Feature Petri Nets

Radu Muschevici

Dave Clarke

José Proenca

DistriNet & IBBT, Dept. Computer Science
Katholieke Universiteit Leuven, Belgium
Email: {radu.muschevici, dave.clarke, jose.proenca}@cs.kuleuven.be

Abstract—In software product line (SPL) engineering, formal
modelling and verification are critical for managing the inher-
ent complexity of systems with a high degree of variability.
The number of products in an SPL can be exponential
in the number of features. Therefore, the challenge when
modelling SPL lies in analysing and verifying large, complex
models efficiently, in order to ensure that all products behave
correctly. The choice of a system modelling formalism that
is both expressive and well-established is therefore crucial.
In this paper we propose two lightweight extensions to Petri
nets: Feature Petri Nets provide a framework for modelling
and verifying software product lines; and Dynamic Feature
Petri Nets provide additional support for modelling dynamic
software product lines.

Keywords-software product lines; behavioural models; dy-
namic variability; Petri nets;

I. INTRODUCTION

The need to tailor software applications to specific re-
quirements, such as specific hardware, markets or customer
demands, is growing. If each application variant is maintained
individually, the management overhead quickly becomes
infeasible [1]. Software Produce Line Engineering (SPLE)
is seen as a solution.

A Software Product Line (SPL) is a set of software
products that share a number of core properties but also
differ in certain, well-defined aspects. The products of an
SPL are defined and implemented in terms of features, which
are subsequently combined in specific ways to obtain the
final software products. The key advantage hereby over
traditional approaches is that all products can be developed
and maintained together. A challenge for the SPL approach
is to ensure that all products meet their specifications without
having to check each product individually, but rather checking
the product line itself. This raises the need for novel SPL-
specific formalisms to model SPL and reason about and
verify their properties.

Petri nets [2] provide a solid formal basis for system
modelling. They have been studied and applied widely, and
they come with a wealth of formal analysis and verification
techniques.

This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Methods
(http://www.hats-project.eu), and the K.U.Leuven BOF-START project
STRT1/09/031 DesignerTypeLab.

The main contribution of this paper is two Petri net variants
suitable for modelling software product lines. These models
enable the specification of system behaviour such as resource
usage and workflow of the entire product line in one model.
We extend Petri nets in two steps. We start by guiding
the execution of a Petri net based on the feature selection,
and later we introduce a mechanism to update the feature
selection based on the execution of the Petri net. We call
the first model Feature Petri Nets (FPN), and the second
Dynamic Feature Petri Nets (DFPN). Our models provide
an elegant separation between behaviour, modelled by the
underlying Petri net, and available functionality, modelled
by feature sets.

The paper is organised as follows. The next section shows
a motivating example. Section III formally introduces the
notion of Feature Petri nets. Section IV motivates Dynamic
Feature Petri Nets and Section V presents their formal
semantics. Section VI discusses the relation of FPN and
DFPN to Petri Nets and how they can be used to model SPL.
Section VII discuses related work. Section VIII presents our
conclusions and future work.

II. FEATURE PETRI NET EXAMPLE

We illustrate the modelling challenge in SPLE using an
example of a software product line of coffee machines. A
manufacturer of coffee machines offers products to match
different demands, from the basic black coffee dispenser, to
more sophisticated machines, such as ones that can add milk
or sugar, or charge a payment for each serving. Each machine
variant needs to run software adapted to the set of hardware
features. Such a family of different software products that
share functionality is typically developed using an SPLE
approach, that is, as one piece of software structured along
distinct features. This has major advantages in terms of code
reuse, maintenance overhead and so forth. The challenge is
ensuring that the software works appropriately in all product
configurations.

Petri nets are used to specify how systems behave. Figure 1
presents an example of a Petri net for a coffee machine.
Places, represented by circles, can host tokens, represented
by dots or a natural number, and the execution of a Petri net
consists of the flow of tokens between places via transitions,
depicted as filled rectangles. In our example, the coffee
machine has a capacity for n coffee capsules; it can brew

http://www.hats-project.eu

SERVE COFFEE

BREW

FULL \I

REFILL COFFEE

WAIT READY

REFILLABLE

Figure 1: Petri net model of a basic coffee machine that can
only dispense coffee.

and serve coffee, and refill the machine with new coffee
capsules. Note that in our model the action ‘refill” does not
mean filling the coffee reservoir completely, but refilling only
one unit of coffee.

If we now add the Milk feature, that is, if we assume
that the coffee machine can also add milk to the coffee,
we need to adapt the Petri net. Furthermore, for every new
feature we would need to specify a new Petri net for each
possible combination of features, resulting in an explosion
of combinations.

We address this problem by annotating transitions with
application conditions [3], which are logical formula over
features that reflect when the transition is enabled. Our
example considers a product line whose products are over the
set of features { Coffee, Milk}. The new Petri net model is
called Feature Petri Nets (FPN). Figure 2 exemplifies an FPN
of a coffee machine with a milk reservoir. The conditions
on the transitions reflect that the three transitions on the
right-hand side can be taken only when both features Coffee
and Milk are present, and the three transitions on the left-
hand side can be taken when the Coffee feature is present.
The restriction of the example net to the transitions that can
fire for feature selection { Coffee} is exactly the Petri net in
Figure 1, after removing unreachable places.

III. FEATURE PETRI NETS

Feature Petri nets (FPN) are a Petri net variant used to
model the behaviour of an entire software product line. For
this purpose, FPN have application conditions [3] attached
to their transitions. An application condition is a boolean
logical formula over a set of features, describing the feature
combinations to which the transition applies. It constitutes a
necessary (although not sufficient) condition for the transition
to fire. In effect, if the application condition is false, it is as
if the transition was not present.

We define Feature Petri Nets and give their semantics. We
present two semantic accounts of FPN. First, when a set of
features is selected, an FPN directly models the behaviour of

the product corresponding to the feature selection. Second,
by projecting an FPN onto a feature selection, one obtains a
Petri net describing the behaviour of the same product. We
show that these two notions of semantics coincide.

We start with some necessary preliminaries, first by
defining multisets and basic operations over multisets. Then
we define Petri nets and their behaviour.

Definition 1 (Multiset). A multiset over a set S is a mapping
M:S—N

We view a set S as a multiset in the natural way, that is,
S(x) =1if ¢ € S, and S(z) = 0 otherwise. We also lift
arithmetic operators to multisets as follows. For any function
® : Nx N — N and multisets M7, Ms, we define M7 © Moy
as (M; © Ms)(z) = My(z) © Ma(z).

A. Petri Nets

To ground our theory, we recall the terminology and
notation surrounding Petri nets [4].

Definition 2 (Petri Net). A Petri net is a tuple (S, T, R, M),
where S and T are two disjoint finite sets, R is a relation
on SUT (the flow relation) such that RN (S x S) =
RN (T xT) =0, and My is a multiset over S, called the
initial marking. The elements of S are called places and the
elements of T are called transitions. Places and transitions
are called nodes.

Sometimes we omit the initial marking M.

Definition 3 (Marking of a Petri Net). A marking M of a
Petri net (S,T,R) is a multiset over S. A place s € S is
marked iff M(s) > 0.

Definition 4 (Pre-sets and post-sets). Given a node x of a
Petri net, the set *x = {y | (y,z) € R} is the pre-set of x
and the set z* = {y | (z,y) € R} is the post-set of x.

Definition 5 (Enabling). A marking M enables a transition
t € T if it marks every place in *t, that is, if M > °t.

The behaviour of a Petri net is a sequence of states,
where each state is defined by a marking. The change from
the current state to a new state occurs by the firing of a
transition. A transition ¢ can fire if it is enabled. Firing
transition ¢ changes the marking of the Petri net by decreasing
the marking of each place in the pre-set of ¢ by one, and
increasing the marking of each place in the post-set of ¢ by
one.

Definition 6 (Transition occurrence rule). Given a Petri net
N = (S,T,R), a transition t € T occurs, leading from a
state with marking M, to a state with marking M, 1, denoted

M; 5N M;11, iff the following two conditions are met:
M; >*t
Mi+1 = (M7 — .t) + t*

(enabling)

(computing)

Coffee

SERVE COFFEE

Coffee
WAIT ﬁ

BREW

FULLVJI?ee

REFILL COFFEE

REFILLABLE

Coffee A\ Milk

SERVE COFFEE W/MILK

!

Coffee N\ Milk READY

)\

2

ADD MILK

FULL‘\CoﬁC% A Milk

REFILL MILK

REFILLABLE

Figure 2: FPN of the product line {{ Coffee}, { Coffee, Milk}} showing each product in its initial state. Each transition has
an application condition attached. Colour is used to visually group transitions according to application conditions.

The behaviour defined above is also known as the firing
of a transition. Transitions fire sequentially, that is, only one
transition occurs at a time.

Definition 7 (Petri net trace). Given a Petri net N =
(S,T,R, My), the behaviour the net exhibits by passing
through a sequence of states with markings M, ..., M,,
where each change of marking is triggered by a transition
occurrence M; Ly M4, is called a trace. A trace is written

t t tn—
Mo =% My = - 225 M,

Definition 8 (Petri net behaviour). The behaviour of a Petri
net is given by the set of all traces from a given initial
marking.

B. Feature Petri Nets

Definition 9 (Application condition). An application condi-
tion @ [3] is a logical (boolean) constraint over a set of
features F, defined by the following grammar:

o = a | pNANe | -,

where a € F. The remaining logical connectives can be
encoded as usual. We write ®p to denote the set of all
application conditions over F.

Definition 10 (Satisfaction of application conditions). Given
an application condition ¢ and a set of features FS, called
a feature selection, we say that FS satisfies p, written as

FS o iff

FS k=a iff a € FS
FS EoiNps iff FS|E @1 and FS = ¢y
FS E -y iff FSHE .

We are now in the position to introduce Feature Petri Nets.

Definition 11 (Feature Petri Net). A Feature Petri net is
a tuple N = (S,T,R, My, F, f), where (S,T, R, M) is a

Petri net, F is set of features, and f : T — ®p is a function
associating each transition with an application condition
from ®p.

For f(t), the application condition associated with tran-
sition ¢, write ;. For conciseness, we say that a feature
selection FS satisfies transition ¢ whenever FS |= ;.

We now define the behaviour of Feature Petri Nets for a
given (static) feature selection.

Definition 12 (Transition occurrence rule for FPN). Given
an FPN N = (S,T,R, My, F, f) and a feature selection
FS C F, a transition t € T occurs, leading from a state
with marking M; to a state with marking M, ., denoted
(M;, FS) % (M;41, FS), iff the following three conditions
are met:

M; >*t (enabling)
My = (M; —°t) +t° (computing)
FS = ¢, (satisfaction)

In the above definition the state of the Petri net is
denoted by a tuple consisting of a marking and a feature
selection, even though we assume the feature selection is
static (constant). Later on, we will look at dynamic feature
selections which can change during execution.

The transition rule for FPN is used to define traces that
describe the FPN’s behaviour in the same way as Petri nets.

Definition 13 (FPN Trace). Given an FPN N =
(S,T,R, My, F,) and a feature selection FS C F, the
behaviour the net exhibits by passing through a sequence of
markings My, ..., M,, where each change of marking is trig-
gered by a transition occurrence (M;, FS) LN (M;41,FS),
is called a trace over FS. A trace is written (M, FS) Lo,
(My, FS) 25 .. 228 (M, FS).

Given an FPN, there is a set of traces representing the
behaviour of the FPN for each feature selection.

Definition 14 (FPN behaviour for a given feature selection).

Given an FPN N = (S,T,R,My,F, f) and a feature
selection FS C F, the behaviour of N for FS, denoted
Beh(N, FS) is the set of all traces over FS from the initial
marking M.

If we consider all possible feature selections, we can
express the behaviour of the FPN.

Definition 15 (FPN Behaviour). Given an FPN N =
(S,T, R, My, F, f), we define Beh(N) to be the combined
set of behaviours for all feature selections over F':

Beh(N) = | Beh(N,Fs).
FSEPF
C. Projection-based Semantics of FPN

We now present an alternative semantics of Feature Petri
Nets. Given a feature selection, the semantics of an FPN is
a Petri net consisting of just the transitions satisfying the
feature selection.

Definition 16 (Projection). Given a Feature Petri Net N =
(S,T,R, My, F, f) and a feature selection FS C F, the
projection of N onto FS, denoted N | FS, is a Petri net
(S, T",R', My), with T = {t € T | FS |= o} and the flow
relation R' = RN ((SUT") x (SUT")).

One projects N onto a feature selection FS by evaluating
all application conditions ¢, with respect to FS for transitions
t € T. If FS does not satisfy ¢, then transition ¢ is removed
from the Petri net. All application conditions are also removed
when projecting.

The behaviour of the projection of a Feature Petri net N
onto a feature selection FS coincides with the behaviour of
N for FS, as stated by the following theorem.

Theorem 1. Given a Feature Petri Net N and FS C F, then:
Beh(N,FS) = Beh(N |FS).

Proof: (C) We show that every trace o € Beh(N, FS)
is also a trace in Beh(V | FS). Firstly, the initial markings M
coincide in both petri nets. Secondly, if (M, FS) AN (M’ FS)
then, by Definition 14, FS = ¢;, and by Definition 16 it is
also a transition of N | FS. Hence, M NV

(D) Following a similar reasoning as before, we show that

every trace o € Beh(N [FS) is also a trace in Beh(NV, FS).

Observe that, if M LN M’, then t is a transition of N | FS,
and by Definition 16 FS |= ;. Hence, by Definition 14 we

conclude that also (M, FS) < (M, FS). |
IV. DYNAMIC FEATURE RECONFIGURATION EXAMPLE

Assuming that a product is composed from a static
selection of features is sometimes too restrictive. As an

example, we can think of a modular appliance, some of
whose features can be disabled temporarily. For example,
a coffee machine using fresh milk instead of milk powder
allows the removal of the milk reservoir, in order to store it
in the fridge. That change in the hardware configuration may
entail a change in the software configuration. Modelling the
presence/absence behaviour of the Milk feature may entail a
significant modelling effort.

Milk
Milk off

DISCONNECT
—Milk
ON \Mli on OFF

CONNECT

Figure 3: DFPN modelling the ability to connect/disconnect
a feature at runtime.

To accommodate modelling this kind of dynamic feature
reconfiguration, we introduce Dynamic Feature Petri Nets
(DFPN). DFPN associate simple update expressions to
transitions. Upon firing of a transition, updates affect the
feature selection in effect.

In our example, switching the Milk feature on and off can
be modelled by the DFPN in Figure 3, as an independent
addition to the model in Figure 2. Associated to the
DISCONNECT transition is the update expression “Milk
off”. By firing the DISCONNECT transition, the current
feature selection is updated, dropping the Milk feature. This
action globally disables all transitions whose application
condition depends on the Milk feature (that is, ADD MILK,
REFILL MILK and SERVE COFFEE W/MILK in Figure 2).
Conversely, firing the CONNECT transition re-enables all
transitions conditioned on the Milk feature.

The feature reconfiguration model can remain disconnected
from the “functional” model if the user interaction of remov-
ing/reconnecting the Milk feature can occur independently of
the state the coffee machine. Alternatively, we can assume
that the reconfiguration of features depends on the functional
model. Figure 4 shows a model where removing/reconnecting
the milk reservoir is only allowed when the machine is in a
waiting state, prohibiting, for example, its removal when the
machine is in the process of brewing coffee.

V. DYNAMIC FEATURE PETRI NETS

Dynamic Software Product Lines (DSPL) is an area of
research concerned with runtime variability of systems [5].
DSPL is an umbrella concept that addresses dynamic recon-
figuration of products (i.e. features are added and removed

Milk

Milk off

ON

Coffee
noop

AICOFFEE

Coffee
noop

BREW

Coffee

FULL\ip

REFILL COFFEE

REFILLABLE

Coffee A\Milk
noop

SERVE COFFEE W/MILK

Coffee A\Milk
noop

READY

ADD MILK

/\

Coffee AMilk

FULL\W

REFILL MILK

REFILLABLE

Figure 4: DFPN (initial state) of a dynamically reconfigurable product line. Whenever transition DISCONNECT fires, feature
Milk is switched off, disabling all transitions that are conditioned on Milk. It is enabled again by firing CONNECT.

at runtime), but also dynamic evolution of the product line
itself (typically referred to as “meta-variability”’). Pushing
the binding time of features to runtime is often motivated by
a changeable operational context, to which a product has to
adapt in order to provide context-relevant services or meet
quality requirements.

We extend Feature Petri Nets to capture the dynamic
reconfiguration of products, resulting in a more general Petri
net model. In our approach we associate to each transition
an update expression that describes how the feature selection
evolves after the transition. The resulting model is called
Dynamic Feature Petri Nets (DFPN). DFPN extend Feature
Petri nets by adding a variable feature selection to the state
of the Petri net, and associating application conditions and

update expressions over the feature set to the transitions.

This extension enable more concise descriptions of systems
based on feature models, without adding expressive power
with respect to Petri nets. We now define update expressions
before formalising DFPN.

Definition 17 (Update). An update is defined by the following
grammar:

uw = noop | a on | a off | uju

where a € F and F is a set of features. We write Ur to
denote the set of all updates over F.
Given a feature selection FS € I, an update expression

modifies FS according to the following rules:

noop

FS %% Fs
FS *2% FS u{a}

a off

FS ——= FS\ {a}
FS *% FS' FS' 4 FS”
Iﬂg Up;U1 1ﬂ9”
Definition 18 (Dynamic Feature Petri Net). A DFPN is a
tuple N = (S, T, R, My, F, f,u), where (S,T, R, My, F, f)

is an FPN and u is a function T — Uy, associating each
transition with an update from Up.

We write u; to denote the update expression u(t) associ-
ated with a transition ¢.

Definition 19 (DFPN transition occurrence). Given a DFPN
N = (S,T,R, My, F, f,u) and an initial feature selection
FSo C F, a transition t € T occurs, leading from a state
(M;,FS;) to a state (M;11,FS;11), denoted (M;, FS;) SN
(M;41,FSiy1), iff the following four conditions are met:

M; > °t (enabling)
My = (M; —*t) +t* (computing)
FS; = ¢: (satisfaction)
FS; 25 FS; 1 (update)

Definition 20 (DFPN trace). Given a DFPN N =
(S, T,R, My, F, f,u), the behaviour the net exhibits by as-
suming a sequence of states (Mo, FSy) ... (My, FSy,), where
each change of state is triggered by a transition occurrence
(M;, FS;) Ly (M;41,FSi41), is called a trace. A trace is
written (Mo, FSo) <% (My, FS1) 2 - =% (M,,, FS,).

If we consider all possible traces, we obtain the behaviour
of the FPN.

Definition 21 (DFPN Behaviour). Given a DFPN N =
(S, T, R, My, F, f,u), we define Beh(N) to be the set of all
traces starting with the initial state (Mg, FSp).

VI. DISCUSSION

Petri nets are a general modelling formalism, proposed for
a wide variety of applications. FPN and DFPN leverage the
power of Petri nets for modelling static and dynamic software
product lines. They offer conciseness and convenience when
modelling entire software families. Theorem 1 shows that
an FPN is equivalent in behaviour to a set of Petri nets, one
for each product defined by the SPL. DFPN additionally
provision for dynamic SPL, by allowing explicit modelling
of feature reconfiguration as part of the behavioural model.

By adding update expressions to Feature Petri Nets,
Dynamic Feature Petri Nets do not gain more expressive
power than Petri nets, but provide a more elegant separation
of concerns. This approach offers orthogonality of the
feature reconfiguration from the underlying behaviour, but
in a way that enables the reconfiguration to depend upon
the underlying behaviour and vice versa. We now justify
intuitively this claim.

In our motivating example of the coffee machine, the
availability of milk is represented by Petri net tokens, while
the capability of doing actions related to the Milk feature is
represented by the feature selection. However, the “activation”
of transitions based on the available features can also be
encoded using more complex Petri nets, where certain
markings denote possible products. We illustrate this idea in
Figure 5. The place MILK ON is associated to the selection
of the feature Milk. When there is a token in this place,
the transitions ¢; ...t, are enabled. They are allowed to
occur only when there is a token in MILK ON, and this token
remains in the same place. A similar approach can be used to
convert any Dynamic Feature Petri Net into a more complex
Feature Petri Net.

We present Feature Petri Nets as a novel SPL modelling
formalism, but we do not examine how well this approach
fares in practice. If used on a real-world product line, issues
of scalability, and the need for a more modular modelling
workflow could arise. These are subject to future research, in
which we expect to devise a workflow where partial models
can be reconciled to a coherent global model. This approach
will benefit from previous work on Petri nets, since methods

m)INNECT /!
tn

CONNECT

MILK OFF

Figure 5: Encoding a feature selection as a Petri net marking

for composing and refining nets are well-studied topics [6].
In addition, many analysis techniques exist to determine the
behavioural correctness of a Petri net design [2].

VII. RELATED WORK

Our research relates to a number of areas, specifically Petri
net based formalisms, behavioural specification of software
product lines and dynamic SPL research. We highlight the
most relevant works in these fields.

A range of Petri net extensions based on a modified
transition occurrence rule have been proposed, some of
which are specifically tailored for representing dynamic, self-
modifying behaviour [7, 8, 9, 10]. Unlike our approach,
these formalisms generally exceed the expressive power of
Petri nets. As a general consequence, properties such as
reachability, boundedness and liveness are not decidable for
these extensions, and they lack the full range of mathematical
tools available to analyse normal Petri nets.

Inhibitor arc Petri nets [7] can test whether a place is
empty by conditioning transitions on the absence of tokens.
By modelling individual features as places, the presence
or absence of tokens could represent whether a feature is
on or off. An application condition could be encoded by
including feature places in the pre-sets of transitions, thereby
conditioning its firing on the presence or absence of features.
Compared to our proposed approach, this entails a more
complex net, with unclear boundaries between the functional
and structural models. Conditional Petri nets [9] associate a
transition to a formal language over transitions. Extending
the classical occurrence rule, a transition is enabled only if
the sequence of transitions that occurred in the past is in that
language. An FPN could be encoded as a conditional Petri
net by encoding application conditions in a language over
the alphabet of transitions.

In self-modifying Petri nets [8], the flow relation changes
dynamically according to the number of tokens at certain
places in the net. A transition is enabled if it can fire as
many tokens as present in the places referenced by its
incoming arcs. Dynamic Petri nets [11] are similar, but have
an “external control” through which the net’s structure can be
changed by adding or removing arcs between nodes. Certain
behaviour can thus be enabled or disabled by integrating

or isolating places and transitions. These Petri net designs,
although sporting a mechanism of self-modification, are
geared towards dynamic changes in throughput, rather that
the discrete activation/deactivation of behaviour offered by
DFPN. Using net rewriting systems [10], dynamic changes
in the configuration of a Petri net are described using a
“rewriting rule”, which relates places and transitions of the
two net configurations to each other. It is conceivable to
model a dynamic SPL as a sequence of configurations and a
set of rewriting rules which relate each configuration to the
next. The DFPN approach, however, has the advantage of
using a single model, in which each state clearly references
a feature selection.

Compared to the surveyed Petri net formalisms, (D)FPN
semantics are simpler, being closer to the application domain
of variability modelling: through application conditions and
update expressions they refer directly to the feature model
of the SPL.

Various formalisms have been adopted for specifying the
behaviour of software product lines, with the aim of providing
a basis for analysis and verification of such models.

UML activity diagrams have been used to model the
behaviour of SPL by superimposing several such diagrams
in a single model [12]. Attached to the activity diagram’s
elements are “presence expression”, which are similar in
scope to application conditions. Models of products are
obtained using model-to-model transformation by evaluating
the presence conditions in the light of a given feature
configuration. Compared to activity diagrams, Petri nets have
a stronger formal foundation, with a larger spectrum of
analysis and verification techniques, although, several studies
have expressed the semantics of UML diagram using Petri
nets (e.g. [13]).

Gruler et al. extended Milner’s CCS with a product line
variant operator that allows an alternative choice between
two processes [14, 15]. This calculus, referred to as PL-
CCS, includes information about variability: by defining
dependencies between features, once can control the set
of valid configurations.

Variability is often modelled using transition systems
enhanced with product-related information. Modal transition
systems (MTS) [16] allow optional transitions, lending
themselves as a tool for modelling a set of behaviours
at once [17]. Generalised extended MTS [18] introduce
cardinality-based variability operators and propose to use
temporal logic formulas to associate related variation points.
Asirelli et al. encode MTS using propositional deontic logic
formulas [19]. Modal I/O automata [20] are a behavioural
formalism for describing the variability of components based
on MTS and I/O automata. Mechanisms of component
composition are provided to support a product line theory.
These approaches do not relate behaviour to elements of
a structural variability model. Featured transition systems

(FTS) [21] are an extension of labeled transition systems.
Similar to Feature Petri Nets, transitions are explicitly labeled
with respect to a feature model, and a feature selection
determines the subset of active transitions. In FTS, transitions
are mapped to single features. Transition priorities are used
to deal with undesired non-determinism when selecting from
transitions associated to different features. Using constraints,
priorities are no longer required because we can negate
the features in other transitions to obtain the same effect.
The authors also envisage an alternative approach in which
boolean expressions over features could be used.

The research fields of dynamic software product lines,
context-aware and self-adapting systems include works on
modelling dynamic systems at the levels of architecture [22,
23] and implementation [24, 25]. Between these, there is a
notable gap with respect to formal specification and analysis
of dynamic SPL behaviour.

VIII. CONCLUSION AND FUTURE WORK

This paper introduces Feature Petri Nets (FPN) and
Dynamic Feature Petri Nets (DFPN), two lightweight Petri
net extensions designed for modelling the behaviour of
software product lines. The transition firing in an FPN
is conditional on the presence of certain features through
application conditions. Application conditions explicitly
relate behaviour to feature configurations, while keeping that
behaviour separate from the SPL structure. FPN capture the
behaviour of entire product lines in a single, concise model,
opening the way for efficient analysis and verification.

The DFPN model extends FPN with the ability to express
dynamic variability. Update expressions associated with
DFPN transitions make it easy to model changes in the
feature selection of a product based on its execution: firing
a transition updates the feature configuration in place. To
our knowledge, this is the first model to capture both the
variable and dynamic aspects of SPL in a single formalism.

In the future we expect to improve the modularity of
our approach. Currently we use a single monolithic net to
express the behaviour of all possible products. This issue
can be addressed by adopting existing complexity managing
techniques for Petri nets, such as abstraction, refinement,
and composition [6], to allow the development of partial
DFPN for views of a system, which can be later combined
into a single coherent model. The main challenge becomes
avoiding the development of one model for each possible
product, and describing the global model by the combination
of key partial DFPN.

ACKNOWLEDGMENT

We would like to thank the anonymous reviewers for their
helpful suggestions and comments.

REFERENCES

[1] K. Pohl, G. Bockle, and F. van der Linden, Software
Product Line Engineering. Springer, 2005. I

[2] T. Murata, “Petri nets: Properties, analysis and appli-
cations,” Proceedings of the IEEE, vol. 77, no. 4, pp.
541-580, Apr. 1989. 1, VI

[3] I. Schaefer, “Variability modelling for model-driven
development of software product lines,” in International
Workshop on Variability Modelling of Software-intensive
Systems, Linz, Austria, 2010. II, III, 9

[4] J. Desel and J. Esparza, Free choice Petri nets. New
York, NY, USA: Cambridge University Press, 1995.
II-A

[5] S. Hallsteinsen, M. Hinchey, S. Park, and K. Schmid,
“Dynamic software product lines,” Computer, vol. 41,
no. 4, pp. 93-95, Apr. 2008. V

[6] M. D. Jeng and F. DiCesare, “A review of synthesis
techniques for Petri nets with applications to automated
manufacturing systems,” IEEE Transactions on Systems,
Man and Cybernetics, vol. 23, no. 1, pp. 301-312,
Jan.Feb. 1993. VI, VIII

[7] T. Agerwala and M. Flynn, “Comments on capabilities,
limitations and “correctness” of Petri nets,” in Inter-
national Symposium on Computer Architecture. New
York, NY, USA: ACM, 1973, pp. 81-86. VII

[8] R. Valk, “Self-modifying nets, a natural extension of
Petri nets,” Automata, Languages and Programming,
pp- 464476, 1978. VII

[9] E-L. Tiplea, On conditional grammars and conditional

Petri nets. River Edge, NJ, USA: World Scientific

Publishing Co., Inc., 1994, pp. 431-455. VII

M. Llorens and J. Oliver, “Structural and dynamic

changes in concurrent systems: reconfigurable Petri

nets,” IEEE Transactions on Computers, vol. 53, no. 9,

pp. 1147-1158, Sep. 2004. VII

M.-K. Ghabri and P. Ladet, “Dynamic Petri nets and

their applications,” in International Conference on

Computer Integrated Manufacturing and Automation

Technology, 1994, pp. 93-98. VII

K. Czarnecki and M. Antkiewicz, “Mapping features to

models: A template approach based on superimposed

variants,” in Generative Programming and Component

Engineering. Springer, 2005, pp. 422-437. VII

U. Farooq, C. P. Lam, and H. Li, “Transformation

methodology for UML 2.0 activity diagram into colored

Petri nets,” in JASTED international conference on Ad-

vances in computer science and technology. Anaheim,

CA, USA: ACTA Press, 2007, pp. 128-133. VII

A. Gruler, M. Leucker, and K. Scheidemann, “Cal-

culating and modeling common parts of software

product lines,” in International Software Product Line

Conference, September 2008, pp. 203-212. VII

, “Modeling and model checking software product

[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

(19]

(20]

(21]

(22]

(23]

(24]

[25]

lines,” in International Conference on Formal Methods
for Open Object-based Distributed Systems, ser. LNCS,
G. Barth and F. de Boer, Eds., vol. 5051. Springer,
2008, pp. 113-131. VII

K. Larsen and B. Thomsen, “A modal process logic,
in Logic in Computer Science, 5-8 1988, pp. 203-210.
VIl

D. Fischbein, S. Uchitel, and V. Braberman, “A founda-
tion for behavioural conformance in software product
line architectures,” in International Workshop on the
Role of Software Architecture in Analysis and Testing
(ROSATEA). New York, NY, USA: ACM, 2006, pp.
39-48. VII

A. Fantechi and S. Gnesi, “Formal modeling for product
families engineering,” International Software Product
Line Conference, pp. 193-202, 2008. VII

P. Asirelli, M. H. ter Beek, S. Gnesi, and A. Fantechi,
“Deontic logics for modeling behavioural variability,”
in International Workshop on Variability Modelling of
Software-intensive Systems, 2009, pp. 71-76. VII

K. Larsen, U. Nyman, and A. Wasowski, ‘“Modal
I/0O automata for interface and product line theories,
Programming Languages and Systems, pp. 64—79, 2007.
VII

A. Classen, P. Heymans, P.-Y. Schobbens, A. Legay,
and J.-F. Raskin, “Model checking lots of systems:
Efficient verification of temporal properties in software
product lines,” in International Conference on Software
Engineering. 1EEE, 2010, pp. 335-344. VII

S. Hallsteinsen, E. Stav, A. Solberg, and J. Floch, “Using
product line techniques to build adaptive systems,” in
International Software Product Line Conference, 2006,
pp- 141-150. VII

H. Shokry and M. A. Babar, “Dynamic software product
line architectures using service-based computing for
automotive systems,” in International Software Product
Line Conference, 2008, pp. 53-58. VII

P. Costanza and T. D’Hondt, “Feature descriptions
for context-oriented programming,” in International
Software Product Line Conference, 2008, pp. 9-14. VII
M. Rosenmiiller, N. Siegmund, G. Saake, and S. Apel,
“Code generation to support static and dynamic com-
position of software product lines,” in International
Conference on Generative Programming and Compo-
nent Engineering. New York, NY, USA: ACM, 2008,
pp. 3-12. VII

5

5

	Introduction
	Feature Petri Net Example
	Feature Petri Nets
	Petri Nets
	Feature Petri Nets
	Projection-based Semantics of FPN

	Dynamic Feature Reconfiguration Example
	Dynamic Feature Petri Nets
	Discussion
	Related Work
	Conclusion and Future Work

