Formal Analysis of Policies in Wireless Sensor Network Applications

Marco Patrignani ~ Nelson Matthys

José Proenca

Danny Hughes Dave Clarke

IBBT-DistriNet, Dept. of Computer Science
Katholieke Universiteit Leuven
3001 Leuven, Belgium
name.surname@cs.kuleuven.be

Abstract—Since wireless sensor network applications are
ever growing in scale and complexity, managers require strong
formal guarantees that any changes done to the system can
be enacted safely. This paper presents the formalisation and
analysis of the semantics of policies, tiny software artefacts
used to orchestrate wireless sensor network applications. The
semantics of policies is formalised in terms of traces augmented
with information concerning the constraints under which traces
are executed. These traces are composed according to the
network topology and subsequently analysed using the mCRL2
model-checking tool. The analysis allows for the detection
of semantical inconsistencies that may lead to dangerous or
unwanted behaviour of the application based on the policy
configuration. An analysis of policies in a real-world system is
provided, showing how to verify security and resource usage
properties.

Keywords-Model Checking, Formal Methods, Policy-driven
Middleware, Wireless Sensor Network Applications.

I. INTRODUCTION

Wireless Sensor Networks (WSN) are evolving into long-
lived infrastructures on which applications developed by
different stakeholders are concurrently executed [[1]. These
applications are typically characterized by various sources
of complexity and highly dynamic requirements. In order
to cope with such difficulties, lightweight runtime recon-
figurable WSN component models [2] and policy-based
systems [3] have recently emerged. These approaches pro-
mote modularity both at development- and run-time, while
supporting dynamic deployment and easing reconfiguration
of functionalities.

The Component and Policy Infrastructure (CaPI) [4] is a
prototype of WSN middleware featuring the combination of
a lightweight component-based runtime and policy-driven
management framework. Based on our experiences with
CaPI in a number of real-world WSN applications [3]], we
discovered that errors in the composition of components
with policies can compromise the resulting application.
While components are used to provide reusable functional
blocks, policies provide an abstraction to govern behavioural
concerns, such as security or adaptability, separated from
functional code. However, in contrast to components, which

Marco Patrignani holds a Ph.D. fellowship of the Research Foundation
Flanders (FWO). The research from Nelson Matthys is conducted in the
context of the IWT-SBO-SymbioNets project No. 090062.

can safely be composed with other components that match
their explicit interfaces, criteria for composing policies in-
volve reasoning about their intended semantics and how
they interact with each other. Hence, carelessly applying
policies to orchestrate components may introduce applica-
tion behaviour which is opaque, inefficient, render certain
components unreliable for reuse in other compositions, or
even compromise the entire WSN [J5].

The main features of policies and their implications are
summarised below:

« the functionality provided by each policy is specified
via a set of domain-specific actions, whose execution
is subject to the evaluation of conditional guards;

« the specification of a single policy can be semantically
correct on its own, though the composition with other
policies may lead to inconsistencies.

Thus, composing policies is error-prone and might lead
to conflicts at runtime that are difficult to detect and resolve
on a resource-constrained sensor node. Furthermore, the
set of deployed policies may change over time, mandating
the need for conflict checking prior to commitment of the
change. The challenge of conflict checking is significant
when considering distribution: a message traveling in the
network is subject to all policies it encounters. In fact, a
message triggers policies both on the sending node and on
the receiving node. Thus, how messages are exchanged in
the network is a crucial notion that must be considered in
order to understand the semantics of policies across the
system. It is by composing the semantics of policies of
two different nodes that we can detect distributed semantical
conflicts. Policy conflicts can compromise the functioning of
the entire application, and since sensor nodes are often hard
to reach and replace, there is need for a formal analysis prior
to deployment that guarantees that the policy composition
behaves as expected. One of the most important benefits of
such a formal approach is that problems that can occur at
run-time can be detected by analysing the formal model.
Due to the resource constraints of sensor nodes and the
high cost of communication, the analysis should maximally
exploit the capabilities of the back-end, which has greater
computational power and fewer limitations than the sensor
nodes.



This paper makes three key contributions: firstly, and
most importantly, it proposes the formalization of policies in
CaPI-based WSN applications and gives their semantics in
terms of a novel formalisation technique: constrained traces.
Constrained traces are traces augmented with information
concerning the constraints under which the trace is executed.
Secondly, this paper shows how to compose constrained
traces in order to obtain the semantics of policies deployed
across a network of nodes. Such system-level semantics
can be analysed by means of properties whose satisfiability
implies the correctness of the application. A tailored set of
properties that detect security threats and energy wastage
is also presented. Finally, this paper presents preliminary
results on the realisation of the aforementioned theory: a
tool for the verification of properties of policies in CaPI.
This last point provides tangible evidence of the validity of
the presented approach, moving the results from a theoretical
to a practical point of view.

The remainder of the paper is organised as follows.
presents the formalisation of the semantics at policy
and at system levels, introduces the idea behind the
analysis conducted on a system of policies. contains
details of the prototype implementation that realises the
formalization and analysis of a system. describes and
motivates the assumptions and restrictions of the presented
work, discusses related work, presents future work
and concludes.

II. SYSTEM SEMANTICS

This section introduces policies in the CaPI middleware
and formalises their semantics at both node and system
levels.

Example 1 (Policies): [Table 1| presents two different poli-
cies P; and P, deployed on a computational node Nj.
N contains a component that emits temperature messages,

Table T
EXAMPLE POLICIES DEPLOYED ON NODE Nj.
Pi@QN; P,QN;
on (T) as e on (°C) as e
if (true) if (lowBatt())
encrypt e; deny e;

which the application must communicate in an encrypted
fashion. In order to do so, policy P; is deployed: it encrypts
all temperature messages (T) produced on N;. To save
power, a filtering policy P is deployed: it discards all centi-
grades messages when the battery is low (assume a built-in
function lowBatt ()). Unfortunately, the deployment of
Py; P, on node N; leads to a waste of resources, since
messages will be encrypted and subsequently discarded.

A. Informal Semantics

provides a simplified example of the CaPI
middleware in which WSN applications are realised through

a combination of components and policies. For a detailed
overview of CaPI, the interested reader is referred to [4].
Components exchange information with each other via mes-

local
Cal o Can Cbl o Cbm —>
¢ — ¢ :t L. :t remote
Policies, €---- Policiesy, “--3

Figure 1.

Communication between components and policies.

sages, either locally or remotely, as defined by the ap-
plication composition. Local communication occurs within
the same computational node, while remote communication
occurs between two different nodes. All messages possess
a type, e.g., temperature or humidity, and type-specific
contents; CaPI-policies specify the type of messages they are
applicable to. Message exchange in CaPI is governed by the
policies on every node. Thus, every message might trigger a
number of policies during its lifetime, on the node where the
message is generated, and on the destination node, in case
of a remote communication. By calculating all combinations
in which policies are triggered by messages in the network
we obtain the full system semantics.

The semantics of the system needs to consider all valid
sequences of actions performed by policies. Intuitively the
semantics of a policy consists of all possible sequences
of domain-specific actions that can be executed by that
policy. Policies can be seen as a tree-shaped control flow
graph. Conditional branches create two possible sequences
of actions, based on whether the conditional branch is
executed or not. The semantics of composed policies is given
by the composition of such graphs. Each root-to-leaf path
represents a possible valid sequence of actions executed by
various policies. However, paths resulting from inconsistent
choices during the branching operations are filtered while
calculating the semantics. The semantics of the system is
a collection of all root-to-leaf paths: a set of sequences of
actions. All sequences of the set are analyzed to verify that
the system does not have semantical inconsistencies. If the
analysis fails, then a policy may execute undesired behaviour
at runtime.

B. Semantics of Policy Programs

We refer to the formalisation of policies that are deployed
on a CaPI node as a policy program. Policy programs rely
on the notions of branches, domain-specific actions and
composition operations, which are common to several works
related to policies [6], [7].

presents the syntax of policy programs. Assume
the presence of a tree-structured taxonomy of message types
T, and a countably infinite set of logical predicates £. Mes-
sage types t are elements of the tree-structured taxonomy
T. Guards g are logical predicates: elements of the set L,



Policy Program P ::= on(t){P} Type t € T
| if(¢){P} If-Guard g € L
| a Action a € A
| P; P’

Figure 2. Syntax of policy programs related elements.

side-effect free expressions that evaluate to a boolean result.
Consider the finite set of actions A ::= {allow, deny,
encrypt, decrypt, sign, verify, persist, delete}. All
elements of .4 are actions that policy programs can execute,
the formal analysis is focussed on such actions. For the sake
of simplicity, parameters have been omitted.

The evaluation of a policy program depends on the type of
the message that triggers its execution. Let msg-type be such
a type. A policy program can be an on-statement on(t){P}
consisting of an on-guard t and a body P. The on-statement
checks whether msg-type is a subtype of ¢ according to the
type hierarchy 7T, continuing as P when it is. Analogously,
a policy program can be a conditional branch if(g){P}
consisting of a guard g and a body P. The if-statement
checks g, executing the body P when the guard evaluates
to true. Finally, a policy program can be an action a € A
or the sequential composition of different programs P; P’.

presents the syntax elements related to the
semantics of both policy programs and of the system. We
write T as a shorthand for z,...,x, for n > 0, and €
denotes an empty sequence. Constrained traces are pairs

Constrained Trace T ::= ({;O)
Label t € AU{4}
Accumulator C = (g,t)

Figure 3. Syntax of constrained traces.

consisting of a sequence of labels ¢ and an accumulator C,
representing a set of constraints. Labels ¢ are elements of A
or 4, indicating respectively the execution of an action or the
exchange of a message between two nodes. An accumulator
C is a pair of the form (g,¢), consisting of a list of
logical constraints g and a lists of type constraints ¢. Logical
constraints model which logical statements g must hold for
the computation to be executed; type constraints model for
which types the computation is applicable. An accumulator
C is compatible with a guard g or with a message type
t, written C'" g and C ¢, when it is possible to extend
C with g or t without being inconsistent. Since C' keeps a
record of the choices involved in the previously encountered
branches, only traces with consistent choices at on- and
if-statements, according to the ~ relation, are considered

by the semantics. Together these constraints describe one
possible path through the control flow of a policy program.

Accumulator and Guards. Logical expressions g often
depend on runtime values in order to determine whether
they evaluate to true or false. Since a static analysis has no
access to the runtime values computed by the application,
such values are abstracted away by means of the predicate
abstraction technique [8]]. With predicate abstraction, logical
expressions that are syntactically equal are assumed to
evaluate to the same truth value at runtime. For example,
two concatenated policy programs may contain the same
expression (e.val<9) in their if-guard. When the expres-
sion is encountered for the first time, a bifurcation is created,
one accumulator storing (e.val<9), the other storing
- (e.val<9), because there is no way to determine how
the guard will evaluate at runtime. When the expression is
encountered for the second time, no bifurcations are created
because an assumption on the evaluation of (e.val<9)
is stored in the accumulator. If (e.val<9) is found in
the accumulator, then the predicate is supposed to evaluate
to true, if - (e.val<9) is found, then it is supposed to
evaluate to false.

Compatibility of guards and accumulator builds on the
notion of predicate abstraction. Predicates that may evaluate
to true are stored in the accumulator, those that may evaluate
to false are stored preceded by a logical negation (—). A
logical expression is compatible with an accumulator if it
can be added to the logical expressions that are already in
the accumulator and the resulting set is satisfiable. When
a new guard g is encountered, both g and —g are tested
to be compatible with the accumulator. If g is compatible
with the accumulator, then it can evaluate to true at runtime.
Conversely, if —g is compatible with the accumulator, then
it can evaluate to false at runtimeﬂ Addition of logical
expressions to the accumulator is treated standardly in a set-
oriented fashion.

Accumulator and Types. Unlike guards, types do not
depend on runtime values. The possible types of messages
that a node can produce are statically known and given
in the node description, as mentioned in This list of
types is the initial knowledge of the accumulator, since
messages of all possible types produced on a node can
flow through the policy programs of such a node. As
policy programs are traversed, the list of types contained
in the accumulator shrinks, giving a better description of
what types of messages trigger the execution of the policy
program.

A type t (—t) is compatible with an accumulator C' if
C' contains at least one type ¢’ that could (not) trigger the
execution of the policy program. Intersection of a type ¢ (—t)

INote that the two cases are not mutually exclusive. For example,
knowing that “the pen is red”, “the book is blue” and “the book is not
blue” are compatible with the knowledge.



and an accumulator C' means reducing C' to all the types ¢’
that are (not) children of ¢ in the tree-structured taxonomy 7 .
The formalization of these intuitions is presented in [Figure 4]

(1) "t = T et|t <t
(G,1) "t < Tt et |t £t
@hHnt=G{t' et |t <t}
(@0 N~t=(g{t €l |t A1})

Figure 4. Compatibility relation and intersection for types.

The formal semantics of policy programs, presented in

yields a set of constrained traces given a policy
program and an accumulator. At every on- and if-statement

[on(t){P}c ={7 | 7 € [Plenp,C 1} U
{(Cn{=t}) | C ™t}
[if(9){P}c ={7 | 7 € [Plcu(yy. C "9} U
{(CU{~g}) | C g}
lale ={(a; C)}
[P; P'lc ={(ad;C") | (@;C") € [Plc,
@;C") € [P}

Figure 5. Semantic function of policy program.

two sets of traces are built, depending on whether the on-
and if-guards succeed or fail. This branching is determined
by a compatibility relation ", described below. Addition of
elements to the accumulator and the compatibility relation
are described in detail below. At every action a, the seman-
tics function returns the constrained trace made of a and the
current accumulator C'. When considering a sequential com-
position of policy programs P; P’ the function returns the
set of all possible traces composed as follows. The first part
of the trace @ is the one derived from the semantics function
applied to P with the starting accumulator C'. The second
part of the trace @ is the one derived from the semantics
function applied to P’ with all possible accumulators C’
associated with a constrained trace of P.

Example 2 (Policy composition): shows the ap-
plication of function [-] from to the policy program

Py; Py obtained from Syntactic simplifications
are applied to P, and P,. The starting accumulator is set to

(°C,H) in order to model node N7 producing both centigrade
(°C) and humidity (H) messages. Notice that for the sake of
brevity when a part of the accumulator is empty, it is omitted
entirely. The resulting set of traces is exactly the sequence

[Pillocy =[on (T) {if (true){encrypt; }}]ecn
={[if (true){encrypt; }]ec, (¢;H)}
={[encrypt;]ec, (e H)}
={(encrypt;° C), (¢; H)}

[P2]n ={e; B}

[Poloc =[on (°C){if (lowBatt ()){deny; }}]ec
={[if (lowBatt ()){deny; }Joc}
={[deny; J1ousatt () oc, (6; "lowBatt (),°C)}
={(deny; lowBatt (),°C), (¢; "lowBatt (),°C)}

[P1; Polocs ={(¢; H), (encrypt; mlowBatt (), °C),
(encrypt deny; lowBatt (),°C)}

Figure 6. Semantics of node N7 obtained via the application of function
[-] to policy program P ; Ps.

of operations that can be executed by the policies on node
N; when triggered by a message.

C. Semantics of Policy Programs at System Level

Since policy programs are triggered by messages when
they leave a node and when they enter one, knowledge about
how messages are exchanged in the network is crucial to
calculate the semantics of the whole system.

The network semantics is formalized in To

[local;remote] = {[P]¢, | P € local} U
{(@4sa’;C) | (P,P") € remote,
(@ C") € [Pley, @5 C) € [Pler}

Figure 7. Semantic function of policies in a sensor network.
avoid modelling components, assume local: a set of policy
programs, and remote: a set of pairs of policy programs.
Elements of local are policies applied during local commu-
nication. Pairs in remote are policy programs executed on
the sending and on the receiving node when a message is
sent across the network. The system semantics consist of the
set of all possible (consistent) constrained traces from when
a message is created until it is received by a component.
The starting accumulator Cj contains the empty logical
constraint and the set of all types the node can produce.

Example 3 (System semantics): Consider a node N that
communicates with node N; from on messages
of type centigrade (°C) and humidity (H). Intuitively, there
are components on N; that produce such messages and
components on N, that receive them. These details are
abstracted away; the only required information is that there
is communication from N; to N2 on messages of type °C



and H and that N; produces both centigrade and humidity
messages. presents policies that may be deployed
on Ns: P, decrypts all temperature messages, while Pj
decrypts all kind of messages (Any). If P; is deployed on Ny

Table II
EXAMPLE POLICIES DEPLOYED ON NODE Na.

PyQN> Ps@QN»o
on (T) as e on (Any) as e
if (true) if (true)
decrypt e; decrypt e;

and P; is deployed on Ny, we obtain the following system
S1 = local =0; remote =(P;; Ps). The semantics of S is
calculated in the upper part of The second trace of

[P1]ocu ={(encrypt;°C), (¢;H)} (see [Figure 6)
[P5]s ={(decrypt; H)}
[P5]oc ={(decrypt;°C)}
[$i] ={@¢a’;C) | (@C) € [Pilcy, @;C) € [P5]er}
={(4decrypt; H), (encryptsdecrypt;°C)}
(43

[S2] ={

H), (encryptsdecrypt;°C)}

Figure 8. = local =0; remote =(P1; Ps) and

S2 = local

Semantics of systems Sp
=0; remote =(P1; Py).

[S1] is an undesired one since a decrypt appears without
a matching encrypt. Such trace would not be present if
P, is deployed on N, in place of P;. The semantics of
configuration Sy = local =(); remote =(P;; P;) is presented

in the lower part of [Figure §]

III. SYSTEM ANALYSIS VIA MODAL LOGIC

Desirable properties over the traces given by the semantics
of are described using mCRL2’s modal logic [9].

Figure Y provides examples of formulas used to detect
semantical inconsistencies across different scenarios. Square
brackets require that all possible paths match the enclosed
formula, and angle brackets require the existence of a path
that matches the formula. Let us provide two examples that
show how such formulas are to be read.
states that any sequence of actions (square
brackets) that is not an encrypt ( (! encrypt) *) followed by
a decrypt (.decrypt ) may never happen happen (false).
[Formula (dec-after-enc)| states that any sequence of actions
(square brackets) that is something (t rue x) followed by an
encrypt (.encrypt ), followed by something (.truex),
followed by a network communication (. %), followed by
anything that is not a decrypt (. (!decrypt) *), may be
followed (angular brackets) by something (t rue ) followed
by a decrypt (.decrypt ).

In order to enforce the correct execution of security
protocols, encrypt and decrypt must occur in the right

order.|Formula (enc-before-dec)|states that decrypt cannot

occur without a preceding encrypt , and

states that after every encrypt must be followed
by a decrypt . Similar reasoning applies to actions sign

and verify, and to delete and persist; some formulas
are omitted for the sake of brevity. For power management
issues, expensive security-related operations should not be
allowed on a message that is going to trigger a deny,
as stated by [Formula (no-waste-deny)| and [Formula (no-|
Other formulas can be used to enforce the
correct order of actions in the communication between two
components, including application-specific properties.

IV. IMPLEMENTATION AND EXPERIMENTAL RESULTS

A prototype implementation has been developed following
the aforementioned theory This prototype expects two
inputs: (1) a full description of the application, containing
the nodes on which it is deployed, the CaPI policies present
on every node, and the application topology in terms of
communicating nodes, and (2) a list of properties that well-
formed applications must satisfy. In return, the prototype
(a) creates an abstract model of a WSN which conforms
to our formalisation and (b) uses the mCRL2 toolset [9] to
verify the properties specified in input (2). The prototype
shall be incorporated in the network administration tool used
to manage CaPI applications.

Abstract Model. Policies deployed in a CaPI application
are flattened in a single policy program. Some arguments
and actions that do not influence the analysis are ignored and
guards are simplified using the predicate abstraction mech-
anism described in Predicates that are syntactically
equivalent are therefore considered equal in our model.

Model Checking. Firstly, an mCRL2 process representing
all possible traces is extracted from the abstract model.
Secondly, checks whether the given properties hold with
respect to the mCRL2 process are made. When a property
fails, a second analysis is performed to provide a more
accurate description of the problem. The first process is
faster for mCRL2 to analyse but it contains traces without the
related accumulators, thus there is no useful information for
the application manager regarding the circumstances under
which faults occur.

Small experiments have been performed, revealing
promising results. The prototype scales linearly wrt the num-
ber of connections between network nodes and to the number
of policies with identical if-guards. The prototype scales
exponentially wrt the number of different if-guards, although
real case scenarios suggest that the number of different if-
guards is typically low. On a configuration with 110 policies
distributed on 80 communicating nodes, the prototype finds
the constrained traces and analyses 13 formulas against them

2 Available at http:/distrinet.cs kuleuven.be/software/dissent/.


http://distrinet.cs.kuleuven.be/software/dissent/

(!encrypt) x.decrypt 1 false;

truex*.encrypt.truex i !decrypt) x] <truex.decrypt > true;

false;

truex.sign.truex.4. (!verify) ] <truex.verify > true;

truex. (sign + verify + encrypt + decrypt) .truex.deny ]

[
[
[ (!sign) *.verify |
[
[
[

truex.deny.truex*. (sign + verify + encrypt + decrypt) ]

(enc-before-dec)
(dec-after-enc)
(sig-before-ver)
(ver-after-sig)
false; (no-waste-deny)

false; (no-waste-deny-aft)

Figure 9.

in around 44 seconds on a MacBook Pro with a 2.3 GHz
Intel Core i5 processor and 4GB 1333MHz DDR3 RAM.
An additional 0.049 seconds are required for each trace that
fails a property check in order to run the second analysis.

V. DISCUSSION

This section describes the assumptions and limitations of
the presented work.

The presented model assumes that certain information
is known by the application manager. Details about the
application topology are required, namely, which node com-
municates with which other node. Information concerning
all policies deployed on all nodes and all types of messages
produced by all nodes is also required.

The model is only concerned with application events,
namely, messages exchanged between components; low-
level messages, such as routing control, are not considered
in this work. Since the focus is on the semantics of policies,
components are abstracted away; future work will address
component verification. We model a static network config-
uration, focussing on security and resource usage problems.
Modeling and analyzing the set of policy actions in charge
of dynamical reconfiguration of the network is left for future
work.

We chose not to model wireless interference since a
scenario where no packets are lost is the one that gen-
erates the most interesting traces. Lossy communication
can generate partial traces: only the ones starting from the
sender node. Such traces are not interesting to model when
analyzing security and resource-optimization properties. For
example, from the security point of view an administrator
wants to know if all encrypted messages are decrypted upon
reception, if such messages are lost they lose interest. Partial
traces will be interesting to model when dynamic reconfig-
uration actions are taken into account, as a lost message can
still trigger actions and reconfigure a part of the network.
The same holds for the concept of interleaving among traces,
they will be more interesting when reconfiguration action are
taken into account.

VI. RELATED WORK

Detection of conflicts in policies in distributed systems
has been studied by Lupu and Sloman [10]], by means of

Example of formulas capturing undesired properties in CaPI applications.

a static analysis, but their work is not concerned with the
composition of policies across the network. Furthermore
their policies regard authorization, thus conflicts involve
granting and denying access. Conflicts in the presented
work are more subtle since one must consider the intended
semantics of the actions of policies in order to state what
undesired behaviour is.

Surveys on the existing work in the area of modeling
techniques for WSN are presented by Jacoub et al. [L1]
and by Stanley-Marbell et al. [12]]. None of the surveyed
models treats the semantic composition of policies across the
network, as they are mostly used for simulations concerned
with resource analysis. Little work exists in the field of
formal verification of WSN applications. Sharma et al. [13]
verify correctness of the operations that send and receive
messages in Insense, a 7-calculus based implementation of
components for WSN application. Zheng et al. [14] adopt
a labelled transition system approach to formalising WSN
applications written in NesC and provide verification of
deadlock-freeness, state reachability and liveness properties
expressed in linear temporal logic. Mottola et al. [15] imple-
mented Anquiro, a model checker for WSN software which
relies on linear temporal logic (LTL) to verify properties of
the software. These works analyse a different aspect of a
WSN application, they are orthogonal to ours. WSNs have
been formalised and verified for properties often involving
lifetime and power analysis [[16] or properties of algorithms,
such as OGDC [17] or the S-MAC medium access control
protocol [18]. These works show the validity of formal
method approaches in WSN settings that do not focus on
properties of the deployed application.

VII. CONCLUSION AND FUTURE WORK

Extensions to the presented work will be made on sev-
eral fronts. Firstly, the complete set of actions available
in CaPI will be analysed, including parameters of each
action, leading to formulas of the form ! (encrypt (t,
e.key, hash)) x.false, which can be processed by
mCRL2. As mentioned in the excluded actions deal
with dynamic aspects of the system e.g. activate and
deactivate components and policies. In this setting we
will exploit some of the more advanced features of mCRL2,



such as the verification of liveness and fairness properties,
in order to verify the reachability of certain configuration
states. Secondly, additional reasoning could be performed
on logical guards in order to detect logical implication, e.g.
temp > 6 implies temp > 7,8, ---. This would reduce the
set of traces considered by the prototype. Additionally, in
order to model interleaving a concurrency model shall be
taken into account.

This paper presented the formalisation and analysis of
the semantics of policies orchestrating a WSN application.
The semantics of policies is formalised in terms of traces
augmented with information concerning the constraints un-
der which the trace is executed. The CaPI middleware has
been used as case study to provide tangible proof that the
underlying theory is solid and leads to interesting results.

ACKNOWLEDGEMENTS

The authors would like to thank the anonymous reviewers
for the useful and very insightful remarks on an early draft
of the work.

REFERENCES

[1]1 Y. Yu, L. J. Rittle, V. Bhandari, and J. B. LeBrun, “Support-
ing concurrent applications in wireless sensor networks,” in
Proceedings of the 4th international conference on Embedded
networked sensor systems, ser. SenSys '06. New York, NY,
USA: ACM, 2006, pp. 139-152.

[2] P. Costa, G. Coulson, C. Mascolo, L. Mottola, G. Picco,
and S. Zachariadis, “Reconfigurable component-based mid-
dleware for networked embedded systems,” International
Journal of Wireless Information Networks, vol. 14, pp. 149—
162, 2007.

[3] Y. Zhu, S. L. Keoh, M. Sloman, and E. Lupu, “A lightweight
policy system for body sensor networks,” Network and Ser-
vice Management, IEEE Transactions on, vol. 6, no. 3, pp.
137 148, september 2009.

[4] N. Matthys, C. Huygens, D. Hughes, S. Michiels, and
W. Joosen, “A component and policy-based approach for
efficient sensor network reconfiguration,” in Proceedings of
the IEEE International Symposium on Policies for Distributed
Systems and Networks, 2012, 2012, to appear.

[5] N. Matthys, C. Huygens, D. Hughes, J. Ueyama, S. Michiels,
and W. Joosen, “Policy-driven tailoring of sensor networks,”
in Sensor Systems and Software, Revised Selected Papers.
LNICST, vol. 51.  Springer, 2010.

[6] G. Russello, L. Mostarda, and N. Dulay, “A policy-based pub-
lish/subscribe middleware for sense-and-react applications,”
Journal of Systems and Software, vol. 84, no. 4, pp. 638-
654, 2011.

[71 D. W. Marsh, R. O. Baldwin, B. E. Mullins, R. F. Mills,
and M. R. Grimaila, “A security policy language for wireless
sensor networks,” Journal of Systems and Software, vol. 82,
pp. 101-111, 2009.

(8]

(9]

[10]

[11]

[12]

[13]

(14]

[15]

[16]

(7]

(18]

M. Fitting and R. L. Mendelsohn, First-Order Modal Logic.
Kluwer Academic Press, 1998.

J. Groote, J. Keiren, A. Mathijssen, B. Ploeger, F. Stappers,
C. Tankink, Y. Usenko, M. v. Weerdenburg, W. Wesselink,
T. Willemse, and J. v. d. Wulp, “The mcrl2 toolset,” in
Proceedings of WASDeTT, 2008.

E. C. Lupu and M. Sloman, “Conflicts in policy-based
distributed systems management,” IEEE Trans. Softw. Eng.,
vol. 25, pp. 852-869, 1999.

J. K. Jacoub, R. Liscano, and J. S. Bradbury, “A survey of
modeling techniques for wireless sensor networks,” in Proc.
of the 5th International Conference on Sensor Technologies
and Applications, ser. SENSORCOMM 2011, 2011, pp. 103-
109.

P. Stanley-Marbell, T. Basten, J. Rousselot, R. S. Oliver,
H. Karl, M. Geilen, R. Hoes, G. Fohler, and J.-D. Decotignie,
“System models in wireless sensor networks,” Eindhoven
University of Technology, Tech. Rep., 2008.

O. Sharma, J. Lewis, A. Miller, A. Dearle, D. Balasubra-
maniam, R. Morrison, and J. Sventek, “Towards verifying
correctness of wireless sensor network applications using
insense and spin,” in Proceedings of the 16th International
SPIN Workshop on Model Checking Software. Berlin,
Heidelberg: Springer-Verlag, 2009, pp. 223-240.

M. Zheng, J. Sun, Y. Liu, J. S. Dong, and Y. Gu, “Towards
a model checker for nesc and wireless sensor networks,” in
Proceedings of the 13th international conference on Formal
methods and software engineering, ser. ICFEM’11. Berlin,
Heidelberg: Springer-Verlag, 2011, pp. 372-387.

L. Mottola, T. Voigt, F. Osterlind, J. Eriksson, L. Baresi,
and C. Ghezzi, “Anquiro: enabling efficient static verification
of sensor network software,” in Proceedings of the 2010
ICSE Workshop on Software Engineering for Sensor Network
Applications, ser. SESENA °10. New York, NY, USA: ACM,
2010, pp. 32-37.

S. Coleri, M. Ergen, and T. J. Koo, “Lifetime analysis of
a sensor network with hybrid automata modelling,” in Pro-
ceedings of the 1st ACM international workshop on Wireless
sensor networks and applications, ser. WSNA ’02.  New
York, NY, USA: ACM, 2002, pp. 98-104.

P. C. Olveczky and S. Thorvaldsen, “Formal modeling and
analysis of the ogdc wireless sensor network algorithm in
real-time maude,” in Proceedings of the 9th IFIP WG 6.1
international conference on Formal methods for open object-
based distributed systems, se. FMOODS’07. Berlin, Hei-
delberg: Springer-Verlag, 2007, pp. 122-140.

P. Ballarini and A. Miller, “Model checking medium access
control for sensor networks,” in Proceedings of the Second
International Symposium on Leveraging Applications of For-
mal Methods, Verification and Validation, ser. ISOLA ’06.
Washington, DC, USA: IEEE Computer Society, 2006, pp.
255-262.



	Introduction
	System Semantics
	Informal Semantics
	Semantics of Policy Programs
	Semantics of Policy Programs at System Level

	System Analysis via Modal Logic
	Implementation and Experimental Results
	Discussion
	Related Work
	Conclusion and Future Work
	References

