
Towards a Theory of Views for Feature Models

Dave Clarke, José Proença
IBBT-DistriNet, Dept. Computer Sciences
Katholieke Universiteit Leuven, Belgium

Email: {dave.clarke,jose.proenca}@cs.kuleuven.be

Abstract—Variability in a Software Product Line (SPL)
is expressed in terms of a feature model. As software de-
velopment efforts involve increasingly larger feature models,
scalable techniques are required to manage their complexity.
Furthermore, as many stakeholders have a vested interest in
different aspects of a feature model, modularity techniques
are required to independently expresses their views of the
product line abstracting away from unnecessary details. To
address these issues of scalability and modularity this paper
introduces a theory of views for features models, encompassing
both view compatibility and view reconciliation for plugging
together different views of a product line.

Keywords-software product lines; variability; formal methods

I. INTRODUCTION

Variability in a Software Product Lines (SPL) is expressed
in terms of a feature model. Feature models are usually
depicted using feature diagrams [1, 2], and a variety of
increasingly expressive notations have been presented [3,
4, 5, 6, 7, 8, 9, 10]. The semantics of feature diagrams
are generally understood in terms of sets of (multi)sets
of features [11, 12], where at this level of abstraction
a feature is simply a name. As software development
efforts involve increasingly larger feature models, scalable
techniques are required to manage their complexity, and
modularity techniques are required to cater for the different
interests of the various stakeholders involved in the project.

One approach to both managing complexity and increasing
modularity is using views. A view of a feature model shows
the decomposition of a concept up to a certain level of
detail. With a view, only part of a feature model is visible
to each stakeholder, possibly at with some details abstracted
away. For example, one stakeholder may be interested in
the user visible functionality, and thus does not need to see
the detailed features required by programmers in order to to
implement that functionality. Programmers in one team need
not see the complete variability of the product line from the
perspective of other teams.

A theory of views for features models is introduced, along
with notions of view compatibility and view reconciliation,
to address issues of scalability and modularity. Our work

This research is partly funded by the EU project FP7-231620 HATS:
Highly Adaptable and Trustworthy Software using Formal Methods
(http://www.hats-project.eu), and the K.U.Leuven BOF-START project
STRT1/09/031 DesignerTypeLab.

is presented quite generally, using notions from category
theory, to ensure the future applicability of our results to more
detailed models of software product lines. Our contributions
include: a notion of view for feature models; criteria for
determining whether views are compatible for a given SPL;
and techniques for reconciling compatible views.

The paper is organised as follows. §II provides some mo-
tivating examples. §III introduces some preliminary concepts.
§IV defines abstractions and views of feature models. §V
presents our key definitions and results: view compatibility
and view reconciliation and their characterisation. §VI
takes a different angle, revealing some limitations in our
approach. §VII applies our approach to express two notions
of refinement of feature models. §VIII discusses related work.
§IX presents our conclusions and future work.

II. MOTIVATING EXAMPLES

We motivate our work with a collection of small examples,
where features are simple consumer items:

{tv , book , iPod ,newspaper , cd}. (1)

In this paper we investigate on how to combine views on
product lines. A view consists of a selection of relevant
features combined with the abstraction of some other features
into more general features. The term reconciliation refers
to this combination of views, and we use a simple example
to guide the intuition behind the reconciliation process. We
start by considering views over the two sets:

F = {Electronic, book ,newspaper} (2)
G = {tv , iPod ,Paper}. (3)

In F we abstract tv and iPod as Electronic, and in G we
abstract book and newspaper as Paper . We do not use cd
yet. As a convention, we start the name of a feature with
an uppercase letter to denote it is an abstraction. A product
is a set of features, and a product line is a set of possible
products.

Notation. For simplicity, we use only the first letter of each
feature using true type font, and denote products by the
consecutive letters of its features. For example, tiP denotes
the product {tv , iPod ,Paper}.

http://www.hats-project.eu

Example 1 (Success story). We reconcile the following
products lines, over F and G, respectively.

P = {E, Eb, Ebn} Q = {t, tiP}.

The reconciliation of two products or product lines x and y is
denoted by x⊕y. P and Q can be reconciled only when they
are compatible. Two features a and b are compatible, written
a _ b, if one abstracts the other feature. In our example,
t_ E but not t_ P or P_ E. Two products are compatible
if every feature from each product has a compatible feature in
the other product. In our case, tiP_ Eb but not tiP_ E.
Finally, two product lines are compatible if every product
from each product line has a compatible product in the other
product line.

Our two product lines P and Q are compatible, and
the reconciliation ⊕ joins every possible combination of
compatible products. The reconciliation of these product
lines yield:

P ⊕Q = {E⊕ t, Eb⊕ tiP, Ebn⊕ tiP}
= {t, tib, tibn}.

Example 2 (Partiality). We now include also the cd feature,
which is neither refined or abstracted by any other feature.

G2 = G ∪ {cd} Q2 = {t, ctiP}

When calculating P ⊕Q2, the compatibility relation ignores
the cd feature, while the reconciliation operator preserves it.
In our example, ctiP_ Eb, and ctiP⊕ Eb = ctib. Thus,
P _ Q2 and P ⊕Q2 = {t, ctib, ctibn}.

Example 3 (Incompatibility). We now extend Q with Paper .

Q3 = {t, tiP, P}

In this example, P _/ Q3, because there is no product p ∈ P
for which p _ Paper .

III. PRELIMINARIES

We start by introducing basic mathematical models of
concepts such as features, product lines, software product
lines, following Schobbens et al. [13], along with other
relevant formal definitions.

A. Features, Products, and Software Product Lines

A feature is a unit of variability in a software product line
relevant to some stakeholder [14]. From a formal perspective,
features are represented as elements of a set. Products and
product lines are defined as a set of features and as a
set of products, respectively. Modelling from the level of
abstraction of features, we thus equate a product with a
feature configuration and a product line with a feature model.

Typically F, F ′, G,G,′ , . . . range over sets of features,
a, b, . . . over features. p, q, . . . over products, and P,Q, . . .
over product lines. The notation P(F) denotes the power set
of F , namely, the set of subsets of F .

Definition 4 (Product). Given a set of features F . A product
is defined as a subset of F . The set of all products for features
F is denoted F and is defined

F
def= P(F). (4)

Definition 5 (Product Line). Given a set of features F . A
product line is defined as a set of products for F , that is, a
subset of F . The set of all product lines for features F is
denoted F̂ and defined

F̂
def= P(F) = P(P(F)). (5)

B. Function Lifting

Our results will be phrased using some basic category
theory [15]; we will be working in the categories Set of sets
and functions, and PFun of sets and partial functions.

Given a partial function f : F ⇀ G, the domain of f
is dom(f) = F , the codomain is cod(f) = G, the pre-
image is def(f) = {a ∈ F | f(a) 6= ⊥}, and the range is
rng(f) = {f(a) | a ∈ def(f)}. A function f : F → G is
total if dom(f) = def(f), and is onto if cod(f) = rng(f).
The composition of two partial functions u ◦ v is defined as:

(u ◦ v)(a) def=
{
⊥, if v(a) = ⊥
u(v(a)), otherwise.

A partial function f : F ⇀ G from one feature set to
another can be lifted to functions over products and product
lines, written as f and f̂ , respectively.

Definition 6 (Lifting). Given a partial function f : F ⇀ G,
we define the lifting of f to products and product lines as f
and f̂ , respectively, defined as follows.

f : F → G

f(p) def= {f(a) | a ∈ p ∩ def(f)} (6)

f̂ : F̂ → F̂ ′

f̂(P) def= {f(p) | p ∈ P}. (7)

Another useful notion is the restriction of a product or
product line to a smaller set of features. Restriction is one
of the ingredients of our definition of view.

Definition 7 (Restriction). Let G ⊆ F , p ∈ F , and P ∈ F̂ .
Define the restriction of p to G, and the restriction of P to
G, denoted as p � G and P � G, respectively, as follows:

p � G
def= p ∩G (8)

P � G
def= {p � G | p ∈ P}. (9)

An equivalent definition of restriction involves lifting a
partial function r : G ⇀ G, such that r(a) = a for all
a ∈ def(r), to products and product lines.

IV. ABSTRACTIONS AND VIEWS

Abstraction removes distinctions between features, e.g.,
mapping all different varieties of television to a single feature
TV. Views are then defined on top of notion of abstraction,
enabling not only the merging of distinctions, but also the
hiding of features. Both concepts can be expressed for
features and lifted to products and product lines.

Definition 8 (Abstraction). Any onto function f : F → G
defines an abstraction f̂ : F̂ → Ĝ. A product line Q : Ĝ
can be seen as an abstraction of product line P : F̂ if
an f : F → G exists such that f̂(P) = Q. Similarly, an
abstraction of products for such an f : F → G is defined as
f : F → G.

Define a view function as partial abstraction.

Definition 9 (View). For any partial and onto function g :
F ⇀ G, we say that g is a feature view, g is a product view,
and ĝ is a product line view. Furthermore, for any P ∈ F̂
we say that ĝ(P) ∈ Ĝ is a view on Ĝ. Similarly, a view of
products for such an g : F ⇀ G is defined as g : F → G.

Example 10. Consider a product line with features
F = {sonyTV , philipsTV , sonyDVD , philipsDVD , . . .}.
The following function v : F → G, where G =
{TV , sonyDVD , philipsDVD}, defines a view for a stake-
holder interested only in the DVD variability and whether a
TV is present or not:

f =

 sonyTV , philipsTV 7→ TV
sonyDVD 7→ sonyDVD
philipsDVD 7→ philipsDVD .

V. VIEW COMPATIBILITY AND RECONCILIATION

We now consider the following problem. Two views
of a feature model are developed independently by two
stakeholders. No globally definitive feature model exists or
perhaps it has become out-dated. The stakeholders want to
check whether their views are compatible and if so they want
to see how the combined or reconciled view looks.

Assume the stakeholders are working with feature sets F
and G. If the views are compatible, then it will be the case
that some of the features in F are abstractions of features in
G, and vice versa. It may also be that some features in F
do not appear in G, and vice versa. This means that we can
partition F and G each into two parts and construct a view
between pairs of partitions, one going in each direction. The
desired structure is called a view partition and is illustrated
below. Here Fr and Fa are a partition of F . Similarly for G.
The functions v and w are the view functions, mapping more
refined elements in Fr to their abstraction in Ga, and from
Gr to Fa, respectively.1 We depict a view partition below,
where v abstract from Fr to Ga, and and w from Gr to Fa.

1Subscripts r and a indicate the source set (more refined features) and
target set (more abstract features) of view functions of a view partition.

Fr

Fa

Ga

Gr

F G

σ =

v

w

Definition 11 (View partition). Define a view partition to be
a tuple σ = (Fr, Fa, Gr, Ga, v, w), where Fr, Fa, Gr, Ga
are sets of features such that F = Fr ∪ Fa, G = Gr ∪Ga,
Fr∩Fa = ∅ = Gr∩Ga, and v : Fr ⇀ Ga and w : Gr ⇀ Fa
are partial onto functions.

The set Fr +Gr consists of the most refined features of
F and G (+ is categorical coproduct, i.e., disjoint union).
Reconciliation of two views will produce a product line in
terms of Fr +Gr. On the other hand, Fa +Ga is the set of
the most abstract features. These are used for checking the
compatibility of two views.

Define vr : Fr +Gr ⇀ G and va : F ⇀ Fa +Ga to be
the partial onto functions that extend v with the identity for
elements in Gr and Fa, respectively. That is, for example,

vr(x)
def=
{
v(x), if x ∈ Fr
x, otherwise.

Define wr and wa analogously, swapping F and G.
These functions play an important role in what follows.

For example, function vr : Fr + Gr ⇀ G presents the
view of the reconciled product line in terms of G. Function
va : F ⇀ Fa + Ga recasts a view based on features F in
terms of the most abstract features, namely Fa +Ga.

A. View Compatibility

Given a view partition, the following definition captures
what it means for the underlying views to be compatible for
features, products and product lines.

Definition 12 (Compatibility). For any a ∈ F , p ∈ F ,
P ∈ F̂ , b ∈ G, q ∈ G, and Q ∈ Ĝ, and for a view partition
σ = (Fr, Fa, Gr, Ga, v, w), define compatibility of features,
products, and product lines, denoted by the binary operator
_, as follows:

a _ b
def= va(a) = wa(b)

p _ q
def= va(p) = wa(q)

P _ Q
def= v̂a(P) = ŵa(Q).

Observe that va(a) = wa(b) is equivalent to the more
intuitive condition v(a) = b∨w(b) = a∨ v(a) = ⊥ = w(b),
which states that b is an abstract feature corresponding to
a, or vice versa, or both a and b only appear in Fr and
Gr, respectively. Now, p _ q states that every feature in p
has a compatible feature in q, and vice versa, and similarly,
P _ Q states that every product in P has a compatible
product in Q, and vice versa.

The key role of compatibility is that it provides the
conditions for ensuring that two views can be reconciled.

B. Interlude: Pullbacks
The key machinery to get reconciliation to work is the

categorical notion of a pullback [15]. A pullback in the
category Set of a pair of functions f : A→ C and g : B →
C is a the set A×CB = {(a, b) ∈ A×B | f(a) = g(b)}, in
other words, the pairs of elements of A and B that agree (via
f and g) in C. This is the canonical definition of pullback—
any isomorphic set can also be the basis of a pullback. The
key property of a pullback is that if there are functions h
and k that make the outer ‘square’ of the diagram below
commute (that is, k ◦ f = h ◦ g), then there exists a unique
function u that makes the whole diagram commutes. This
captures that A×C B is the most detailed of such objects.

A×C B A

B C

y

X

p.b. f

g

∃!u

k

h

A weak pullback drops the uniqueness criteria.
Although pullbacks always exist in Set, we need to

select specific objects as the locus of reconciliation, namely,
Fr +Gr and ̂Fr +Gr, and cannot always work with pull-
backs. Theorem 13 describes when these objects are pullbacks
(of the appropriate functions) and when we can only work
with a weak pullback.

Theorem 13. Let σ = (Fr, Fa, Gr, Ga, v, w) be a view
partition. The first diagram is a pullback, and the second is
a weak pullback.

Products Product lines

Fr + Gr F

G Fa + Ga

y

p.b.

wr

vr va

wa

̂Fr + Gr
bF

bG ̂Fa + Ga

w.p.b.

cwr

cvr cva

cwa

We now analyse how to combine two views P ∈ F̂ and
Q ∈ Ĝ for two feature sets F and G. We start at the level
of features and build up to product lines. In the following,
let σ = (Fr, Fa, Gr, Ga, v, w) be a view partition.

C. Feature reconciliation
We define reconciliation of features by splitting into the

cases where a ∈ Fr and b ∈ Gr.

Definition 14 (Feature reconciliation). Given a ∈ F and
b ∈ G, define:

⊕σ : F ×G ⇀ Fr +Gr

a⊕σ b
def=

 a if a ∈ Fr and b /∈ Gr
b if a /∈ Fr and b ∈ Gr
⊥ otherwise.

From now on we drop references to the view partition σ.
When a and b are compatible, and at least one is in the domain
of v or w, then a refines b or vice-versa. The reconciliation
choses the most refined feature. The split into these three
cases is justified by the following lemma.

Lemma 15. Let a ∈ F and b ∈ G, such that a ∈ def(v) or
b ∈ def(w). If a _ b then a ∈ Fr ⇔ b /∈ Gr.

D. Product Reconciliation

Reconciliation for features can be lifted to products, by
selecting the most refined features and discarding the rest.

Definition 16 (Product reconciliation). Given a view partition
σ = (Fr, Fa, Gr, Ga, v, w), and products p ∈ F and q ∈ G
such that p _ q, define:

⊕ : F ×G→ Fr +Gr

p⊕ q def= (p � Fr) ∪ (q � Gr).

The following is used to prove our characterisation
property.

Lemma 17. p _ q ⇒ wr(p⊕ q) = p and vr(p⊕ q) = q.

The following corollary is justified by Lemma 17 and
from the fact that Fr +Gr is the pullback. This corollary
characterises product reconciliation (Definition 16). The
‘outer square’ corresponds precisely to the compatibility
condition (Definition 12). The fact that the inner square
is a pullback guarantees the uniqueness of the function
1→ Fr +Gr, which can be shown to be p⊕ q, the uniquely
selected element of Fr +Gr.

Corollary 18. Given view partition σ = (Fr, Fa, Gr, Ga, v,
w). If p _ q, then p⊕ q is the unique morphism making the
following diagram commute:

Fr +Gr F

G Fa +Ga.

y

1

p.b.

wr

vr va

wa

p⊕ q

p

q

E. Product Line Reconciliation

We now lift the previous results for products and define
the reconciliation of product lines as follows.

Definition 19 (Product line reconciliation). Given a view
partition σ = (Fr, Fa, Gr, Ga, v, w), P ∈ F̂ , and Q ∈
Ĝ,define:

⊕ : F̂ × Ĝ→ ̂Fr +Gr

P ⊕Q def= {p⊕ q | p ∈ P, q ∈ Q, p _ q}.

This operation takes all compatible pairs of products from
each product line and combines them with the product

reconciliation operation. The imposition that P _ Q is
a sufficient condition to guarantee that, after reconciling P
and Q, the original values of P and Q can still be recovered,
as stated by the following lemma.

Lemma 20. P _Q ⇒ ŵr(P⊕Q) =P and v̂r(P⊕Q) =Q.

Furthermore, when the above condition does not hold, it
is not possible in general to recover the values of P and Q
from P ⊕Q, meaning that the P and Q would not be views
on P ⊕Q. The following corollary is justified by Lemma 20
and that ̂Fs+Gs is a weak pullback.

Corollary 21. Given view partition σ = (Fr, Fa, Gr, Ga, v,
w). If P _ Q, then P ⊕Q makes the diagram commute:

̂Fr +Gr F̂

Ĝ ̂Fa +Ga

1

w.p.b.

cwr

cvr cva

cwa

P ⊕Q
P

Q

This construction is somewhat unsatisfying, as it does
not say conclusively that operation for product line view
reconciliation is the best we can hope for. Before presenting
an alternative characterisation, we take a step back to consider
how our constructions look for views of a feature, product
or product line, based on some given view partition.

Define the following functions:

c :Fr +Gr → Fr +Gr a 7→ wr(a)⊕ vr(a) (10)

c :Fr +Gr → Fr +Gr p 7→ wr(p)⊕ vr(p) (11)

ĉ : ̂Fr +Gr → ̂Fr +Gr P 7→ ŵr(P)⊕ v̂r(P) (12)

The following state the relationship between a feature,
product or product line and the views on it for a given view
partition. Firstly, the views are compatible and secondly,
reconciliation works on the nose for features and products
but provides an over approximation for product lines.

Lemma 22. Given a ∈ Fr + Gr, p ∈ Fr +Gr and P ∈
̂Fr +Gr. Then:

1) wr(a) _ vr(a)
2) wr(p) _ vr(p)
3) ŵr(P) _ v̂r(P)

4) c(a) = a
5) c(p) = p
6) ĉ(P) ⊇ P .

The following properties capture the nature of ĉ, and thus
provide some intuition about product lines reconciliation .

Lemma 23. ĉ is a closure operator.2

The following definition captures the equivalence class of
product lines that have the same views in F̂ and in Ĝ.

2(1) P ⊆ bc(P). (2) P ⊆ Q implies bc(P) ⊆ bc(Q). (3) bc(bc(P)) = bc(P).

Definition 24. Define equivalence ∼ ⊆ ̂Fr +Gr× ̂Fr +Gr
as P ∼ Q ⇐⇒ ŵr(P) = ŵr(Q) ∧ v̂r(P) = v̂r(Q).

The following lemma characterises ĉ as selecting the
maximum of all possible equivalent product lines with the
same views in F̂ and Ĝ.

Lemma 25. ĉ(P) is the maximum (wrt set inclusion) of [P],
the equivalence class containing P .

VI. CONSTRUCTING A VIEW PARTITION

In the previous section, we assumed a view partition was
given, though not necessarily the product line. Now we start
from the other direction and address whether it is possible to
find an appropriate view partition given a product line and
two views. Let P ∈ Ê be a product line, and f̂ : Ê → F̂
and ĝ : Ê → Ĝ define two views in F̂ and Ĝ. The following
condition guarantees the existence of a view partition.

Definition 26 (View compatibility). Two view functions f :
E ⇀ F and g : E ⇀ G are compatible, denoted f _ g, iff
for every a ∈ F and b ∈ G

f−1(a) # g−1(b),

where X#Y iff X ∩ Y = ∅, X ⊆ Y , or Y ⊆ X .

Intuitively, Definition 26 states that f and g treat the
features in E in terms of compatible abstractions. That is,
two feature sets Ea = f−1(a) and Eb = f−1(b) are either
incompatible, that is, f−1(a) ∩ g−1(b) = ∅, or that one is
an abstraction of the other f−1(a) ⊆ g−1(b), or vice versa.

The following theorem states that when two views func-
tions are compatible, then a view partition exists to make
the two views of the original product line compatible.

Theorem 27. Let f̂ : Ê → F̂ and ĝ : Ê → Ĝ be two views.
If f _ g, then there exists a view partition σ such that
∀P ∈ Ê · f̂(P) _σ ĝ(P). Specifically, the following gives
such a view partition σ = (Fr, Fa, Gr, Ga, v, w), where
R = g ◦ f−1:

Fa
def= {x ∈ F | |R(x)| > 1} Fr

def= F \ Fa
Ga

def= R(Fr) Gr
def= G \Ga

v : Fr ⇀ Ga
def= {R(x) | x ∈ Fr}

w : Gr ⇀ Fa
def= {R−1(x) | x ∈ Gr}.

The relationship between the original product line P ∈ Ê
and the reconciled views ĉ(P) has already been described
in Lemmas 22, 23 and 25.

Ultimately, one would expect all pairs of views to be
compatible. That they are not points to a weakness in
our theory. The problem stems from the fact that the two
incompatible views have different ‘vocabularies’.

Example 28 (Overlapping views). Given features
{tv , book , iPod ,newspaper , cd}. Consider view functions:

f = {cd , book 7→ Data ; iPod 7→ Electronic}
g = {cd , iPod 7→ Music ; book 7→ Paper}

Observe that f _/ g, because f−1(Data)#g−1(Music) does
not hold. Consequently, there is no view partition guarantee-
ing the compatibility of product lines obtained by f and g.
The cause is the following conflict:

Data

Electronic

book

iPod

cd
Music

Paper
f g−1

Data is neither an abstraction of Music nor vice versa, thus
the calculations in Theorem 27 fail to yield a view partition.

VII. APPLICATIONS

Two applications demonstrate the expressiveness of our
approach. Although the key ingredient is an abstraction func-
tion, view reconciliation can express notions of refinement:
• Uniform refinement: replace a feature by a collection

of products.
• Refinement in context: replaces a feature a by a

collection of products based on the other features
occurring with a in a product.

These could allow feature models to be developed in a more
scalable and modular fashion.

A. Uniform refinement

First we describe this operation based on sets. We will
define only a simple variant which refines only one feature,
and conjecture that it generalises in a straightforward fashion.

Uniform refinement of a feature f by a set of products Q,
consists of taking each product containing f and replacing
f by product p, for each p ∈ Q. In feature diagrams this
corresponds to replacing a leaf feature f by a whole feature
diagram whose underlying feature model is Q.

Definition 29 (Uniform Refinement). Given product line
P ∈ F̂ , f ∈ F , and Q ∈ Ĝ, where F ∩G = ∅. Define:

UniR(P, f,Q) def= {p[f 7→ q] | p ∈ P, q ∈ Q} (13)

p[f 7→ q] def=
{
p \ {f} ∪ q, if f ∈ p
p, otherwise. (14)

The resulting refinement is a product line over features
F\{f} ∪G. This refinement can be achieved when ∅ /∈ Q
using reconciliation, as follows.

UniR′(P, f,Q) def= P ⊕σ Q∅ (15)
Q∅ = Q ∪ {∅} (16)
σ = (Fr, Fa, Gr, Ga, v, w) (17)

where Fr = F\{f} Gr =
⋃
q∈Q q

Fa = {f} Ga = ∅
v = ∅ w = {g 7→ f | g ∈ Gr}.

The view partition σ is defined such that the to-be-replaced
feature f is in Fa as the abstraction of the features in Q.
The remaining features from F are kept in Fr and are

not abstracted by v. Consequently, the features in Fr are
preserved during the reconciliation. Correctness is given by
the following lemma.

Lemma 30. UniR(P, f,Q) = UniR′(P, f,Q).

Example 31. Consider the following product line, where we
write abc to represent the product {a, b, c}:

Pwd = {c, cd, s}

Pwd describes the features of a password field. A password
can have characters (feature c), digits (feature d), and
symbols (s), according to the combinations in Pwd . We
apply the uniform refinement

(c, {u, lu})

which refines characters as lowercase and uppercase letters
(features l and u, respectively), and requires uppercase letters.
The view partition used to calculate this refinement is:

{d, s}
{c}

∅
{l, u}

F Gv = ∅

w = {l 7→ c, u 7→ c}
Finally, the refinement is calculated as follows.

UniR(Pwd , c, {l, u, lu})
= {c, cd, s} ⊕ {u, lu, ∅}
= {c⊕ u, c⊕ lu, cd⊕ u, cd⊕ lu, s⊕ ∅}
= {u, lu, du, dlu, s}.

B. Refinement in Context

We now describe a more complex notion of refinement,
where a feature f is replaced by a set of possible products
depending on the context, namely the features in the same
product as f , in which f appears. Refinement in context
is given by an operation RiC (P, f, k), where k : C → Ĝ,
can be understood as taking the product line P and refining
it by replacing f by the product k(c), whenever f appears
together with context c ⊆ C.

Definition 32 (Refinement in Context). Given a product
line P ∈ F̂ , define refinement in context wrt f ∈ F and
k : C → Ĝ) by:

RiC (P, f, k) = {p[f 7→ q] | p ∈ P, q ∈ k(p ∩ C)} (18)

where f ∈ F , f /∈ C ⊆ F , and F ∩G = ∅.

We encode the same refinement as a reconciliation as
follows, for the cases where ∅ /∈ rng(k):

RiC ′(P, f, k) def= P ⊕σ Qk (19)

Qk = {c ∪ g | (c, g) ∈ k} ∪ Ĉ (20)
σ = (Fr, Fa, Gr, Ga, v, w) (21)

where Fr = F\Fa Gr = G ∪ C
Fa = {f} ∪ C Ga = ∅
v = ∅ w = {g 7→ f | g ∈ G} ∪

{c 7→ c | c ∈ C}.
Correctness is given by the following lemma:

Lemma 33. RiC (P, f, k) = RiC ′(P, f, k).

Example 34. Recall the password scenario from Example 31.

Pwd = {c, cd, s}

where Pwd ∈ F̂ , and F = {c, d, s}. We now apply
a refinement that replaces the characters feature (c) by
lowercase (l) or uppercase (u), depending on the presence of
the digits feature (d). Define G = {l, u, d} and C = {d} to
be the target features and the context features, respectively.
We apply the refinement in context based on k defined as
k(∅) = {lu}, and k(d) = {l, u, lu}. Here k represents how
the context influences the replacement of f : in any context
f can be replaced by the product lu, and when d is present
f can also be replaced by l or u. That is, when there are
no digits in a password there must be both lowercase and
uppercase letters. The view partition used to calculate the
refinement is depicted below.

{s}
{c, d}

∅
{l, u, d}

F Gv = ∅

w = {l 7→ c, u 7→ c, d 7→ d}
The refinement is encoded as follows.

Ric(Pwd , c, k)
= {c, cd, s} ⊕ {ld, ud, lu, lud, d, ∅}
= {c⊕ lu, cd⊕ ld, cd⊕ ud, cd⊕ lud, s⊕ ∅}
= {lu, ld, ud, lud, s}

In both this application and the previous one, we had to
treat specially the case where a feature could be replaced
by the empty set, in effect, that it could be removed from a
product line. This hiccough would be placed under the hood
of any tool implementing our ideas.

VIII. RELATED WORK

Griss [7] briefly mentions the advantage of having different
views on a feature model, where views are feature diagrams
that display different levels of detail. A more radical insight
is that “different stakeholders perceive differently what is
variable” [16]. By considering developers and customers
as the two main stakeholders, Pohl et al. [16] introduce
the concepts of internal and external variability: external
variability is visible to the customer while internal variability
is hidden. Internal variability often represents finer-grained
variation points at lower levels of abstraction.

Höfner et al. [17] formalise software product lines using
the feature algebra model, and also describe reconciliation.

Product lines are semirings with some extra properties, where
features and products differ from product lines only on the
properties they obey. The authors use the concrete example
of sets and multisets of features to describe products, and
sets of products to describe product lines, although other
examples also fit their general formalisation. An abstraction of
a product line can remove references to features and add new
products. For example, the reduction {t, tibn} {t, tiP}
from Example 1 is an abstraction only in our setting, while
{t, tibn} {t, tibn, tP} and {t, tibn} {∅, P} are
abstractions only in feature algebra.

In feature algebra a view is just a product line, and
reconciliation of views is achieved by combining all pos-
sible products and filtering the result using a given set
of requirements. Thus, reconciliation is guided by extra
requirements, while in our approach reconciliation is guided
by the view partition between features of the reconciled
views. We explore compatibility of views, disregarded in
Höfner et al.’s approach, and allow developers of different
views to refer to simplified versions of each other’s views.

Existing work on views is generally presented at a
different level of abstraction than our approach, such as
architectural views and views on other software models [18].
Solomon [19] proposes using pushouts to merge architectures
when different software systems need to be merged. Other
approaches use pushouts and pullbacks and other algebraic
techniques for model synchronisation [20] and version control
in model-driven engineering [21]. Curiously, our approach
uses pullbacks and not pushouts for combining models.

Acher et al. [22] present a technique for composing feature
models out of smaller ones. Their work focusses mostly
on composing feature diagrams, though some operations
at the semantic level (of sets of sets of features) are
provided. Our work focusses exclusively on the underlying
semantics and we provide a much richer theory. Segura
et al. [23] use graph transformations for merging feature
models, at the diagrammatic level. Their merging is akin to
our view reconciliation, but by performing transformations
on diagrams, they also lack a clear formal semantics.

Bowman et al. [24] present a framework for viewpoint
consistency. Their framework covers many aspects of soft-
ware models, though not feature models. Recent work in this
line [25] considers model transformations across different
views, where the views are represented by different kinds of
models (state machines, class diagrams, etc). In our setting
we work with only one kind of model.

IX. CONCLUSION AND FUTURE WORK

This paper presents a semantic perspective on views for
features models. Views enable feature models to be developed
in a more modular fashion, where each stakeholder can
have independent perspectives on a product line. Our theory
provides a means for checking the compatibility of different
views and for the reconciliation of compatible views.

For future work we will determine the constraints on view
partitions to ensure that our techniques can apply to three
or more views. We also plan to apply our techniques to
more complex models, such as behavioural ones, underlying
software product lines, and to implement our ideas in the
developing HATS ABS toolkit [26].

REFERENCES

[1] K. C. Kang, S. Cohen, J. Hess, W. Nowak, and
S. Peterson, “Feature-Oriented domain analysis (FODA)
feasibility study,” Carnegie Mellon University Software
Engineering Institute, Tech. Rep. CMU/SEI-90-TR-021,
1990. I

[2] D. Batory, D. Benavides, and A. Ruiz-Cortes, “Auto-
mated analysis of feature models: challenges ahead,”
Commun. ACM, vol. 49, no. 12, pp. 45–47, 2006. I

[3] D. Batory, “Feature models, grammars, and proposi-
tional formulas,” in Software Product Lines. Springer-
Verlag, 2005, pp. 7–20. I

[4] K. Czarnecki and U. Eisenecker, Generative program-
ming. Addison Wesley, 2000. I

[5] J. V. Gurp, J. Bosch, and M. Svahnberg, “On the notion
of variability in software product lines,” in WICSA ’01.
IEEE Computer Society, 2001, p. 45. I

[6] M. Eriksson, J. Börstler, and K. Borg, “The PLUSS
approach - domain modeling with features, use cases
and use case realizations,” Software Product Lines, pp.
33–44, 2005. I

[7] M. Griss, J. Favaro, and M. d’Alessandro, “Integrating
feature modeling with the RSEB,” in Software Reuse,
1998. Proceedings. Fifth International Conference on,
1998, pp. 76–85. I, VIII

[8] K. Czarnecki, T. Bednasch, P. Unger, and U. Eisenecker,
“Generative programming for embedded software: An
industrial experience report,” in Generative Program-
ming and Component Engineering. Springer-Verlag,
2002, pp. 156–172. I

[9] K. Czarnecki, S. Helsen, and U. Eisenecker, “Staged
configuration using feature models,” in Software Product
Lines. Springer-Verlag, 2004, pp. 162–164. I

[10] M. Riebisch, “Towards a more precise definition of
feature models,” in Modelling Variability for Object-
Oriented Product Lines, 2003, pp. 64–76. I

[11] P. Schobbens, P. Heymans, J. Trigaux, and Y. Bontemps,
“Generic semantics of feature diagrams,” Computer
Networks, vol. 51, no. 2, pp. 456–479, Feb. 2007. I

[12] D. Benavides, S. Segura, and A. Ruiz-Cortés, “Au-
tomated analysis of feature models 20 years later: a
literature review,” Information Systems, 2010. I

[13] P. Schobbens, P. Heymans, and J. Trigaux, “Feature
diagrams: A survey and a formal semantics,” in Require-
ments Engineering, 14th IEEE International Conference,
2006, pp. 139–148. III

[14] M. Simos, D. Creps, C. Klinger, L. Levine, and

D. Allemang, “Organization domain modeling (ODM)
guidebook, Version 2.0,” Lockheed Martin Tactical
Defense Systems, Tech. Rep. ST ARS-VC-A025/001/00,
1996. III-A

[15] S. Mac Lane, Categories for the Working Mathematician
(Graduate Texts in Mathematics), 2nd ed. Springer,
1998. III-B, V-B

[16] K. Pohl, G. Böckle, and F. van der Linden, Software
Product Line Engineering. Springer-Verlag, 2005. VIII

[17] P. Höfner, R. Khedri, and B. Möller, “An algebra of
product families,” Software and Systems Modeling, 2009.
VIII

[18] N. Boucké, D. Weyns, R. Hilliard, T. Holvoet, and
A. Helleboogh, “Characterizing relations between ar-
chitectural views,” in ECSA ’08. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 66–81. VIII

[19] A. Solomon, “Pushout: A mathematical model of
architectural merger,” in Ershov Memorial Conference,
ser. Lecture Notes in Computer Science, I. Virbitskaite
and A. Voronkov, Eds., vol. 4378. Springer-Verlag,
2006, pp. 389–399. VIII

[20] Z. Diskin, “Algebraic models for bidirectional model
synchronization,” in MoDELS ’08: Proceedings of the
11th international conference on Model Driven Engi-
neering Languages and Systems. Berlin, Heidelberg:
Springer-Verlag, 2008, pp. 21–36. VIII

[21] A. Rutle, A. Rossini, Y. Lamo, and U. Wolter, “A
category-theoretical approach to the formalisation of
version control in mde,” in FASE, ser. Lecture Notes in
Computer Science, M. Chechik and M. Wirsing, Eds.,
vol. 5503. Springer, 2009, pp. 64–78. VIII

[22] M. Acher, P. Collet, P. Lahire, and R. France, “Com-
posing feature models.” in SLE, ser. Lecture Notes in
Computer Science, M. van den Brand, D. Gasevic, and
J. Gray, Eds., vol. 5969. Springer-Verlag, 2009, pp.
62–81. VIII

[23] S. Segura, D. Benavides, A. Ruiz-Cortés, and
P. Trinidad, “Automated merging of feature models
using graph transformations,” Post-proceedings of the
Second Summer School on Generative and Transforma-
tional Techniques in Software Engineering, vol. 5235,
pp. 489–505, 2008. VIII

[24] H. Bowman, M. Steen, E. A. Boiten, and J. Derrick, “A
formal framework for viewpoint consistency,” Formal
Methods in System Design, vol. 21, no. 2, pp. 111–166,
2002. VIII

[25] J. Derrick and H. Wehrheim, “Model transformations
across views,” Science of Computer Programming,
vol. 75, no. 3, pp. 192–210, 2010. VIII

[26] “Highly Adaptable and Trustworthy Software using
Formal Methods,” Mar. 2009, http://www.hats-project.
eu. IX

http://www.hats-project.eu
http://www.hats-project.eu

APPENDIX

Proposition 35. Given a partial function f : F ⇀ G. f :
F → G is total.

Proof: Immediate from definition.

Proof of functoriality of · and ·̂ (§III-B). Let p ∈ F ,
u : F ⇀ G, and v : G ⇀ H . The functor · preserves
identity morphisms and composition, as we show below. The
proof that ·̂ is also a functor follows the same reasoning.

idF (p)
= {idF (a) | a ∈ p ∩ def(idF)}
= {a | a ∈ p}
= idF (p)

u ◦ v(p)
= {u(v(a)) | a ∈ p ∩ def(u ◦ v)}
= {u(v(a)) | a ∈ p, a ∈ def(v), v(a) ∈ def(u)}
= u({v(a) | a ∈ p, a ∈ def(v)})
= u(v(p))
= (u ◦ v)(p)

Proof of Theorem 13. We split the proof into two parts.
We prove in Lemma 36 that the diagram for products is a
pullback, and we prove in Lemma 37 that the diagram for
product lines is a weak pullback. These two lemmas are
presented below.

Lemma 36. For a view partition σ = (Fr, Fa, Gr, Ga, v, w),
the following diagram is a pullback:

Fr +Gr F

G Fa +Ga

y
p.b.

wr

vr va

wa

Proof: By definition, the canonical pullback in sets is:

R = {(p, q) ∈ F ×G | va(p) = wa(q)}.

To prove that the diagram is a pullback we show that Fr +Gr
is isomorphic to R, given by the following functions, where
⊕ is defined in Definition 19:

k : R→ Fr +Gr l : Fr +Gr → R

(p, q) 7→ p⊕ q p 7→ (wr(p), vr(p)).

Clearly k(R) ⊆ Fr +Gr, and the reconciliation is defined
for all pair in R. We show that the codomain of l is R based
on the commutativity at the level of features. Observe that va◦
wr = wa ◦ vr, because when a ∈ F , va(wr(a)) = va(a) =
vr(a) = wa(vr(a)), and similarly when a ∈ G. Therefore,
because ·̂ is a functor, the outer arrows of the diagram below
commute. We define π1(a, b) = a and π2(a, b) = b. Our
definition of l yields trivially that π1 ◦ l = wr and π2 ◦ l = vr.

We also conclude that, because R is a pullback, our definition
of l is unique.

R F

G Fa +Ga

y

Fr +Gr

p.b.

π1

π2 va

wa

l

k

wr

vr

We claim that k(R) is isomorphic to R, where the l is the
inverse of k.

• l ◦ k = idR. Let (p, q) ∈ R, that is, p ∈ F , q ∈ q, and
va(p) = wa(q). Then

l(k(p, q)) = l(p⊕ q)
= (wr(p⊕ q), vr(p⊕ q))
= (p, q)

where the last step follows from Lemma 17, proven
below, and because va(p) = wa(q).

• k ◦ l = idFr+Gr
. Let p ∈ Fr +Gr (observe that

va(wr(p)) = wa(vr(p)), that is, wr(p) _ vr(p)). Then

k(l(p))
= k(wr(p), vr(p))
= wr(p)⊕ vr(p)
= (wr(p) ∩ Fs) ∪ (vr(p) ∩Gs)
= ({wr(a) | a ∈ p, a ∈ def(wr)} ∩ Fs) ∪

({vr(a) | a ∈ p, a ∈ def(vr)} ∩Gs)
= ({wr(a) | a ∈ p, a ∈ def(wr), wr(a) ∈ Fs}) ∪

({vr(a) | a ∈ p, a ∈ def(vr), vr(a) ∈ Gs})
= ({a | a ∈ p, a ∈ def(wr), a ∈ Fs}) ∪

({a | a ∈ p, a ∈ def(vr), a ∈ Gs})
= ({a | a ∈ p, a ∈ Fs}) ∪ ({a | a ∈ p, a ∈ Gs})
= (p ∩ Fs) ∪ (p ∩Gs)
= p

Lemma 37. For a view partition σ = (Fr, Fa, Gr, Ga, v, w),
the following diagram is a weak pullback:

̂Fr +Gr F̂

Ĝ ̂Fa +Ga

X

w.p.b.

cwr

cvr cva

cwa

∃u

f

g

Proof: Let u be defined as follows, where ⊕ is defined
in Definition 19.

u : X → ̂Fr +Gr

u(P) = f(P)⊕ g(P)

We show that, for every f : X → F̂ and g : X → Ĝ that
makes the outer diagram commute (v̂a ◦ f = ŵa ◦ g), the
function u exists, i.e., makes the rest of the diagram commute.
The proof follows directly from Lemma 20.

(ŵr ◦ (f ⊕ g))(P) (v̂r ◦ (f ⊕ g))(P)
= ŵr(f(P)⊕ g(P)) = v̂r(f(P)⊕ g(P))
= f(P) = g(P)

Proof of Lemma 15. We show that, when a ∈ def(v) or
b ∈ def(w), then va(a) = wa(b) implies a ∈ Fr ⇔ b /∈ Gr.
It can be easily verified that the codomain of va(a) and wa(b)
only match when a ∈ Fr and b /∈ Gr, or when a /∈ Fr
and b ∈ Gr. For example, if a ∈ Fr and b ∈ Gr, then
va(a) = v(a) ∈ Ga and wa(b) ∈ Fa, thus va(a) 6= wa(b).
Due to partiality, even if the codomains do not match it could
also happen that va(a) = ⊥ = wa(b), but this is invalidated
by our initial assumption.

Proof of Lemma 17.

wr(p⊕ q) = wr((p � Fr) ∪ (q � Gr))
= (p � Fr) ∪ w(q � Gr)
= (p � Fr) ∪ (wa(q) � Fa)
= (p � Fr) ∪ (va(p) � Fa)
= (p � Fr) ∪ va(p � Fa)
= (p � Fr) ∪ (p � Fa)
= p

Similarly, for vr(p⊕ q) = q.

Proof of Lemma 20. We show that ŵr(P ⊕Q) = P , and
omit the analog proof for v̂r(P ⊕Q) = Q.

ŵr(P ⊕Q)
= ŵr({(p � Fr) ∪ (q � Gr) | p ∈ P, q ∈ Q, p _ q})
= {wr(p) |

p ∈ {(p � Fr) ∪ (q � Gr) | p ∈ P, q ∈ Q, p _ q}}
= {wr((p � Fr) ∪ (q � Gr)) | p ∈ P, q ∈ Q, p _ q}
= {p | p ∈ P, q ∈ Q, p _ q}
= P

where the second last step follows from Lemma 17, and
the last step follows from the fact that, when P _ Q,

∀p ∈ P · ∃q ∈ Q · p _ q, as we show below.

P _ Q⇔ v̂a(P) = ŵa(Q)
⇔ {va(p) | p ∈ P} = {wa(q) | q ∈ Q}
⇔ ∀p ∈ P · ∃q ∈ Q · va(p) = wa(q) ∧
∀q ∈ Q · ∃p ∈ P · va(p) = wa(q)

Proof of Lemma 22.

1) a ∈ Fr ⇒ va(wr(a)) = va(a) = vr(a) = wa(vr(a))
a ∈ Gr ⇒ wa(vr(a)) = wa(a) = wr(a) =
va(wr(a))

2,3) Follow from (1) and because · and ·̂ are functors.
4) a ∈ Fr ⇒ wr(a)⊕ vr(a) = a⊕ v(a) = a

a ∈ Gr ⇒ wr(a)⊕ vr(a) = w(a)⊕ a = a
The last part follows by the definition of ⊕.

5) wr(p)⊕ vr(p)
= {wr(a) | a ∈ p, a ∈ def(wr), wr(a) ∈ Fr}
∪ {vr(a) | a ∈ p, a ∈ def(vr), vr(a) ∈ Gr}
= {a | a ∈ p, a ∈ Fr} ∪ {a | a ∈ p, a ∈ Gr}
= (p ∩ Fr) ∪ (p ∩Gr)
= p

6) ŵr(P)⊕ v̂r(P)
= {p⊕ q | p ∈ ŵr(P), q ∈ v̂r(P), p _ q}
= {wr(p)⊕ vr(q) | p ∈ P, q ∈ P,wr(p) _ vr(q)}
⊇ {wr(p)⊕ vr(p) | p ∈ P,wr(p) _ vr(p)}
= {p | p ∈ P}
= P

Proof of Lemma 23. ĉ is a closure operator.

1) P ⊆ ĉ(P) by the Lemma 22.
2) Let P ⊆ Q. Then:

ĉ(Q)
= ŵr(Q)⊕ v̂r(Q)
= {p⊕ q | p ∈ ŵr(Q), q ∈ v̂r(Q), p _ q}
= {wr(p)⊕ vr(q) | p ∈ Q, q ∈ Q,wr(p) _ vr(q)}
⊇ {wr(p)⊕ vr(q) | p ∈ P, q ∈ P,wr(p) _ vr(q)}
= ĉ(P)

3) Trivially, ĉ(ĉ(P)) ⊇ ĉ(P). For the other direction we
start by using the same reasoning as before:

ĉ(ĉ(P))
= {wr(p)⊕ vr(q) | p, q ∈ ĉ(P), wr(p) _ vr(q)}

We now show that wr(p)⊕ vr(q) ∈ ĉ(P), knowing that
(i) p, q ∈ ĉ(P) and (ii) wr(p) _ vr(q).
The condition (i) implies that ∃p1, p2, q1, q2 ∈ P such
that p = wr(p1) ⊕ vr(p2), q = wr(q1) ⊕ vr(q2),

wr(p1) _ vr(p2) and wr(q1) _ vr(q2). Hence:

wr(p)⊕ vr(q)
= wr(wr(p1)⊕ vr(p2))⊕ vr(wr(q1)⊕ vr(q2))
= wr((wr(p1) ∩ Fr) ∪ (vr(p2) ∩Gr)) ⊕

vr((wr(q1) ∩ Fr) ∪ (vr(q2) ∩Gr))
= ((wr(p1) ∩ Fr) ∪ w(vr(p2) ∩Gr)) ∩ Fr ∪

(v(wr(q1) ∩ Fr) ∪ (vr(q2) ∩Gr)) ∩Gr
= (wr(p1) ∩ Fr) ∪ (vr(q2) ∩Gr)
= wr(p1)⊕ vr(q2)

We just need to show that wr(p1) _ vr(q2) to prove
that wr(p)⊕vr(q) ∈ ĉ(P). This last step is shown from
condition (ii) and by the Lemma 20:

wr(p) _ vr(q)
⇔ va(wr(p)) = wa(vr(q))
⇔ va(wr(wr(p1)⊕ vr(p2))) =

wa(vr(wr(q1)⊕ vr(q2)))
⇔ va(wr(p1)) = wa(vr(q2))
⇔ wr(p1) _ vr(q2)

Proof of Lemma 25. We show that ĉ(P) is the maximum
(wrt set inclusion) of [P], the equivalence class containing
P . That is, if P ∼ Q then (1) ĉ(P) ∼ P , (2) ĉ(P) ∼ Q, and
(3) ĉ(P) = ĉ(Q). Condition (1) is justified by Lemma 20:

ŵr(ĉ(P)) = ŵr(ŵr(P)⊕ v̂r(P)) = ŵr(P)
v̂r(ĉ(P)) = v̂r(ŵr(P)⊕ v̂r(P)) = v̂r(P).

Condition (2) is a consequence of conditions (1) and (3),
and the proof of condition (3) follows the same reasoning
as the proof of condition (1), and uses the fact that P ∼ Q:

ŵr(ĉ(P)) = ŵr(P) = ŵr(Q) = ŵr(ĉ(Q))
v̂r(ĉ(P)) = v̂r(P) = v̂r(Q) = v̂r(ĉ(Q)).

Lemma 38. Let f : E ⇀ F and g : E ⇀ G be view
functions such that f _ g, and let R = g ◦ f−1. If a1Rb1
and a2Rb2, where a1 6= a2 and b1 6= b2, then (a1, b2) /∈ R.

Proof: This lemma can be proved by observing that
f−1(a1) # g−1(b2) can never hold. If a1, a2, b1, and b2 are
as defined in the lemma, then ∃ei ∈ f−1(ai) ∩ g−1(bi) for
i ∈ {1, 2}. When a1Rb2 the condition f−1(a1) # g−1(b2)
no longer holds. If a1Rb2 then ∃e3 · f(e3) = a1 ∧ g(e3) =
b2. Therefore {e3, e1} ⊆ f−1(a1) and {e3, e2} ⊆ g−1(b2),
but e1 /∈ g−1(b2) (because g(e1) = b1) and e2 /∈ f−1(a1)
(because f(e2) = a2). We conclude that f−1(a1) # g−1(b2)
cannot hold.

Proof of Theorem 27. Let P ∈ Ê, and R = g ◦ f−1 ⊆
F × G. R is partitioned into two parts: pairs with more

than one image and its complements. For that we define the
partitions F = Fr] Fa and G = Gr]Ga as follows.

Fa = {x ∈ F | |R(x)| > 1} (22)
Fr = F \ Fa (23)
Ga = R(Fr) (24)
Gr = G \Ga (25)

We now define v : Fr ⇀ G and w : Gr ⇀ F such that
v = R and w = R−1 restricted to the corresponding domains.
To show that σ = (Fr, Fa, Gr, Ga, v, w) is a view partition,
we still need to verify that v and w are (partial) functions, and
that the codomains of v and w are Ga and Fa, respectively.

1) w is a function – If w(y) = x and w(y) = x′, then
xR y and x′Ry. By definition of Fa, ∃y′ ∈ G ·xR y′,
which contradicts Lemma 38. Hence x = x′.

2) v is a function – If v(x) = y, then by the definition
of Fr we know that |R(x)| ≤ 1, hence y is unique.

3) cod(v) = Ga – By definition of Ga.
4) cod(w) = Fa – We show that if x ∈ Fa and xR y,

then y ∈ Gr. If y ∈ Ga (≡ y /∈ Gr), then (1) ∃x′ ∈
Fr ·x′Ry because v is onto , and (2) ∃y′ ∈ G ·xR y′
by the definition of Fa. But (1) and (2) contradict
Lemma 38, hence y ∈ Gr.

By the definition and properties of v and w we also conclude
that v + w−1 = R. As a consequence, we show that

∀a ∈ E · f(a) _σ g(a). (26)

Recall that f(a) _ g(a) def= va(f(a)) = wa(g(a)). Observe
now that, when f(a) ∈ Fr we have va(f(a)) = v(f(a)) =
(g ◦ f−1)(f(a)) = g(a) = wa(g(a)), and when f(a) ∈ Fa
we have va(g(a)) = f(a) = (f ◦ g−1)(g(a)) = w(g(a)) =
wa(g(a)).

Finally, we use Equation (26) to show the final result:

∀P ∈ Ê · f̂(P) _σ ĝ(P). (27)

It is enough to verify that the left diagram below always
commutes hence, because ·̂ is a functor, the right diagram
below also commutes.

Fr +Gr F

G Fa +Ga

y

f

g va

wa

̂Fr +Gr F̂

Ĝ ̂Fa +Ga

bf
bg cva

cwa

Proof of Lemma 30.

P ⊕σ Qf∅
= {p⊕ q | p ∈ P, q ∈ Qf∅, p _ q}
= {p⊕ q | p ∈ P, q ∈ Qf , q 6= ∅, p _ q} ∪
{p⊕ ∅ | p ∈ P, p _ ∅}

= {p⊕ q | p ∈ P, q ∈ Qf , q 6= ∅, wr(p) = vr(q)} ∪
{p⊕ ∅ | p ∈ P,wr(p) = ∅}

∗= {(p ∩ Fr) ∪ (q ∩Gr) | p ∈ P, q ∈ Qf , q 6= ∅, f ∈ p} ∪
{p⊕ ∅ | p ∈ P, f /∈ p}

= {(p ∩ (F\{f})) ∪ (q ∩ {g | g ∈ q′, q′ ∈ Qf})
| p ∈ P, q ∈ Qf , q 6= ∅, f ∈ p} ∪
{p | p ∈ P, f /∈ p}

= {(p\{f}) ∪ q | p ∈ P, q ∈ Qf , q 6= ∅, f ∈ p} ∪
{p | p ∈ P, f /∈ p}

In the forth step, marked with ‘*’, we interpret compatibility
in our scenario. The condition wr(p) = vr(q) holds exactly
when f ∈ p and q 6= ∅, or when f /∈ p and q 6= ∅, because
f is the only abstraction.

Proof of Lemma 33.

P ⊕σ Qk
=P ⊕σ ({c ∪ g | (c, g) ∈ k} ∪ Ĉ)
= {p⊕ q | p ∈ P, q ∈ {c ∪ g | (c, g) ∈ k}, p _ q}
∪ {p⊕ c | p ∈ P, c ∈ C, p _ c}

We start by reducing the first element of the union above.

{p⊕ q | p ∈ P, q ∈ {c ∪ g | (c, g) ∈ k}, p _ q}
= {p⊕ (c ∪ g) |

p ∈ P, c ∈ C, g ∈ k(c), va(p) = wa(c ∪ g)}
= {(p ∩ (F\({f} ∪ C))) ∪ ((c ∪ g) ∩G) |

p ∈ P, c ∈ C, g ∈ k(c), va(p) = wa(c ∪ g)}
= {(p\({f} ∪ C)) ∪ c ∪ g |

p ∈ P, c ∈ C, g ∈ k(c), p ∩ ({f} ∪ C) = {f} ∪ c, g 6= ∅}
∪ {(p\({f} ∪ C)) ∪ c ∪ g |

p ∈ P, c ∈ C, g ∈ k(c), p ∩ ({f} ∪ C) = c, g = ∅}
= {(p\({f} ∪ C)) ∪ c ∪ g |

p ∈ P, c ∈ C, g ∈ k(c), p ∩ C = c, f ∈ p⇔ g 6= ∅}
= {p\{f} ∪ g | p ∈ P, g ∈ k(p ∩ C), f ∈ p⇔ g 6= ∅}

We now reduce the second element of the union.

{p⊕ c | p ∈ P, c ∈ C, p _ c}
= {p⊕ c | p ∈ P, c ∈ C, va(p) = wa(c)}
= {p⊕ c | p ∈ P, c ∈ C, p ∩ ({f} ∪ C) = c}
= {p ∩ ({f} ∪ C) ∪ (c ∩G) | p ∈ P, f /∈ p, p ∩ C = c}
= {p ∩ ({f} ∪ C) ∪ (p ∩ C) | p ∈ P, f /∈ p}
= {p | p ∈ P, f /∈ p}

	Introduction
	Motivating Examples
	Preliminaries
	Features, Products, and Software Product Lines
	Function Lifting

	Abstractions and Views
	View Compatibility and Reconciliation
	View Compatibility
	Interlude: Pullbacks
	Feature reconciliation
	Product Reconciliation
	Product Line Reconciliation

	Constructing a View Partition
	Applications
	Uniform refinement
	Refinement in Context

	Related Work
	Conclusion and Future Work
	Appendix

