., P () <D
© I—{01,...,0n} ® 1(2),01(21),--,0n (xn) @
©) I —{01,...,0,} —
Tn {I,...,In} = O T I1(z1),....Jn(zn),0(z1,...,20n) T
n n
Cp 0 —0 Cp o) Cp
Var I—0 Var 1), Var(z)
O(z)
Var(z) I -0 Var(z) ﬁ Var(z)
Var(z) —2 Var(y)
DC{P,....,Pu} C{l,....In} z€{x1,...,xm}
Pn . In} = O P Pile0) s P () O(0) P -

Table 2
Definition of some Reo connectors.

Table 2 is divided into two parts. In the upper part we present three connectors,
which play a réle similar to nodes in that they connect a single output node to
multiple input nodes, except that their behaviour differs. Firstly, an Ezclusive
Router receives data in the input node and sends data to exactly one of the output
nodes synchronously. If more than one output node can receive the data, a non-
deterministic choice is made. Secondly, an Inclusive Router is a variation of the
Exclusive Router that can send data to multiple output nodes instead of performing
a non-deterministic choice. Third is a connector which acts like a node for one step,
and then prevents flow for eternity, by becoming the connector in the fourth row.

Now consider the lower part of Table 2. Connector T, tuples n values. It
is a synchronous connector, i.e., inputs and outputs succeed at the same time.
Connector C,, always return a constant value p. Connectors Var and Var(x) represent
a (possibly undefined) variable. It is a buffer that replaces its content when new

6 The tupling connector is an exception, as none of our primitives are capable of data manipulation.
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data arrives to the connector, and can output its content as many times as required.
The last connector, P, coordinates n inputs into a single output. Data flows only
if one or more input nodes and the output node can flow.

Before continuing with the encoding, an issue regarding the use of variables in
Reo needs to be resolved. A variable can be read by multiple connectors, all at
the same time or just some at each time. To coordinate access to a variable, we
propose two different approaches in Fig. 2: (a) replicate the output of the variable
when necessary, or (b) replicate the input and create a variable connector for each
possible access. The second approach has the advantage that the access to a variable
does not require any synchronisation between the connectors that may also access
the variable. Although more storage locations are required, it reduces the cost of
coordination.

~AVarf--0,

'Ol Iq-’-/-’» Vi « O
et B
‘fvar-. O,

o)
(a) (b)

Fig. 2. (a) Replication after the storage of a variable. (b) Replication of the storage of a variable.

2.2 Merged-Output Encoding

This section presents an encoding of an Orc™ expression into a connector which
merges the multiple outputs of a parallel composition via a single output node. This
is the most natural approach, but it is, as we shall see, problematic. We therefore
only give an informal presentation, reserving a completely formal description for
our second encoding.

An expression h € Orc™ is encoded as a connector with arity {7, X1,..., X,} —
O, depicted in Fig. 3(a), where the X; corresponds to the free variables of h. For ex-
ample, the encoding of the expression (CNN (uk,d) | BBC(uk)) >x> email(me, x)
is presented in Fig. 3(b), recalling that d is a variable, whereas uk and me are
constants. The connector starts by receiving data on input node I and buffering it.
Site BBC can then be called, while site CNN needs to wait until data is available
on node D to be called. The results from the site calls are stored in the RVar com-
ponent one at a time, which subsequently provides the value to site email, once for
each value returned by BBC and CNN.

(a) (b)

Fig. 3. Encodings into Reo connectors with a single output: (a) a general Orc expression; (b) a specific Orc
expression (CNN (uk,d) | BBC(uk)) >x> email(me, ). RVar is a resettable variable. It acts like a variable

(e.g., Var from Section 2.1), but it cannot be updated until the reset (top) node is fired, removing the value
of the variable.
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The example encoding reveals the main problem of this approach. The outputs
of CNN (uk,d) | BBC(uk) are forwarded to a single instance of email, serializ-
ing the execution of email. As a consequence, it is possible that CNN finishes
before BBC, but that site email hangs on the result of CNN, preventing email
from even getting the result from BBC'. The semantics of Orc [KCMO06], however,
dictate that (CNN(uk,d) | BBC(uk)) >x> email(me,z) is strongly bisimilar to
(CNN(uk,d) >x> email(me,z)) | (BBC(uk) >x> email(me,x)), which means
that emasl is not serialized and could respond to either results from CNN or BBC
irrespective of their ordering or failure. This, however, is not true for the connec-
tors resulting from the encoding. In the next section, we overcome this problem by
duplicating parts of the connector.

Another solution for this termination problem is possible by introducing some
observational behaviour corresponding to when a service cannot return any value,
as done by Bruni et al. in their encoding of Orc into Petri Nets [BMTO06]. This
could be achieved, for example, by adding timeouts to each primitive site call.
An extension for Reo that includes connectors capable of dealing explicitly with
time was proposed by Arbab et al. [ABABRO07]. The authors introduce the Timed
Constraint Automata, which can be used to formally model the timeouts in Reo,
allowing a precise definition of a component that fails to return any value. In our
case we could attach a timeout connector to the input node of each site call, such
as an expiring FIFO1 channel, which loses the contents of the buffer after a certain
time. Using these ideas we could also encode recursive Orc expressions, but we
chose not to use this approach because we consider it to be less faithful to Orc’s
semantics, where the failure to return a value cannot be observed.

2.8  Multiple-Output Encoding

A more faithful encoding of Orc™ expressions presented in this section. The encoding
of an expression such as f >x> ¢ duplicates g for each output of f. The encoding
is possible because we can obtain an upper bound on the number of outputs of an
Orc™ expression—this is not possible with full Orc. The following lemma captures
this property.

Lemma 2.1 Define function (#) on Orc™ expressions (and internal representa-
tions: 7k, let(v) and 0), and on sets of output actions as follows:

#(f | 9) — #(f) +#(g)  #OR) =1
#(f >x> g) = #(f) x #(g) #(let(v)) -1
#(g where z :€ f) = #(g) #0 -0
#(M(vi,...,v00) =1 #(v1, ..., lv,0) = n

where lw ¢ a

This function gives an upper bound on the number of outputs produced by an Orc™
expression, i.e., for any Orc™ expression h, h — h' implies #h > #a + #h'.

Proof Outline. Straightforward induction, observing that substitution of values
for variables has no effect on the maximum number of outputs produced. O
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an

Corollary 2.2 Let f € Orc™, and f =5 f/ 2 ... 2% f(™) be a possible trace.
Then #f > #ay + - + #ap, + #f™

We now define a function [-] which converts an expression f € Orc™ into a Reo
connector. The arity of resulting connector will be {I} UV — O, where I denotes
the main input node, V' denotes a set of nodes corresponding to the free variables
of f, and O is the set of output nodes. Node I is used to initiate the connector,
though nodes in V' can be fired beforehand, which corresponds to the setting of these
variables. The function [-] is defined inductively on the shape of Orc expressions,
in such a way that the number of output nodes is given by function (#) defined
above. The encoding is defined in Fig. 4, based on the following primitives.

Symmetric Parallel Composition:
lo.as = T — {1y, Lo}

Initially 8 = a = 8 = 0. The intuition behind the connector |/ g, illustrated in
Fig. 4(a), is that it is initialized by flow in node I, after which sends an initialization
signal on nodes Iy and I,. The data is buffered in buffers that can fired nodes I
and I, as soon as they are ready to be fired. As [f | g] = |lo,0,0 * F * G, firing I;
and I, will trigger the connectors F and G. The behaviour of |9 g is depicted in
the diagram below.

l0,0,0) )

gUEE)

Sequential Composition:

DxD9Koq,nqan>: {I}()fl,...,()fn} — {Ifa]§17--~7]§na)(17--~7)(n}
The connector is illustrated in Fig. 4(b). The main idea is to execute the encoding
of f when data flows though the input node I, and to buffer each of its outputs
in a different FIFO1 channel. Each of these FIFO1 channels is connected to a
different instance of the encoding of g, which can be executed in parallel after the
corresponding FIFO1 channel is filled.

To make the behaviour easier to describe, we partition z)g (4, ... a,) into 1 + 1
different connectors corresponding to unconnected parts of the main connector:

D26 e, = Db * Dby %+ Dby,

where )xz)f : I — Iy, |>x|>gj O¢j — {1yj, X;}, and 1 < j < n. Initially § = a1 =
. = an, = 0. The possible behaviour of each of the subparts is the following:

paf L), Io””f(” ba)f
hag? SO, g

D gJ(U D D

where 1 < j < n. This means that )x)g (. 0y, When triggered by node I, also
triggers the input node of F. For each output of F (in node Oy;), the connector
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[f 1 9] = (F=1lo,00*G) Tosuo, where

I
]
@ [ﬁ]] {1} U Vs — Of

16,0,8 : [os
¢ g9l {1y} U Vg — Oy

I_>{If’ g} [B] @
Ig

[f >a> g] = (F* )z)o0,....0) * GL* - % Gu) IUr_, 0,

where

|>aj|>9,<a1,...,an> : {Iv Ofla o 7Ofn}
—{Is, Ig1,. ..,

= Fo=1[f]:{I;} UVy
i X o) S {0p1e . O5)
for j €{1,...,n}:
G; i= [z /al.g] :
{155} U Vg — Og;

xj is a fresh variable name

[g where z :€ f] = (W§,,0*F*G) [0, where
Wg,a,ﬁﬁ : {I Ofl, .. Ofn}

— {Iy. 1 F:=[f]: I;UV;
a f{[::}ﬂ:: —{O0f1,...,0}
I e(o) Ory, G:=[dl:
S O S LR

()

[M(x1,... 20,01, vm)] = (M (0,....00,v,0,0 * Mk) Tk

where
M@,(al,..,,an),\/ﬂ,5 AL X1, X, TR - V={(v1,...,0m)
— {My, 'k} x1,...,Ty are variables

I ’_"—’ 1 v1,...,Uy are values

M ?k
0—> L —»1@—7 forj S {1,...,77/}:
I T7L+1 E tJ:{Olflg:a]:O
X o—»‘—.—»o—»o Dk

1 otherwise
Mk : Mk —7k

0 b o{V1]>e>s
: := Reo component of site M
0 b —Vin}>o>9 k is fresh

(d)

Fig. 4. Definition of the encoding function [-] from Orc into Reo, where «, 3, 6, and § stand for the value of

buffers (FIFO’s or One Time nodes), whose value can be 0 (no value), 1 (some value), or a constant value.
Nodes in the environment are associated with the variable with the same name in lower case.
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Dxl}gj fires also node X; (making the contents of variable x available in G), and
evolves to a configuration where the input node of G; can be fired when possible.

Asymmetric Parallel Composition:
W5 14,05, Om} — {1y, Iy, X}

The connector is illustrated in Fig. 4(c). The intuition is that the encodings of
f (F) and g (G) are executed in parallel, as described in the symmetric parallel
composition. The output nodes of G are merged in such a way that only the first
output value will flow through node X, which will be connected to F where the
value of x is used. The output nodes of the connector Wa 8.5 are only the output
nodes of F.

To make the behaviour easier to describe, we partition W; a8, into two different
connectors corresponding to unconnected parts of the main connector:

T _ — —
00,85 = Woap*Ws,

where Wy, 5 : I — {Iy, I} and W5~ : {Of1,...,Opn} — {X}. Initially 6 = a =
p =4 = 0. The behaviour of Wy,  is the equivalent to the behaviour of ll0,0,0. The
possible behaviour of W~ is the following:
Wy 25w

where O C {Oyi(v1),...,0f,(vn)}, and v € {v1,...,v,} such that O (vi) € O.
The choice of which node in {Oy1(vy),...,Opn(vy)} will write into node X is made
by connector P, (see Table 2). This means that W, * F * G behaves similarly
to |lo,0,0 * F * G, except that the output nodes of F trigger the connector Wy. The
output nodes of Wa 0B85 are restricted to the output nodes of F. This connector
allows data to flow to node X, which is part of the environment of G and is made
available to this instance.

Site call:

Mg,gy’g,g : {I,Xl, ceey Xo, ?k} — {Mk, !k}
The connector is illustrated in Fig. 4(d). The main idea is to tuple all the arguments
required by site M before the site is executed. As in previous cases, we partition
this connector into two different connectors corresponding to unconnected parts of
M to make the behaviour easier to describe:

MQ’E’VWB’J = M(GTE,V % ME(S

Initially # = 8 = = 0 and ¥ = (0,...,0). The behaviour of each of the subparts
is described below:

N1 N2 N;

— — —
Mysyv — Moy, vy — - — Mgy y —— Ml,@

_, Mk(v) _ 'k(v)

0,0 1v M
where v = (v1,...,v,) is a tuple of data values, and for each i € {0,...,j}, N; C

{X1(01>,... ,Xn(vn)}, U;N; = {Xl(vl),... ,Xn(’l}n)}, Zj = <Oé/1,. . .,Oé%) such that,
12
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for i € {1,...,n}, o) # 0, and for each X,,(vm) € Ni, E; = [Um/@m].Xi—1. This
means that initially the empty FIFO1 channels in My, need to become full by
the firing of the corresponding nodes. Only then node I can be fired, together with
node M, which triggers component My. When this component returns data on node
7k, the value is stored in a FIFO1 channel, and in the next step the value is output
by node !k.

Example revisited

Recall the Orc expression (CNN (uk,d) | BBC(uk)) >x> email(me,x) presented
in Section 1.1. We presented its encoding with merged-outputs in Section 2.2.
Fig. 5 presents the connector [(CNN (uk,d) | BBC(uk)) >x> email(me, z)]. Data
flowing through the input node I corresponds to the start of execution of the Orc
expression, and flowing data through the input node D corresponds to the binding
of variable d.

@—e=f ] o -

ler(@D=() Ob— LA teact- ( H@_’HT B O
— ain s

._.@_.i_... Obefmetrert | —
D @—D—'i—»--ﬁ »@—D—» -—»@—»—»--_ — o
0 b o—fukf>o—e__| @—D—"—»-- T34 £ (@D

(0]

ok ’—’"_ -

Fig. 5. Example of the encoding of (CNN (uk,d) | BBC(uk)) >x> email(me, )

Note that the resulting connector is not the most simple one, in the sense that
there are consecutive FIFO1 channels that could be merged into a single one, and
there are some redundant One Time Nodes. If we wanted to actually run the
encoding of an Orc expression we could remove the One Time Nodes, relying on
the assumption that site calls only return once, and the encoded connector is only
executed once. Without these assumptions, the One Time Nodes are needed to
derive a bisimulation between Reo and Orc™.

2.4 Soundness

In this section we provide several important results about the translation presented
in Fig. 4 that are required to understand and prove the main result, namely that
every h € Orc™ is weakly bisimilar to its encoding in Reo.

Define the function ~ to map labels in Reo’s operational semantics to base events
of Orc as follows:

M(v) = My(v)  7k(v) = K70 k() =l
D=0 a,b=aub a =T otherwise,

where Mg, 7k and !k correspond to nodes in the Reo connector obtained from the
translation of a site call M.

Lemma 2.3 Let h € Orc™. FEach node in Names([h]) can be fired at most once.
13
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This result can be proved by structural induction. It follows from the presence
of One Time Nodes connected to input and output nodes, and from the dependence
between input and output nodes.

Using this property, we relate the order in which input and output nodes are
fired in Lemma 2.4.

Lemma 2.4 Let h € Orc™ and [h] = H : {I} UV — O. For any trace
(ap,a1,az,...) of sets of fired boundary nodes of [h], we claim that:

Ica, = OnNa,=0, andfor0<j<n,a; CV and ONa;=0.

This lemma can also be proved by structural induction on h. It is enough to
verify that, for each case of the encoding function, the firing of the main input must
precede the firing of the output node. By Lemma 2.4, the input and output nodes
can be fired only once, so every action a occurring before the input node is fired is
such that @ = () or @ = 7, because a can only refer to input or output nodes.

Since the main input node of the encoding of an Orc™ expression can only be fired
once, we introduce some notation to distinguish the states of the connector before
and after the input node is fired. This simplifies the comparison of the evolution of
Orc™ expressions with different configurations of the encoded connector.

Definition 2.5 Let f € Orc™ and F' = [f] : {I;} UVy — Og. We define two
partitions of reachable configurations of F':

F1={F|F%. .. 2 F'ANlj ¢ nodes(a; U...Ua,) An >0}
FH ={F'|F % ... 25 F' Ay € nodes(a; U...Uay) An > 1}

The first set consists on the configurations of F' after zero or more steps until
the input node is fired, and the second set consists on the possible configurations
after the input node is fired. Combining Definition 2.5 with Lemmas 2.3 and 2.4,
we arrive at the following corollary.

Corollary 2.6 Let f € Orc™ and F = [f] : {I;} U Vg — Oyf. Then:

e If H € F7!, then H % H' implies nodes(a) N Oy = 0, and for H" € F~1,
H" % H implies that either @ =0 ora =7, and I; ¢ nodes(a).

e If Hec F1, then HS H' implies I ¢ nodes(a) and H' € F*1.

The main result of this section is the existence of a weak bisimulation between an
Orc™ expression and its translation into Reo. We define the notion of weak transition
and weak bisimulation inspired by Milner’s definition of weak bisimilarity [Mil99].

Definition 2.7 Let @ and Q' be Orc expressions (or Reo connectors), and a be a set
of actions. We write Q == @’ to denote Q(=)* % (5)*Q’, whenever o’ = aU {7}
or a’ = a\{1}, i.e., Q evolves to Q" after performing a transition a U {7} or a\{7},
and any number of 7 transitions before or after this transition. When a = {7}, then
=L (Dyx,

Definition 2.8 Let f be an Orc expression, C' be a a connector, and a C
BaseFEvents. Define weak bisimulation ~ as a relation between Orc expressions

14
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and connector (configurations), such that f ~ C whenever:
(i) if f % f/, then 3b,C’ such that b= a, C L ¢ and f'~ ' and
(ii) if C % C’, then there is an expression f’ such that f 4, fland f' ~ C'.

We introduce Lemma 2.9 to capture that substituting a variable in an Orc ex-
pression is the same as triggering the input node associated with the corresponding
variable.

Lemma 2.9 Let h € Orc™ and hy, < [v/z].h, where x is a free variable in h, and v
is a data value. Substitution does not change the behaviour of the translation, i.e.,

I h o~ [1] and [1] 2% H, then hy ~ Hy,

where H,, is obtained by sending value v in node X.

Proof Outline. We start by verifying that the only relevant case is when h = M (p),
and z € p, because that is the only place where x can be used. We prove that, in
this case, the possible behaviour of [h] is the same as H,, concluding that h ~ [A]
implies h, ~ H,. O

Theorem 2.10 is the main result of this section, which relates Orc expressions
with their Reo encodings. The proof uses the lemmas introduced above, in par-
ticular, Corollary 2.6 deals with inductive applications of the construction, and
Lemma 2.9 handles the base case.

Theorem 2.10 Let h € Orc™. We claim that h ~ [h] : IUV — O, where V
contains only nodes associated to free variables of h.

Proof Outline. This theorem follows by induction on the structure of h. For each
case, we define the relation ~, and prove that it is a bisimulation. O

3 Encoding Reo into Orc

The encoding from Reo connectors into Orc expressions is more complex and, unlike
the dual encoding, cannot be achieved in a compositional manner. Due to lack of
space, we only present a brief discussion of this encoding, providing enough intuition
for the limitations.

The expressiveness of Orc is closely related to the set of base primitive sites con-
sidered. An example use of more complex primitive site calls can be found in the
work by Cook et al. [CPMO06], where the authors encode in Orc the set of workflow
patterns proposed by Van der Aalst [AHKBO03]. A similar approach could be at-
tempted to encoding Reo into Orc, using higher level primitive site calls that can syn-
chronize with each other, but the encoding will not be compositional. For example,
C(Synca g * Mergerp c.p) does not correspond to C(Synca g) | C(Mergers,c.p),
since in the second case it is possible for data to flow from A to B, whereas in Reo
this could not occur if there was also data flowing from C to D.

In any case, the encoding would correspond roughly to the implementation of one
of the known algorithms to combine the synchronous constraints imposed by Reo
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primitives, such as Connector Colouring [CCAO07]. The main troublesome issues are:
inversion of control: in Orc the sites cannot initiate contact with the orchestrator,
which is the opposite of how Reo is; data structures for colouring tables, channels,
connector topology, etc.: Orc provides no data structures which could be required
to manage the possible behaviours in a Reo connector; propagation of synchrony:
as Orc is highly asynchronous, implementing the synchrony propagation in Reo
either needs transactions or global consensus, which cannot be implemented without
adding sufficiently expressive primitives to Orc, and both are fragile in the presence
of failure; handling failure: if external sites implement key ingredients required to
encode Reo, these sites must be responsive and must avoid failure.

The encoding of Orc into Reo is local, in the sense that each Orc combinator
and each site call in an Orc expression can be independently translated, and the
composition yields the encoding of the main expression. On the other hand, we
anticipate that encoding of Reo into Orc would be global, since each Reo connector
needs to be considered as whole, and the encoding becomes an implementation of
a Reo engine. An interesting question is to determine precisely which set of Orc
primitives would be needed to give a local encoding of Reo in Orc.

Cook et. al. presented a synchronous semantics to Orc [CMO7] where all events
other than external response are processed as soon as possible. This allows, for
example, to impose an order by which two primitive sites are called, which was
not possible with the asynchronous semantics. However, it is still not possible to
describe atomic blocks that can either succeed or rollback if one of the actions is
not possible. A stronger model, for example, a transactional model, is required to
capture the synchrony imposed by Reo semantics.

These issues regarding synchronous and asynchronous communication can also
be found in the context of the 7-calculus. To have synchrony in the m-calculus means
that it is possible to constrain a fixed-sized tuple of more than one channel such
that each element can only be executed if all the other elements of this tuple can
also be executed. This notion of synchrony is closely related to synchrony in Reo,
since Reo allows for the definition of constraints regarding the firing of more than
one port in the same step. Unlike Reo, the w-calculus does not propagate synchrony
through composition. In this area Palamidessi [Pal97] compared the expressiveness
of synchronous and asynchronous w-calculus, saying that the synchronous 7-calculus
cannot be encoded in the asynchronous m-calculus. Carbone and Maffeis [CMO3]
extended this result proving that the expressive power of synchronous mw-calculus
that can synchronize at most n channels is less than of the one that can synchronize
at most n 4+ 1 channels. These results suggest that Reo cannot be encoded in Orec,
because Orc is asynchronous whereas Reo can synchronize an arbitrary number of
ports.

4 Discussion

We now compare Orc and Reo on some issues of philosophy and design.

Focus of Control In Orc control lies with the orchestrator: an Orc expression
initiates contact with external sites. On the other hand, Reo assumes that con-
trol is initiated externally to a connector by a component. The take or write is
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subsequently handled by the connector. This is how Reo coordinates, by control-
ling when takes and writes succeed, though from the perspective of web services,
control is inverted.

Component /Service Instantiation In Reo components are attached externally
to a connector, whereas Orc can dynamically initiate contact with services. Orc is
thus more dynamic, although it is tightly bound to the actual sites being called.
These limitations seem easy to lift.

One-off interaction vs streams Orc expressions unfold over their life-time, so
each piece of syntax is reduced once and each site call is performed once. On the
other hand, Reo establishes rigid connections between parties, as it makes the
assumption that parties will continuously communicate.

Dynamics As an Orc expression reduces, its ‘configuration’ changes dynamically.
For instance, f >x> g, creates a new instance of g for each value produced by
f. This was encoded in Reo by calculating a bound on the number of values
produced by f and duplicating the circuitry for g. As Reo’s connectivity is more
or less fixed, and Orc expressions ‘fire’ only once, our encoding introduces a lot
of circuitry that is used only once. Reo does offer some operations for plugging
and unplugging primitive connectors, but no decent high-level abstractions for
dynamic reconfiguration and subsequent garbage collection of connectors exist. In
recent work by Koehler et al. [KLAOT7] the authors present a high level approach
to the rewriting of connectors, which can be the basis for more dynamically
reconfigurable connectors.

Asynchrony vs synchrony Orc offers highly asynchronous connectives that
gracefully deal with failing sites. Reo is highly synchronous and susceptible to fail-
ure. Recall that failure can also be handled with timed connectors, as mentioned
in Section 2.2, although this solution is less transparent, as failure must explicitly
be handled. In principle, synchrony (or in any case, atomicity) can form the basis
of high-level abstractions. Much of this work remains to be done. In fact, the jury
is still out regarding whether synchrony is a good idea in a distributed setting,
even though it has the potential to offer better abstractions.

5 Related Work

Bruni et al. [BMTO06] present a static encoding of Orc into Petri nets. Their encoding
is not, however, faithful to the Orc model, as it assumes that each primitive site
returns either a valid value or some value to state that it will not return a value.
Orc, on the other hand, gracefully deals with sites which do not return values. Our
encoding into Reo more faithfully handles the absence of dataflow. Our encoding
also considers the data values passed around, in contrast to Bruni et al.’s encoding,
which passes only Petri net tokens. Bruni et al. also present an encoding of full
Orc into the Join calculus—an expressive calculus for concurrent processes based on
the homonymous process calculus. The Join calculus provides a simple support for
distributed programming, intentionally avoiding some communication constructs
that are difficult to implement in a distributed setting. This calculus supports
some synchrony, by introducing patterns that correspond to multiple events which
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must be all present so the pattern can be recognized. However, the Join-calculus
is not highly synchronous like Reo, as it does not propagate synchrony through
composition. The relation between the Join calculus and Reo is left for future work.

Many other coordination languages exist, and these are compared in some ear-
lier surveys [PA98,AHMO96]. We can fairly safely say that few (coordination) lan-
guages offer the degree of synchrony that Reo offers. Obvious exceptions are syn-
chronous languages such as Esterel [Ber00]. Such languages are useful for pro-
gramming reactive systems, though seem not to be directly useful for coordinating
distributed systems. To remedy this situation, the GALS (globally asynchronous,
locally synchronous) model [Cha84] has been adopted, whereby local computation
is synchronous and communication between different machines is asynchronous.

As with Orc, the GALS model adopts the arguably correct view that distributed
systems must be programmed asynchronously. Reo is also able to express such
distinctions, and more, through the many choices of synchrony or asynchrony—the
result depends upon how a connector is deployed to a distributed system. Reo claims
that instead of synchrony, it is really implementing atomicity, and hence a simple
form of transaction [Arb04]. This has not yet been convincingly demonstrated.

A method for comparing expressiveness was proposed by de Boer and
Palamidessi [dBP94], where they introduce a notion of language embedding refined
with some “reasonable” conditions. Brogi and Jaquet used this method to com-
pare coordination models with Linda-like operations and a shared dataspace [BJ03].
However, it is not clear how Reo or Orc would fit this setting.

6 Conclusion and Future Work

We have briefly compared Orc and Reo, by encoding Orc™ expressions into Reo,
by discussing the encoding the other way, and by comparing a number of design
decisions. Orc is highly asynchronous and deals well with failure. Reo supports a
high degree of synchrony, and potentially high-level abstractions. There is a lot
more we could have said. An obvious omission is a comparison of the efficiency
of the two models. Unfortunately, both implementations are too preliminary for
this to have any real meaning. To extend our encoding to full Orc requires either
recursively-defined or dynamically reconfigurable Reo connectors. These extensions
to Reo are interesting on their own, and are the subject of future work.
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