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Abstract. The HATS project aims at developing a model-centric
methodology for the design, implementation and verification of highly
configurable systems, such as software product lines, centred around the
Abstract Behavioural Specification (ABS) modelling Language. This ar-
ticle describes the variability modelling features of the ABS Modelling
framework. It consists of four languages, namely, µTVL for describing
feature models at a high level of abstraction, the Delta Modelling Lan-
guage DML for describing variability of the ‘code’ base in terms of delta
modules, the Product Line Configuration Language CL for linking fea-
ture models and delta modules together and the Product Selection Lan-
guage PSL for describing a specific product to extract from a product
line. Both formal semantics and examples of each language are presented.

1 Introduction

Software systems are central for the infrastructure of modern society. To justify
the huge investment made to build such systems, they need to live for decades.
This requires that the software is highly adaptable; software systems must sup-
port a high degree of variability to accommodate a range of requirements and
deployment scenarios, and to allow these to change over time. A major challenge
facing software construction is addressing high adaptability combined with trust-
worthiness. A limitation of current development practices is the missing rigour
of models and property specification. Without a formal notation for distributed,
component based systems, it is impossible to achieve automated consistency
checking, security enforcement, generation of trustworthy code, etc. Further-
more, it does not suffice to simply extend current formal approaches.

Work done in the HATS project will make software product line engineering
(SPLE) [30] into a more rigorous approach. SPLE addresses the development of
software products sharing a number of commonalities, while differing in other as-
pects. Fig. 1 depicts the workflow in SPLE. Product variability can be expressed
by features, which are user-visible product characteristics. The set of products is
represented by a feature model [22, 4], describing valid combinations of features.
Given a set of software artefacts associated to these features, a final product is
built by selecting the desired features and combining the artefacts.
? This research is funded by the EU project FP7-231620 HATS: Highly Adaptable and
Trustworthy Software using Formal Methods (http://www.hats-project.eu).
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Fig. 1. Stages of product line development

The HATS project aims at developing a model-centric methodology for the
design, implementation and verification of highly configurable systems, such as
software product lines, that have high demands on dependability and trustwor-
thiness. The HATS methodology is centred around the Abstract Behavioural
Specification language (ABS) and its accompanying tool suite4 that allows pre-
cise specification and analysis of the abstract behaviour and variability of highly
configurable software systems. ABS is designed to fill the niche between design-
oriented formalisms such as UML [27] and feature description language FDL [13],
on one hand, and implementation-oriented formalisms such as Spec# [2] and
JML [8], on the other hand. In this paper, we focus on the linguistic concepts of
the ABS to represent anticipated system variability.

ABS [15] comprises a core language, called Core ABS, with specialised lan-
guage extensions addressing system variability. Core ABS is a class-based, object-
oriented language based on the active object concurrency model of Creol [21, 6],
which uses asynchronous method calls and cooperative multi-tasking between
concurrent object groups of one or more ABS objects that share a computation
resource; i.e., there can be at most one activity running inside the group.

The full ABS modelling framework extends Core ABS by four specialised lan-
guages to represent variability of Core ABS models. The micro textual variability
language (µTVL), based on TVL [7, 11], expresses variability via feature models
(Section 2). The Delta Modelling Language (DML), based on the concept of delta
modelling [32], expresses the code-level variability of ABS models (Section 3). In
delta modelling, a set of products is described by an initial core module, which is
a Core ABS model, together with a set of product deltas specifying transforma-
tions to this core module (additions, removals, or modifications). The Product
Line Configuration Language (CL) defines the relationship between the feature
model and product deltas and thus forms the top-level specification of a product
line of Core ABS models (Section 4). The Product Selection Language (PSL)
represent the actual products by providing a selection of the product features
4 http://tools.hats-project.eu/



and their attributes along with initialisation code for the product (Section 5).
Fig. 2 depicts the relationship between these languages. The process of generat-
ing a software product from a software product line specification is explained in
Section 6. Related work is presented in Section 7 and Section 8 concludes.
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Fig. 2. Relationship Between Ingredients

2 Feature modelling

This section introduces the µTVL text-based feature modelling language, pro-
nounced either micro textual variability language or simply mu tee vee ell, an
extended subset of TVL [7, 11]. TVL was developed at the University of Namur,
Belgium, to serve as a reference language for specifying feature models. It is tex-
tual, as opposed to diagrammatic, and aims to be scalable, concise, modular, and
comprehensive, and thus, serves as a suitable starting point for our purposes.
A feature model is represented textually as a tree of nested features, each with
a collection of boolean or integer attributes. Additional cross-tree dependencies
can also be expressed in the feature model.

µTVL is designed to be deliberately smaller than TVL in order to capture
the essential feature modelling requirements and to simplify the manipulation
of feature models. The simplification allows reducing a number of semantic con-
straints imposed by TVL to syntactic constraints. µTVL enables a feature model
with multiple roots (hence, multiple trees) to express orthogonal variability [30],
which is useful for expressing application models and platform models in an
orthogonal fashion (even in different files). Support for attributes of enumer-
ated types have been dropped, but our tools support checking of satisfiability
of integer attributes. Finally, in µTVL features can only be extended (in Fea-
tureExtension clauses) by adding new constraints, but not by introducing new
features. Even though TVL syntax is used (with a few variations), the tools for



µTVL have been developed from scratch and integrated with the ABS language
tool suite.

2.1 Concrete Syntax

The grammar of µTVL is given in Fig. 3. Text in monospace denote terminal
symbols. Assume the presence of two global sets: FID of feature names and AID
of attribute names.

Model ::= (root FeatureDecl)∗ FeatureExtension∗

FeatureDecl ::= FID [{ [Group] AttributeDecl∗ Constraint∗ }]
FeatureExtension ::= extension FID { AttributeDecl∗ Constraint∗}

Group ::= group Cardinality { [opt] FeatureDecl, ([opt] FeatureDecl)∗ }
Cardinality ::= allof | oneof | [n1 .. *] | [n1 .. n2]

AttributeDecl ::= Int AID ; | Int AID in [ Limit .. Limit ] ; | Bool AID ;

Limit ::= n | ∗

Constraint ::= Expr ; | ifin: Expr ; | ifout: Expr ;

| require: FID ; | exclude: FID ;

Expr ::= True | False | n | FID | AID | FID.AID
| UnOp Expr | Expr BinOp Expr | ( Expr )

UnOp ::= ! | -
BinOp ::= || | && | -> | <-> | == | != | > | < | >= | <= | + | - | * | / | %

Fig. 3. Grammar of µTVL; n ranges over integers.

Attributes and values in µTVL range either over integers or booleans. The
Model clause specifies a number of ‘orthogonal’ root feature models along with
a number of extensions that specify additional constraints, typically cross-tree
dependencies. The FeatureDecl clause specifies the details of a given feature,
firstly by giving it a name (FID), followed by a number of possibly optional
sub-features, the feature’s attributes and any relevant constraints. The Feature-
Extension clause specifies additional constraints and attributes for a feature.
This is particularly useful for specifying constraints that do not fit into the tree
structure given by the root feature model. The Cardinality clause describes the
number of elements of a group that may appear in a result. The AttributeDecl
clause specifies the declaration of both integer (bounded or unbounded) and
boolean attributes of features.

The Constraint clause specifies constraints on the presence of features and
on attributes. An ifin constraint is only applicable if the current feature is
selected. Similarly, an ifout constraint is only applicable if the current feature
is not selected. A require clause specifies that the current feature requires some
other feature, whereas exclude expresses the mutual incompatibility between
the current feature and some other feature. The Expr clause expresses a boolean
constraint over the presence of features and attributes, using standard boolean



and arithmetic operators. Features are referred to by identity (FID). Attributes
are referred to either using an unqualified name (AID), for in scope attributes,
or using a qualified name (FID.AID) for attributes of other features.

Example 1. The following is a feature model of amulti-lingual Hello World prod-
uct line, which describes software that can output “Hello World” in multiple
languages some number of times.

root MultiLingualHelloWorld {
group allof {
Language {

group oneof { English, Dutch, German }
},
opt Repeat {

Int times in [0..1000];
ifin: times > 0;

} } }

extension English {
ifin: Repeat ->

(Repeat.times >= 2 &&
Repeat.times <= 5);

}

The multi-lingual Hello World product line in the example above has two
main features, Language and Repeat, under the root feature and joined with
the allof combinator. The Language feature requires one out of three possible
features: English, Dutch, or German. The Repeat feature is optional, it has no
associated sub-features, and it has an attribute times which ranges between 0
and 1000, with an added condition that it must be strictly greater than 0. In
this example an extension for the English feature is given. When the English
and the Repeat features are present, the attribute times must be between 2 and
5, inclusive.

2.2 Abstract Syntax

The abstract syntax tree for µTVL programs is presented in Fig. 4, where f ∈
FID, a ∈ AID, and n ∈ Int. The translation from the concrete tree to the abstract
tree is straightforward and hence omitted. Local attribute names are expanded to
fully qualified names. Bounds are placed on all integer attributes. The semantics
of µTVL is given as the solutions of the integer constraints defined inductively
on the abstract syntax of feature models.

2.3 Semantics

The semantics of a feature model in µTVL are defined by translation into con-
straints over integers whose solutions correspond to valid feature and attribute
selections. Boolean variables are treated as integers in the standard manner: 0
corresponds to false, and 1 to true. The function J K encoding feature model M
as an integer constraint is given in Fig. 5. The notation x represents a sequence
of elements x1 · · ·xn. Within the context of a given feature f , function J Kf trans-
lates constraints relative to that feature. In the translation, f† is a unique name
based on name f . If f is an optional feature, f† can freely be set to 1 to count
the optional feature, even when f is absent. For example, when dealing with an



M ::= F ∗ feature model C ::= e | ifin e | ifout e |
F ::= f [G] A∗ C∗ feature (extension) | require f | exclude f constraint
G ::= c N∗ group lt ::= true | false
N ::= opt F | mand F feature node | n | f | f.a literal or variable
c ::= allof | min n U ::= neg | not unary operator

| rng n n cardinality B ::= or | and | implies
A ::= f.a T attribute declaration | equiv | eq | neq
T ::= bool | int L L type and domain | lt | gt | lteq
L ::= ∗ | n domain limit | gteq | plus | minus
e ::= lt | U e | B e e expression | mult | div | mod binary operator

Fig. 4. Abstract syntax of µTVL.

allof constraint, it is required that all children are present; some may however
be optional, so as far as the allof constraint is concerned, optional children are
counted, though the corresponding features may not be included. Expressions e
are encoded into constraints, denoted φe . Their encoding is straightforward and
therefore omitted (see [11]). Boolean operations are mapped to a conjunctive
set of integer operations over the values 0 and 1 where, for example, a → b is
a shorthand for a ≤ b. Finally, we assume a lower bound MIN and an upper
bound MAX on the values of integer variables.

Given a feature model FM in µTVL, the set of solutions of the integer con-
straints JFM K provides our semantics for FM. Such a solution will specify values
for all attributes even when the corresponding feature is not selected. Such as-
signments should have no effect.

The semantics also enforce that each feature is selected either zero or one
times, in spite of cardinality conditions which may appear to allow more instances
of a feature. Cardinality conditions specify the number of selected sub-features
from a group. Note that optional features can only appear under the allof
cardinality; otherwise there would be a fragile interaction between cardinality
conditions and optional features [5].

Example 2. Below is the encoding into integer constraints of the Hello World
feature model introduced in Example 1.

0 ≤ MultiLingualHelloWorld ≤ 1 ∧
Language→ MultiLingualHelloWorld ∧ Repeat† → MultiLingualHelloWorld ∧
Language+ Repeat† = 2 ∧
0 ≤ Language ≤ 1 ∧
English→ Language ∧ Dutch→ Language ∧ German→ Language ∧
1 ≤ English+ Dutch+ German ≤ 1 ∧
0 ≤ English ≤ 1 ∧ 0 ≤ Dutch ≤ 1 ∧ 0 ≤ German ≤ 1 ∧
0 ≤ Repeat† ≤ 1 ∧
Repeat→ Repeat† ∧
0 ≤ Repeat ≤ 1 ∧ 0 ≤ Repeat.times ≤ 1000 ∧ Repeat.times > 0 ∧
English→ (Repeat→ (Repeat.times ≥ 2 ∧ Repeat.times ≤ 5)).



JF K =
∧

x∈F JxK

Jf [G] A CK = (0 ≤ f ≤ 1) ∧ J[G] Kf ∧ JAK ∧ JCKf
Jallof NKf = tree(f,N) ∧

∑
N = #N ∧ JNK

J(min n) NKf = tree(f,N) ∧ n ≤
∑
N ∧ JNK

J(rng n1 n2) NKf = tree(f,N) ∧ n1 ≤
∑
N ≤ n2 ∧ JNK

Jopt (f [G] A C)K = f → f† ∧ Jf [G] A C K

Jmand F K = JF K

Jf.a int L1 L2K = valmin(L1) ≤ f .a ∧ Jifin eKf = f → JeK

f .a ≤ valmax (L2) Jifout eKf = ¬f → JeK

Jf.a boolK = 0 ≤ f .a ≤ 1 Jrequire f ′Kf = f → f ′

JeK = φe Jexclude f ′Kf = ¬(f ∧ f ′)

J [X] K =

{
JXK if X is present

true otherwise

feat(opt(f _ _ _))

feat(mand(f _ _ _))

= f†

= f

#(N1 · · ·Nn) = n valx (n) = n∑
(N1 · · ·Nn) = feat(N1) + · · ·+ feat(Nn) valmin(∗) = MIN

tree(f,N1 · · ·Nn) =
∧

1≤i≤n feat(Ni)→ f valmax (∗) = MAX

Fig. 5. Semantics of µTVL.

Every declaration of a new feature or attribute x is converted into a con-
straint of type min ≤ x ≤ max , and, in the case of booleans and feature names,
min = 0 and max = 1. The tree structure of the feature model is captured
by implications between the children and their parents, as shown in the sec-
ond line of Example 2. The optional feature Repeat is split into two variables:
Repeat and Repeat†. The latter is used only to address the cardinality of the
parent MultiLingualHelloWorld, and they are connected by the implication
Repeat → Repeat†, similar to how child features are related to their parent.
Cardinalities are encoded as constraints that add the 0-1-integer value of the
feature variables and check whether they belong to a specific domain, as shown
in the third and seventh line of the example. Constraints over attributes are
simply interpreted as integer constraints.

3 Delta Modelling

Delta-oriented programming was introduced by Schaefer et al. [32, 34, 33] as a
novel programming language approach for software-based product lines, and as
an direct alternative to feature-oriented programming [3]. Both approaches aim
at automatically generating software products for a given feature selection by
providing a flexible and modular technique to build different products that share



common code. In feature-oriented programming, software modules are associated
to features, and product generation consists of composing the modules for a
feature selection. In delta-oriented programming [32], application conditions over
the set of features and their attributes, are associated with modules of program
modifications (add, remove or modify code), called delta modules. The collection
of applicable delta modules is given by the application conditions that are true for
a particular feature and attribute selection. By not associating the delta modules
directly with features, a degree of flexibility is obtained, resulting in better reuse
of code and the ability to resolve conflicts caused by deltas modifying the code
base in incompatible ways [10]. The flexibility offers benefits for managing the
evolution of product lines, by allowing versions to be implemented using software
deltas.

The implementation of a software product line in delta-oriented program-
ming [32] is divided into a core module and a set of delta modules. The core
module consists of the classes that implement a complete product of the corre-
sponding product line. Delta modules describe how to change the core module to
obtain new products. The choice of which delta modules to apply is based on the
selection of desired features for the final product. Schaefer et al. described and
implemented delta-oriented programming for Java [32], introducing the program-
ming language DeltaJava. This language has strongly influenced our design,
though we further separate deltas from features by moving application conditions
out of deltas and into a product line configuration language, as pursued in [34,
33]. Delta modelling is included in the ABS language to implement variability
at the source code level of abstraction.

3.1 Syntax

Figure 6 specifies the ABS syntax related to delta modelling. Nonterminals writ-
ten in purple (gray) refer to core ABS symbols, whose intended meaning should
be immediate.

The DeltaDecl clause specifies the syntax of delta modules, consisting of an
unique identifier, a list of parameters and a body containing a sequence of class
and interface modifiers. The ClassOrIfaceModifier clause describes the syntax
of modifications at the level of classes and interfaces. Such a modification can
add a class or interface declaration, modify an existing class or interface, or
remove a class or interface. The ImplModifiers clause describes how to modify
the interfaces a class implements or an interface extends, either by adding new
or removing existing interfaces.

The Modifier clause specifies the modifications that can occur within a class
or interface body. These include (where relevant) adding and removing fields and
method signatures (from interfaces), and modifying methods, which amounts to
replacing a method with a new one, but enabling the original method to be called
using the original keyword. The aim of original is to enable the method being
replaced to be called from the delta module that replaces it. This is implemented
by renaming the original method, and replacing the call via keyword original
with a call to the renamed method. The semantics of calling original() as



DeltaDecl ::= delta TypeId [DeltaParams] { ClassOrIfaceModifier∗ }
ClassOrIfaceModifier ::= adds ClassDecl

| modifies class TypeName ImplModifier∗ { Modifier∗ }
| removes class TypeName ;

| adds InterfaceDecl
| modifies interface TypeName ImplModifier∗ { Modifier∗ }
| removes interface TypeName ;

ImplModifier ::= adds TypeName
| removes TypeName

Modifier ::= adds FieldDecl
| removes FieldDecl
| adds MethDecl
| modifies MethDecl
| removes MethSig

DeltaParams ::= (DeltaParam (, DeltaParams)∗ )
DeltaParam ::= Identifier HasCondition∗

| Type Identifier

HasCondition ::= hasField FieldDecl
| hasMethod MethSig
| hasInterface TypeName

Fig. 6. ABS Grammar: Delta Modules.

shown in the above example are essentially the same as Super() from feature-
oriented programming [3], and proceed from context-oriented programming [19],
and similar to ordinary super calls in standard object-oriented languages, as
well as around advice from aspect-oriented programming [23], except without
quantification.

In contrast to deltas presented in the literature [32, 34, 33], delta modules in
the HATS ABS language can be parameterised both by attribute values, which
ultimately flow from the feature model selection, and by class names, to enable
the application of a single delta module in more than one circumstance. Finally,
the HasCondition describes constraints on class arguments to which a delta may
be applied. These constraints consist of descriptions of the methods and fields
such a class implements and any interfaces it is expected to have.

Example 3. Following is the implementation of the Hello World product line
with the feature model shown in Example 1. Delta modules specify the variable
behaviour.



interface Greeting {
String sayHello();

}
class Greeter implements Greeting {

String sayHello() {
return "Hello world";

} }
class Application {

String s = "";
Unit run() {

Greeting bob;
bob = new Greeter();
s = bob.sayHello();

} }
delta Nl {

modifies Greeter {
modifies String sayHello() {

return "Hallo wereld";
} } }

delta De {
modifies Greeter {

modifies String sayHello() {
return "Hallo Welt";

} } }

delta Rpt (Int times) {
modifies Greeter {

modifies String sayHello() {
String result = "";
Int i = 0;
while (i < times) {

String orig = original();
result = result + " " + orig;
i = i + 1;

}
return result;

} } }

In the example above the interface Greeting and the classes Greeter and
Application form the core module of the implementation, written in the core
ABS language. There are three delta modules: Nl, De, and Rpt. The delta module
De has a single class modifier for Greeter, which in turn has a single method
modifier. This method modifier replaces the method sayHello to return the
German text “Hallo Welt". The delta module Rpt has a single parameter for the
number of times that the greeting should be repeated. It replaces the method
sayHello() inside Greeter with new ABS code, allowing the original method to
be called via original().

Example 4. The following diagram illustrates both the use of parameters and
of the original keyword. A parameterised delta, such as Rpt, must have its
arguments provided before it can be applied. The arguments are substituted
into the body of the delta module prior to application.

class Greeter {
String sayHello() {

return "Hello";
}

}

class Greeter {
String original_sayHello() {

return "Hello";
}
String sayHello() {

String result = "";
Int i = 0;
while (i < 10) {

String orig = original_sayHello();
result = result + " " + orig;
i = i + 1;

}
return result;

} }

Rpt(10)

3.2 Formal Semantics

Applying a delta module ∆ to a core ABS program P yields a new core ABS
program. Thus a product is constructed by successively applying delta modules,
one at a time, to a core module. This section presents a formal semantics of



delta modules based on the more abstract presentation of Clarke et al. [10]. That
work also describes the composition of delta modules with each other, which is
essential for reasoning about conflicting delta modules, but this feature is elided
from the current presentation. ABS programs, classes and delta modules will be
represented in terms of finite maps from identifiers to the corresponding contents
of the program, class, or delta module, in order to more cleanly present the
semantics. The semantics only describes the modifications of methods; dealing
with fields and so forth is a straightforward extension. Parameters are omitted.
These will be treated when dealing with configurations in Section 4.

Let Identifier be the set of identifiers, let MethBody be the set of method
bodies, including the parameter and return types, and let MethBodyWrap be
the set of method bodies with an explicit call to original. In the following
domains, Replace, Update, and Remove are used to tag the various branches of
sum data types. Finally, let Error denote that an error has occurred. Errors
occur if one attempts to wrap a method that is not present. Other irregularities,
such as attempting to update a class that is not present, can be given a sensible
semantics, so long as no wrapping occurs.

Program = Identifier⇀ ClassBody
ClassBody = Identifier⇀ MethBody

Delta = Identifier⇀ DeltaBody
DeltaBody = Replace (Identifier⇀ MethBody)

] Update (Identifier⇀ (MethBody ]MethBodyWrap ] Remove))
] Remove

A program is a map from class names to classes, which themselves are collections
of named method bodies. A delta module is a map from class names to delta
bodies, which consist of three different types of modification: Replace either adds
or replaces the class with the specified contents; Update modifies a class in place,
where the three elements within an update clause correspond to replacing a
method with a new body from MethBody, wrapping the method with a body
from WrapMethBody or removing the method; and finally, Remove denotes the
removal of the class.

Notation 1 Let f : X ⇀ Y denote a partial function from X to Y . If f(x) is
undefined for x ∈ X, write f(x) = ⊥, where ⊥ /∈ Y . For set A, let A⊥ denote
A ∪ {⊥}, where ⊥ /∈ A. We freely shift between partial functions X ⇀ Y and
functions X → Y⊥. If � : A⊥ × B⊥ → C⊥, define the lifting of � to partial
functions over index set I as

− � − : (I ⇀ A)× (I ⇀ B)→ (I ⇀ C)

(f � g)(i) = f(i)� g(i), where i ∈ I



Given class update f : Identifier⇀ (MethBody]MethBodyWrap]Remove), define
function f∗ : Identifier⇀ (MethBody ] Error) as follows. For i ∈ Identifier:

f∗(i) =

⊥ if f(i) = Remove
f(i) if f(i) ∈ MethBody
Error if f(i) ∈ MethBodyWrap.

Notation 2 In the following definition, the notation w[ ] denotes a wrapper
method from MethBodyWrap, where the hole [ ] denotes that the original method
is unknown. Notation w[b] denotes the wrapping of method body b with wrapper
w, thus the original call can be successfully bound. The resulting method w[b]
is considered to be an element of MethBody.

Definition 1 (Delta module application). The application of a delta module
to a program is specified by the following functions:

apply : Delta× Program⇀ Program
apply(d, p) = d �c p

where −�c − : DeltaBody⊥ × ClassBody⊥ → ClassBody⊥
⊥ �c x = x

(Replace g) �c _ = g (Update f) �c ⊥ = f∗

Remove �c _ = ⊥ (Update f) �c h = f �m h

and −�m − : (MethBody ]MethBodyWrap ] Remove)⊥ ×MethBody⊥
→ (MethBody ] Error)⊥
⊥ �m x = x

w[ ] �m b = w[b] m �m _ = m
Remove �m _ = ⊥ w[ ] �m ⊥ = Error

where m ∈ MethBody and w[ ] ∈ MethBodyWrap.

Notation 3 If m ∈ Identifier then w[m] denotes the wrapper with each call to
original replaced by a call to m.

In our implementation the method body is not inlined. Instead, if the result-
ing class C has an element m 7→ w[b] ∈ C, the following post-processing steps
are performed before applying another delta module:

1. generate a fresh method name m′ /∈ C,
2. remove m 7→ w[b] from C, and
3. add m 7→ w[m′] and m′ 7→ b to C.

Example 4 illustrated this process with concrete code. The modified method
in that example is sayHello(). Before replacing the method, it was renamed to
a fresh name such as original_sayHello(). The new method was then added to
the class, with its body modified so that original is replaced by the renamed



Configuration ::= productline TypeId { Features ; Deltas }

Features ::= features FID (, FID )∗

DeltaClauses ::= DeltaClause (, DeltaClause)∗

DeltaClause ::= delta DeltaSpec [AfterCondition] [ApplicationCondition] ;

DeltaSpec ::= TypeName [( DeltaArgs )]
DeltaArgs ::= DeltaArg (, DeltaArg)∗

DeltaArg ::= FID | FID.AID | DataExp

AfterCondition ::= after TypeName (, Name )∗

ApplicationCondition ::= when Expr

Fig. 7. Product Line Configuration Grammar.

method’s name original_sayHello. The stipulation that the method name is
fresh is required in the case that multiple delta modules are applied to the
same class, each wrapping the same method. In such a case, the first renaming
would result in method original_sayHello, for example, the second in name
original_sayHello2, and so forth.

4 Product Line Configuration

This section describes the product line configuration language CL which links
feature models specified in µTVL (Section 2) with delta modules (Section 3), to
specify the variability in a product line. This approach is similar to the product
line specification proposed in delta-oriented programming [34, 33].

A product line configuration consists of a set of features assumed to exist
and a set of delta clauses. Each delta clause specifies a delta and the conditions
required for its application, propositional formulas over the set of known features
and attributes called application conditions, and a partial ordering relation with
respect to other deltas. When the propositional formula holds for a given prod-
uct, the delta is said to be active. The partial order states which deltas, when
active, should be applied before the current delta.

4.1 Syntax

The syntax of the product line configuration language is given in Fig. 7. The
Configuration clause specifies the name of the product line, the set of features
it implements, and the set of delta modules used to implement those features.
The feature names are included so that certain simple self-consistency checks
can be performed. The DeltaClause clause is used to specify each delta module,
linking it to the feature model. Each DeltaClause has a DeltaSpec, specifying its
name and its parameters, an AfterCondition, specifying the delta modules that
the current delta must be applied after, and an ApplicationCondition, specifying
an arbitrary predicate over the feature and attribute names (see Fig. 3) that
describes when the given delta module is included in the product line.



Example 5. The Hello World product line is configured, connecting the features
and attributes defined in the feature model to delta modules.

productline MultiLingualHelloWorld {
features English, German, Dutch, Repeat;

delta Rpt(Repeat.times) after De, Nl when Repeat;
delta De when German;
delta Nl when Dutch;

}

The example above first names the set of features from the feature model in
Example 1 used to configure this product line. The delta clauses link each delta
module to the feature model through an application condition (when clause); in
this case, a delta module is applied simply when the specified feature is selected
(e.g. “De when German”). There is no delta module corresponding to the feature
English, as the core module provides support for the English language by de-
fault. In addition, Rpt has to be applied after De and Nl. Rpt’s argument is
Repeat.times, the times attribute feature Repeat; its value (defined by product
selection, see Section 5) is propagated to the Rpt delta.

4.2 Semantics

A CL script specifies how the feature model relates to the delta modules that
are to be applied to the core module. It does so by specifying the parameters
and application conditions for each delta module, and an ordering on the deltas.

Each delta module referred to in a configuration file is modelled by an element
of the following type:

Delta× Params× AppCondition

where Delta is the semantic domain of delta module bodies, defined in Section 3.2,

Params = Var⇀ FID ] (FID× AID) ] Int

models the substitution of actual parameters, which may be attributes or con-
stants, defined in the CL script with the formal parameters of the corresponding
delta module, and AppCondition is the syntactic category of application condi-
tions. Class parameters to delta modules are not modelled.

A configuration script can be modelled as a partial order over the declared
delta modules (with their parameters and application conditions), where the par-
tial order is determined by the reflexive, transitive closure of the after clauses.
This is given by the following domain, where PO(−) denotes the collection of all
partial orders over a given set.

Config = PO(Delta× Params× AppCondition)

The semantics of a configuration script conf ∈ Config is a function of type

Jconf K_ : ProductSelection→ P(Delta∗)



which maps a product selection—the interpretation of a PSL script (see Sec-
tion 5.2)—to the delta modules to apply, in the order they should be applied.
Note that many orders may exist if the after-order is underspecified. A product
selection is an assignment from feature names to true or false (1 or 0) and from
attributes to values, given by the domain ProductSelection:

ProductSelection = (FID ] (FID× AID))⇀ Int

We now develop the ingredients making up function Jconf K_.
Firstly, assume that a notion of substitution exists for delta modules, respect-

ing the scoping of variables, to replace parameters with appropriate values:

Subst = Var⇀ Int

applySubst : Subst× Delta→ Delta

Next, we define the composition of the parameter specifications of delta mod-
ules with a product selection, giving a mapping from formal parameters of delta
modules to values (Int), which will be used to refine the delta modules with the
configuration parameters specifying in the product selection:

◦ : ProductSelection× Params→ Subst
σ ◦ p = {v 7→ xσ | v 7→ x ∈ p}

where xσ =

{
v if x ∈ FID ] (FID× AID)) and x 7→ v ∈ σ
x if x ∈ Int

Now the function taking a product selection σ ∈ ProductSelection and giving
the collection of delta modules to apply is computing as the composition of the
following steps:

1. Select applicable deltas by applying select_ : Config→ PO(Delta× Params)

selectσ(D,≺) = (D′,≺|D′),

where D′ = {(d, p) | (d, p, φ) ∈ D,σ |= φ} and ≺|D′ is ≺ restricted to D′,
and |=⊆ ProductSelection× AppCondition is the satisfaction relation.

2. Specialise deltas using the function specialise : ProductSelection×PO(Delta×
Params)→ PO(Delta)

specialiseσ(D,≺) = (D′,≺|D′),where D′ = {applySubst(σ ◦ p, d) | (d, P ) ∈ D}.

3. Order deltas using the function order : PO(Delta)→ P(Delta∗)

order((D,≺)) = {[d1, . . . , dn] | d1, . . . , dn is a linear extension of (D,≺)}.

Finally, the semantics of a CL script can be interpreted as a function

J_K_ : Config× ProductSelection→ P(Delta∗)
Jconf Kσ = order(specialiseσ(selectσ(conf ))).

Note that this process may be ambiguous when multiple orderings of delta
modules are possible. This should be resolved either by adding more elements
to the ‘after’ order or by introducing conflict-resolving deltas [10].



5 Product Selection

A product selection needed to generate a product from a product line is specified
using the product selection language (PSL) A product selection states which
features are to be included in the product and by sets attributes of those features
to concrete values. In addition, some core ABS code is provided to initialise the
selected product. As depicted in Fig. 2, a product selection is checked against
a µTVL feature model for validity. It is then used by the configuration file to
guide the selection and application of deltas during the generation of the final
software product.

5.1 Syntax

Fig. 8 specifies the grammar of the ABS product selection language. The Se-
lection clause specifies a product by giving it a name, by stating the features
and optional attribute assignments that are included in that product, and by
specifying an initialisation block. An initialisation block can be any core ABS
block, but typically will be a simple call to some already present main method.
Initialisation blocks are specified in the product selection language to enable
product lines with multiple entry points to start execution.

Example 6. Products of the Hello World product line are product selections.

// basic product with no deltas
product P1 (English) {

new Application();
}

// apply delta De
product P2 (German) {

new Application();
}

// apply deltas De and Repeat
product P3 (German, Repeat{times=10}) {

new Application();
}
// apply deltas En and Repeat, but it
// should be refused because "times > 5"
product P4 (English, Repeat{times=6}) {

new Application();
}

In the example above we specify four products: P1, P2, P3, and P4. In the case
of the product P1, the parameter English means the product consists of this fea-
ture and of the features implied by the constraints over the feature model. In this
case the implied features are Language and the root MultiLingualHelloWorld,
according to the model in Example 1. In P3 and P4 the parameters also include

Selection ::= product TypeId ( FeatureSpecs ) { InitBlock }

FeatureSpecs ::= FeatureSpec (, FeatureSpec)∗

FeatureSpec ::= FID [AttributeAssignments]

AttributeAssignments ::= { AttributeAssignment (, AttributeAssignment)∗ }
AttributeAssignment ::= AID = Literal

InitBlock ::= Block

Fig. 8. PSL Grammar



attribute values, in these cases assigning a value to the attribute times from the
feature Repeat. The block of ABS code associated to each product provides its
initialisation code. Every product in our example instantiates an Application
object and executes its run method.

5.2 Semantics

There are two components of interest in a PSL product selection such as

product P (Feature1 {attribute1_1 = value1_1, ...},
Feature2 {attribute2_1 = value2_1, ...}, ...)

{ InitBlock }

– An assigment σ ∈ ProductSelection defined as follows:
• for each Featurei, σ(Featurei) = 1.
• for each attributei,j = valuei,j clause in Featurei,
σ(Featurei.attributei,j) = valuei,j .

– The initialisation block.

The assignment is not complete as it does not specify the values for unselected
or implicitly-selected features. An example of an implicitly-selected feature oc-
curs when a leaf feature is selected, requiring that its ancestors in the tree need
to be selected too. In addition, the variable f† introduced to count optional
feature f is set to 1. Finally, values of attributes for unselected features are set
to some arbitrary value so that the all variables appearing in a constraint are
defined (required to test satisfaction). The following steps add the missing ele-
ments to an assignment. We call this the completion of the product selection.
Assume that f ∈ FID, a ∈ AID, and feature model FM is encoded as constraints
given by ψ = JFM K.

1. Iterate the following steps until a fixed point is reached:
(a) If f ∈ dom(σ) and f ′ is the parent of f , then set σ(f ′) = 1.
(b) If f ∈ dom(σ) and f† appears in ψ, then set σ(f†) = 1.

2. If f /∈ dom(σ) and f appears in ψ, then set σ(f) = 0
3. If f.a /∈ dom(σ) and f.a appears in ψ, then set σ(f.a) = v, where v is an

arbitrary (integer) value within the range specified for f.a.

A product selection σ is valid whenever for all completions σ′ we have σ′ |= ψ.

Example 7. The product P3 from Example 6 results in the following initial vari-
able assignment

σ(German) = 1 σ(Repeat) = 1 σ(Repeat.times) = 10.

In the context of the feature model in Example 2. The remaining variables are
English, Dutch, and MultiLingualHelloWorld, which is the parent of Language



and Repeat, and there are no other attributes. The completion of σ includes the
following additional elements:

σ(MultiLingualHelloWorld) = 1 σ(English) = 0

σ(Language) = 1 σ(Dutch) = 0

The resulting completed assignment σ satisfies the constraints specified in Ex-
ample 2. In contrast to this, the constraints would not be satisfied for product
P4, where σ(English) = 1, σ(Repeat.times) = 6, and σ(Repeat) = 1, due to the
clause English→ (Repeat→ (Repeat.times ≥ 2 ∧ Repeat.times ≤ 5)).

6 Product Generation

This paper introduced four language extensions to core ABS: the µTVL language
to represent feature models, the delta modelling language (DML) to represent
delta modules, the product line configuration language (CL) to associate deltas
to products and to establish the order of application of the deltas, and the
product selection language (PSL) to describe the desired products. From a global
perspective, these are used in the generation of a final software product as follows.

Given a core ABS module P , a set of delta modules ∆, a product line con-
figuration C, a feature model FM , and a product selection p, the following steps
are performed to build the final software product:

Check that the product selection p is satisfied by the feature model FM , as
explained in Section 5.2.

Select the delta modules from ∆ with valid application condition according to
p, as described in Section 4.2.

Apply the deltas to the core module P , in the prescribed order, as described
in Section 3.2. Add the initialisation block from the product selection—this
will be the ‘main’ method.

Application of the deltas yields the final software product, a core ABS program.

7 Related Work

Existing approaches to express variability in modelling languages can be clas-
sified in two main directions [37]: annotative (or negative) and compositional
(or positive). A third main approach for representing variability of development
artefacts are model transformations.

Annotations.Annotative approaches consider one model representing all prod-
ucts of the product line. Variant annotations, e.g., using UML stereotypes in
UML models [38, 14] or presence conditions [12], define which parts of the model
have to be removed to derive a concrete product model. The orthogonal variabil-
ity model (OVM) proposed in Pohl. et al. [30] models the variability of product
line artefacts in a separate model where links to the artefact model take the



place of annotations. Similarly, decision maps in KobrA [1] define which parts
of the product artefacts have to be modified for certain products. In the Koala
component model [28], the variability of a component architecture containing all
possible components is expressed by component parameterisation that is instan-
tiated depending on the product features.

Composition. Compositional approaches, such as delta modelling [35, 31, 32,
34], associate model fragments with product features that are composed for
a particular feature configuration. A prominent example of this approach is
AHEAD [3], which can be applied on the design as well as on the implementation
level. In AHEAD, a product is built by stepwise refinement of a base module
with a sequence of feature modules. Design-level models can also be constructed
using aspect-oriented composition techniques [17, 37, 26]. Apel et al. [36] apply
model superposition to compose model fragments.

Transformations. The common variability language (CVF) [16] represents
the variability of a base model by rules describing how modelling elements of
the base model have to be substituted in order to obtain a particular product
model. In [20], graph transformation rules capture artefact variability of a single
kernel model comprising the commonalities of all systems. In [18], architectural
variability is represented by change sets containing additions, removals or modifi-
cations of components and component connections that are applied to a base line
architecture. Perrouin et al. [29] obtain a product model by model composition
and subsequently refinement by model transformation.

Delta modelling. The notion of program deltas was introduced by Lopez-He-
rrejon [25] to describe the modifications of object-oriented programs. Schaefer et
al. [35, 31] introduced delta modelling as a means to develop product line arte-
facts suitable for automated product derivation. The conceptual ideas of delta
modelling have also been applied the programming language level in an exten-
sion of Java with core and delta modules allowing the automatic generation of
Java-based product implementations [32]. In recent work, Schaefer et al. [34,
33] propose a version of delta-oriented programming where products are gen-
erated only from delta modules applied to the empty product. Furthermore, in
this version the application conditions and the application ordering are specified
separately from the delta modules in a product line specification in order to
increase the reusability of the delta modules and to enable compositional type
checking.

8 Conclusion

This paper presented the variability modelling fragment of the HATS ABS mod-
elling framework, realised by languages µTVL, DML, CL, and PSL. Together
these languages can specify all the variability of a product line of core ABS
models, with PSL scripts specifying the eventual products that can be derived.

The presented variability modelling concepts only target spatial variability.
However, an ABS product line must also safely evolve over time in order to
accommodate necessary changes after the deployment of the products; e.g., bug



fixes, feature extensions or modifications, or changes in user requirements. In
order to facilitate the modelling of temporal variability for core ABS models, it
is crucial that evolution is expressed at the abstraction level of the modelling
language. Hence, in the future, also within the scope of the HATS project, we
are planning to extend the presented variability modelling concepts which are
based on delta modelling with dynamic delta models to capture variability in
space as well as variability in time.

A description of the core ABS language [15] and the proposed component
model [24], along with a tutorial of the full ABS language and HATS tools
suite [9] are available. In addition, the HATS tool suite, documentation, as well
as several case studies are available from http://www.hats-project.eu.
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