Modular Modelling of Software Product Lines
with Feature Nets*

Radu Muschevici, José Proenga, and Dave Clarke

DistriNet & IBBT, Dept. Computer Science, Katholieke Universiteit Leuven, Belgium
{radu.muschevici, jose.proenca,dave.clarke}@cs.kuleuven.be

Abstract. Formal modelling and verification are critical for managing
the inherent complexity of systems with a high degree of variability, such
as those designed following the software product line (SPL) paradigm.
SPL models tend to be large—the number of products in an SPL can
be exponential in the number of features. Modelling these systems poses
two main challenges. Firstly, a modular modelling formalism that scales
well is required. Secondly, the ability to analyse and verify complex mod-
els efficiently is key in order to ensure that all products behave correctly.
The choice of a system modelling formalism that is both expressive and
well-established is therefore crucial. In this paper we show how SPLs can
be modelled in an incremental, modular fashion using a formal method
based on Petri nets. We continue our work on Feature Petri Nets, a
lightweight extension to Petri nets, by presenting a framework for mod-
ularly constructing Feature Petri Nets to model SPLs.

1 Introduction

The need to tailor software applications to varying requirements, such as spe-
cific hardware, markets or customer demands, is growing. If each application
variant is maintained individually, the overhead of managing all the variants
quickly becomes infeasible [20]. Software Produce Line Engineering (SPLE) is
seen as a solution to this problem. A Software Product Line (SPL) is a set of
software products that share a number of core properties but also differ in cer-
tain, well-defined aspects. The products of an SPL are defined and implemented
in terms of features, which are subsequently combined to obtain the final soft-
ware products. The key advantage hereby over traditional approaches is that all
products can be developed and maintained together. A challenge for SPLE is to
ensure that all products meet their specifications without having to check each
product individually, by checking the product line itself. This raises the need for
novel SPL-specific formalisms to model SPLs and reason about and verify their
properties.

* This research is partly funded by the EU project FP7-231620 HATS: Highly
Adaptable and Trustworthy Software using Formal Methods (http://www.hats-
project.eu), and the K.U.Leuven BOF-START project STRT1/09/031 Designer-
TypeLab.

G. Barthe, A. Pardo, and G. Schneider (Eds.): SEFM 2011, LNCS 7041, pp. 318-333] 2011.
© Springer-Verlag Berlin Heidelberg 2011

http://www.hats-
project.eu

Modular Modelling of Software Product Lines with Feature Nets 319

The main contribution of this paper is a modular modelling framework for
specifying the behaviour of software product lines. We use Feature Petri Nets [18],
or feature nets (FN) for short, as the modelling formalism. Feature nets are a
Petri net extension that enables the specification of the behaviour of an entire
software product line (a set of systems) in one single model. The behaviour of an
FN is conditional on the features appearing in the product line. The paper makes
three contributions. Firstly, it presents a variant of feature nets that improves
upon their original definition [I§]. Secondly, it gives a technique for constructing
larger feature nets from smaller ones to model the addition of new features to
an SPL. Thirdly, it provides correctness criteria for ensuring that the resulting
composition preserves the behaviour of the original model(s).

Organisation: The next section motivates the need for feature nets. Section 3]
formally introduces feature nets. Section [4] details an approach at modular mod-
elling with FN, and Section [l discusses behaviour preservation. Section [0l dis-
cusses related work. Section [7] presents our conclusions and future work.

2 Software Product Line Modelling Challenge

We illustrate the modelling challenge in software product line engineering (SPLE)
using an example of a software product line of coffee vending machines. A man-
ufacturer of coffee machines offers products to match different demands, from
the basic black coffee dispenser to more sophisticated machines, such as ones
that can add milk or sugar, or charge a payment for each serving. Each machine
variant needs to run software adapted to the selected set of hardware features.
Such a family of different software products that share functionality is typically
developed using an SPLE approach, as one piece of software structured along
distinct features. This has major advantages in terms of code reuse, mainte-
nance overhead, and so forth. The challenge is ensuring that the software works
appropriately in all product configurations.

Petri nets [17] are used to specify how systems behave. Fig. [Il presents an
example of a Petri net for a coffee machine. This has a capacity for n coffee
servings; it can brew and dispense coffee, and refill the machine with new coffee
supplies. If we now add an optional Milk feature, so that the machine can also

A!VE
READY
COFFEE

COFFEE COFFEE
FULL REFILLABLE
REFILL COFFEE

BREW

Fig. 1. Petri net model of a basic coffee machine that can only dispense coffee

320 R. Muschevici, J. Proenga, and D. Clarke

add milk to a coffee serving, we need to adapt the Petri net, not only to include
the functionality of adding milk, but also to be able to control whether or not
this feature is present in the resulting software product.

To address the challenge of modelling a software product line with multiple
features, which may or may not be included in any given product, we introduced
Feature Petri Nets [18]. Feature Petri Net transitions are annotated with appli-
cation conditions [2I], which are propositional formula over features that reflect
when the transition is enabled. In this paper we use a variation of Feature Petri
Nets in which application conditions are placed on arcs, rather than transitions,
called arc-labelled Feature Petri Nets, though we shall just call them feature
nets. One advantage of feature nets is that they enable the superposition of the
behaviour of the various products (given by different feature selections) in the
same model.

Fig. Blexemplifies a feature net of a coffee machine with a milk reservoir. It con-
siders a product line whose products are over the set of features { Coffee, Milk},
where Coffee is compulsory and Milk is optional. The application condition
above each arc reflects that the arc is present only when the condition evaluates
to true. Only then does the arc affect behaviour. If the condition is false, the arc
has no effect on behaviour. Consequently, the three transitions on the left-hand
side can only fire when the Coffee feature is present; the two transitions on the
right-hand side can be taken only when the feature Milk is present. Observe that
the restriction of this example net to the transitions that can fire for feature se-
lection {Coffee} is exactly the Petri net in Fig. [Il after removing unreachable
places.

3 Feature Nets

A feature net (FN) [I8] is a Petri net variant used to model the behaviour of
an entire software product line. For this purpose feature nets have application
conditions |21] attached to their arcs. An application condition is a propositional
logical formula over a set of features, describing the feature combinations to

coffee O".ﬁee
SERVE
. ffee
coff READY
e
COFFEE

coffes

WAIT

BREW ADD MILK

S Wi

COFFEE MILK

COFFEE
FULL REFILLABLE FULL REFILLABLE
REFILL COFFEE REFILL MILK

Fig. 2. Feature net of the product line {{Coffee}, { Coffee, Milk}}. Each arc has an
application condition attached.

Modular Modelling of Software Product Lines with Feature Nets 321

which the arc applies. If the application condition is false, it is as if the arc were
not present.

We define feature nets and give their semantics. We adapt the definition of
feature nets described in previous work [I8], where application conditions apply
to transitions instead of arcs. In that paper two semantic definitions of feature
nets were presented. The first semantics directly models the FN for a given
feature selection. The second semantics, which we use and adapt here, is given
by projecting the FN for a given feature selection onto a Petri net by removing
arcs with unsatisfied application conditions. These two notions have been shown
to coincide [I§]. We start with some necessary preliminaries, first by defining
multisets and basic operations over multisets, then by defining feature nets and
their behaviour. Our terminology is standard for Petri nets [g].

Definition 1 (Multiset). A multiset over a set S is a mapping M : S — N.

We view a set S as a multiset in the natural way, that is, S(z) = 1 if z € S,
and S(z) = 0 otherwise. We also lift arithmetic operators to multisets as follows.
For any function ® : N x N — N and multisets M7, M, define M7 ©® M5 as
(M1 O] Mg)(,’E) = Ml(.’L') O] MQ(SL')

Definition 2 (Application condition [21]). An application condition ¢ is a
propositional formula over a set of features F', defined by the following grammar:

o = a | pAo | —p,
where a € F. Write ®r to denote the set of all application conditions over F'.

Definition 3 (Satisfaction of application conditions). Given an applica-
tion condition ¢ € ®p and a set of features F'S C F, called a feature selection,
we say that FS satisfies @, written as FS|= ¢, defined as follows:

FSEa iffa € FS
FSE o1 A ps iff FS | @1 and FS= o
FS | —p iff FSW .

Definition 4 (Feature Net). A feature net is a tuple N = (S, T, R, My, F, f),
where S and T are two disjoint finite sets, R is a relation on SUT (the flow
relation) such that RN (S x S) = RN(T xT) =0, and My is a multiset over S,
called the initial marking. The elements of S are called places and the elements
of T are called transitions. Places and transitions are called nodes. The elements
of R are called arcs. Finally, F is set of features and f : R — ®p is a function
associating each arc with an application condition from ®p.

Without f and F', a feature net is just a Petri net. Sometimes we omit the initial
marking My. The function f determines a node’s pre- and post-set, defined
below.

Definition 5 (Marking of a feature net). A marking M of a feature net
(S,T,R,F, f) is a multiset over S. A place s € S is marked iff M(s) > 0.

322 R. Muschevici, J. Proenga, and D. Clarke

Definition 6 (Pre-sets and post-sets). Given a node of a feature net and a
feature selection FS, the set Tz = {y | (y,z) € R, FS |= f(y,)} is the pre-set of
x and the set 25 = {y | (z,y) € R, FS |= f(x,y)} is the post-set of .

Definition 7 (Enabling). Given a feature selection FS, a marking M enables
a transition t € T if it marks every place in F9t, that is, if M > F5¢,

We now define the behaviour of feature nets for a given feature selection.

Definition 8 (Transition occurrence). Let N = (S, T, R, My, F, f) be a fea-
ture net and FS C F a feature selection. A transition t € T occurs, leading from

a state with marking M; to a state with marking M;y,, denoted M; BFS, Miiq,
iff the following two conditions are met:

M; > E9¢ (enabling)
My = (M; — F9¢) 4 ¢ (computing)

The transition rule for FN is used to define traces that describe the FN’s be-
haviour. We now define the semantics of a feature net by projecting it onto a
Petri net for a given feature selection.

Definition 9 (Projection). Given a feature net N = (S,T,R, My, F,) and
a feature selection FS C F', the projection of N onto FS, denoted N | FS, is a
Petri net (S,T,R', My), with R’ = {(z,y) | (z,y) € R, FS E f(z,y)}.

One projects N onto a feature selection F'S by evaluating all application condi-
tions f(x,y) with respect to FS for all arcs (z,y) € R. If F'S does not satisfy
f(x,y), then (z,y) is removed from the Petri net.

The behaviour of a feature net is the union of the behaviour of the Petri
nets obtained by projecting all possible feature selections. The behaviour of a

Petri net N = (S, T, R, My) is given by the set of all of its traces [12], written

Beh(N) = {My 2 -+ 25 M, | M; C S,i € 1.n, M;_; <5 M;}, and does not

include application conditions nor feature selections.

Definition 10 (FN Behaviour). Given an FN N = (S,T,R, My, F, f), we
define Beh(N) as follows:

Beh(N) = [J Beh(N|FS).
FSCF

A feature net combines the behaviour of a set of Petri nets in a single model.
Feature nets do not exceed the expressive power of Petri nets. This is indicated
by the fact that a feature net can be encoded as a set of Petri nets. Such an
encoding involves two steps: first encoding a FN as a transition-labelled Feature
Petri Net [I8], and secondly describing the behaviour of the Feature Petri Net
using a set of regular Petri nets. The first encoding replaces each transition
attached to n arcs in R by 2" transitions, one for each possible combination of

Modular Modelling of Software Product Lines with Feature Nets 323

the possible arcs. The second encoding step into Petri nets can be achieved by
encoding the satisfaction condition of FN transition occurrences by considering
for each feature F two places, F ON and F OFF, marked in mutual exclusion
depending on whether the feature is selected or not. The details of this encoding
are in a previous paper [18].

Given that feature nets are as expressive as Petri nets, analysis techniques
for Petri nets still apply to feature nets. At the same time, feature nets offer a
concise way to describe the systems in an SPL.

4 Modular Modelling

For a modelling formalism to be useful in practice, it needs to facilitate modu-
lar development techniques. This is especially important for modelling software
product lines: a single SPL model combines the behaviour of a set of different
systems, which are often too complex to develop simultaneously.

Modular approaches include top-down techniques, where initially an abstract
model is sketched and more details are added incrementally, and bottom-up ap-
proaches, where subsystems are modelled separately and later plugged together
to a global model. Petri nets support both approaches [12]. In the following we
propose a bottom-up composition technique for feature nets. It is based on the
idea of modelling features of the system individually and then combining them
to obtain a model of the entire SPL. Our approach starts by building a model
of the core system that is the behaviour which is common to all products of the
SPL. Optional features are modelled as separate nets, which also specify how
they interact with the core through an interface. Core and additional features
are then composed stepwise, by incrementally applying each feature to the core.
We show how this technique can be applied to modularly specify a coffee machine
product line from the three features Coffee, Payment and Milk.

4.1 Feature Net Composition

We devise a modular modelling approach in which features are first expressed
as separate FNs. A feature’s interaction with the rest of the system (the core) is
modelled using an interface. Features are modelled separately in such a way that
they can be attached to the core, in order to incrementally build a larger model.
The interface simulates the behaviour of the core that the features are designed to
be plugged into. A feature modelled using this technique can be seen as a partially
specified model of the entire SPL, where the feature’s behaviour is fully specified,
whereas everything else is underspecified. Composition then entails connecting
the interface to the core to obtain a specification of the combined system.

The three features of our example coffee machine are modelled as separate
FNs (Fig. B). Apart from when a feature’s behaviour is self-contained (such as
the Coffee net in Fig. Bh) it will typically interact with other features that are
part of the larger system. To faithfully model such interactions we include an
interface. The aim of the interface is to abstract part of the larger system’s

324 R. Muschevici, J. Proenga, and D. Clarke

e
Coff® READY
e Milk
COFFEE ADD MILK

BREW

Corpe cfee) k
COFFEE Lee C/Oﬁ COFFEE MILK L - MILK
FULL REFILLABLE FULL REFILLABLE
REFILL COFFEE REFILL MILK
(a) Coffee feature (core) (b) Milk feature

Pay, b 2,
ment Pa@lmbw thlen[
INSERT COIN

/)(l://,
UNPAID ey

Laymeny

REJECT COIN

»
PAID e,
ACCEPT COIN

(¢) Payment feature

Fig. 3. Individual feature nets modelling the features Coffee, Milk and Payment of a
product line of coffee machines. Interfaces are highlighted in orange.

behaviour. The interface will also be used to show that the net exposes the same
behaviour as it does when it is part of the combined system. For example, the
model of Milk in Fig. Bb reflects the fact that adding milk depends on a state
of the system in which a cup of fresh coffee is available. The larger system is
represented abstractly by the highlighted interface, which models the availability
of coffee in the place READY; a token in this place would denote a state in which
a freshly brewed cup of coffee is available. Similarly, Fig. Bt models the fact that
after a payment has been accepted, the overall system is able to BREW COFFEE,
and after serving the coffee, the system goes back to an UNPAID state.

Constructing a model of the whole SPL is done by stepwise applying the delta
nets of each feature to a core model. The intuition behind delta net application is
that each interface is replaced with a more complex feature net. In our example,
the first step could be to refine Payment’s interface by replacing it with the
feature net for Coffee. In a second step, the feature Milk is refined by replacing
its interface with the net obtained in the previous step.

Modular Modelling of Software Product Lines with Feature Nets 325

2y,
Yy
INSERT COIN

»
UNPAID ey,

WAIT

BREW COFFEE

&
ZYme,, ”

Coﬁ‘""2

e PAID
COFFEE COFFEE
FULL REFILLABLE
REFILL COFFEE ACCEPT COIN

Fig. 4. A software product line over feature set { Coffee, Payment} obtained by apply-
ing the delta net Payment (Fig.Bk) to the core net modelling Coffee (Fig. Bh)

We now formally introduce the application of a delta net to a core net.

Definition 11 (Delta Feature Net). A delta feature net N is a FN with a
designated interface, denoted N = (S,T,R,F, f,S;,Tr), where Sy C S, Ty CT.

Delta feature nets specify the behaviour of features designed to be added to
a larger system. A set of delta FN is combined with a stand-alone FN, the
core, by sequentially applying each delta net to the core. Delta nets include an
interface, which models interactions with the core. Such interactions are modelled
by transitions or places common to both core and delta net.

Definition 12 (Delta Net Application). Let N = (S,T, R, F, f) be a feature
net and D = (Sq,Ta, Ra, Fa, fa, S1,T1) a delta feature net with SN Sq # 0. The
application of D to N results in a net N' = (8", T', R, F’, f'), written as N& D,
where S'=(Sq\ Sr)US F'=FUF,
T'= (Tq\T;)UT f'=(fufa) I R
R'={(s,t) e (RURy) | s€ S, teT'}
U{(t,s) e (RURy) |teT se S}

When applying a delta net to a core, the interface is dropped and the two nets are
“fused” along their common nodes. The arcs that previously connected the delta
net interface now connect the core. The applicability of a delta net is limited to
certain cores. Let Sp and T represent the border of the interface, that is, Sp =
{s€ S |3teTy\Tr:(s,t) e R} andTp={t €T |3se€ Sg\Sr:(ts) € R}
A delta net is applicable to a core net if the border of the interface is preserved,
that is, if SNSg=Sgand TNTy;=Tg.

We show how delta net application is used to build a model of the example
coffee machines SPL. Starting with the separate sub-models in Fig. Bl delta nets
are applied stepwise to a growing core. First, a model with the two features
Coffee and Payment is composed by applying the delta net from Fig. Bk to the
core shown in Fig. Bh. These nets have the two transitions SERVE and BREW
COFFEE in common. The result after applying the delta feature net is the new
core feature net shown in Fig. @ In a second step, we add the Milk behaviour
by applying the feature net in Fig.[Bb to the core obtained in the previous step.

326 R. Muschevici, J. Proenga, and D. Clarke

2y,
Yy
INSERT COIN

»
& 7y

WAIT UNPAID

BREW COFFEE

Coﬁ‘""2

Copr 2,
Wee PAID Wonesy

COFFEE
FULL

COFFEE
REFILLABL

REFILL COFFEE ACCEPT COIN

Milk
ADD MILK

Y
MILK %

FULL REFILLABLE
REFILL MILK

Fig.5. FN model of an SPL over the feature set { Coffee, Payment, Milk} obtained by
sequential application of the delta nets for the features Payment (Fig. Bk) and Milk
(Fig. Bb)

These two nets have the place READY in common. The result after delta net
application is the model shown in Fig.[Bl Note that the order in which we apply
the two delta nets does not matter in this case, because neither feature (Milk
or Payment) depends on the other. In general, features can depend on other
features. This would be reflected by the design of their interfaces, effectively
restricting the applicability and ensuring that the delta nets can only be applied
in a valid order. As a consequence, delta net application is not commutative.

5 Correctness

When is the application of a delta net D to a core net N correct? We consider
this application correct if the traces of N and D are in some way the same as the
traces of N&@ D, introduced in Definition [I2] after projecting onto the transitions
of N and D. However, there are various ways to compare these traces. We can
focus only on the features used by the original nets or on the features used by the
combined net. Also checking correctness of the core net can be different from
checking correctness of the delta net. Finally, it might be enough to consider
only trace inclusion between the original nets and the combined net. The three
dimensions are summarised as:

— Original vs. combined features. When comparing the behaviour of one of
the original nets with the combined net, we can either consider the combined
features in the final net or just the features in one of the original nets.

— Core vs. delta. We can evaluate the correctness of the core or delta net
behaviour, always in comparison to the combined net’s behaviour.

— Liveness, safety, or both. Liveness states that a net cannot inhibit be-
haviour in the other net, while safety states that a net cannot introduce new

Modular Modelling of Software Product Lines with Feature Nets 327

behaviour to the other net. For example, we say a delta application is safe
with respect to the core net N if the traces of the combined net are included
in the traces of N, when considering the common transitions.

By choosing different parameters along these dimensions we obtain different
notions of correctness. We formulate a parametrised notion of correctness for
the application of delta net D to a core net N as follows:

VFSC ©; : Beh(O2 | FS) ©3 Beh((N @& D) | FS) (parametrised correctness)

where @, can be either the full set of features or the features of the net @5, @5 can
be either the core or the delta net, and @3 is an inclusion or equivalence relation
between the two sets of traces, with respect to a set of relevant transitions.
When O3 is a superset relation, it represents safety, since no new traces can
be introduced by combining the two nets. On the other hand, a subset relation
represents liveness, since all traces in the original net are still valid traces in the
combined net. When we have both safety and liveness assurances, we say that
the behaviour is preserved, and instantiate @3 to be the equality of the traces
with respect to the common transitions.

Not all combinations of these dimensions are desirable in all cases. For ex-
ample, sometimes we might want to inhibit or extend the behaviour of a core
net with respect to the combined set of features, breaking the liveness or safety
criteria. However, it seems desirable to preserve this behaviour with respect to
the features of the core net. In fact, it is open to debate which combination
of these dimensions are ideal. In this paper, we provide sufficient conditions to
guarantee:

1. Preservation of the behaviour of N with respect to the original features.
2. Preservation of the behaviour of D with respect to the combined features.
3. Safety of the behaviour of N with respect to the combined features.

5.1 Mathematical Preliminaries

We defined liveness and safety as inclusion of traces with respect to a relevant
set of traces. We formalise this concept below.

Definition 13 (Behaviour inclusion Cry). Let N; = (S;,T;, R;) be a pair
of Petri nets, for i € 1..2, and Ts be a set of transitions. We say that the
behaviour of Ny is included by the behaviour of No with respect to Ts, written
Beh(N7) Crs Beh(N2), if Beh(N7) | Ts C Beh(N2) | Ts, where Beh(N) | Ts =
{tr| Ts | tr € Beh(N)} and:

t-(tr | Ts) ifte Ts
tr | Ts otherwise.

M| Ts =¢ (MLW)[TSZ{

Similarly, we write D 7, and =75 to represent superset inclusion and equality for
the transitions in Ts.

We now define weak bisimulation between two feature nets, which we will use
to relate the interface of a delta net with the net to which the delta is applied to,
based on the notion of bisimulation described by Schnoebelen and Sidorova [22].

328 R. Muschevici, J. Proenga, and D. Clarke

Definition 14 (Weak bisimulation). Let N; = (S;, T;, R;, Mo, F;, fi) be two
feature nets, for i € 1.2, M, the set of markings of N;, and B C (M; X
Mo)U(Ty x Ty) a relation over markings and transitions. Recall also the notion
of occurrence of transitions introduced in Definition[8. In the following we write
t € B to denote that t is in the domain or codomain of B. B is a weak bisimulation
if, for any feature selection FS:

1. My1 B My,
2. V(My, My) € B, if My 225 M! and t, ¢ B, then M, B Ma;
3. V(M1, M) € B, if My tuF8, M and t1 € B, then there exists to € Ty and

MY such that Mo MB M}, M{ B M}, and t; B ta;

4. conditions (2) and (3) also hold for B~*;

where M ﬂ[g M’ denotes that there are n transitions ti .. .t, such that
t1,FS tn,FS tFS .)
M M, M and Vjel.n:t;¢B.
If a weak bisimulation ezists between N1 and No we say that they are weakly
bisimilar, written N1 ~ Ns.

Let C be the feature net for the Coffee feature (Fig. Bh), and P the delta net
dealing with Payment (Fig. Bc). The interface of P can be seen as a feature
net Pr. It holds that C' & P;. Furthermore, there exists a bisimulation B that
relates the transitions with the same name of the two nets, namely SERVE and
BREW COFFEE. More specifically, the relation B below is a bisimulation, where
we write M¢ and M p, to denote all the markings of C and Py, respectively.

{(M,M') | M € M¢c,M' € Mp,, M(WAIT) =1, M'(WAIT) = 1} U
{(M,M") | M € M¢c,M' € Mp,, M(WAIT) = 0, M'(WAIT) = 0} U
{(SERVE, SERVE), (BREW COFFEE, BREW COFFEE)}

5.2 Preservation of the Core Behaviour for the Original Features

Our first criterion compares the core net with the combined net, considering only
the features originally present in the core net. We require the behaviour of the
core net to be preserved in the combined net, that is, their traces must coincide
with respect to the transitions in the core net. We formalise this criterion as
follows.

Criterion 1 (preservation/core/original). Let N = (S, T, R, F, My, f) be a
core net and D a delta net. We say that N & D preserves the behaviour of N for
the features in F iff

VFSC F : Beh(N | FS) =7 Beh(N & D | FS).

To verify that a delta net application obeys the above correctness criteria, it is
sufficient (although not necessary) to verify the following condition. Check that

Modular Modelling of Software Product Lines with Feature Nets 329

the arcs between the interface and the non-interface nodes of D require at least
one ‘new’ feature to be present. By new feature we mean a feature that is not in
F. This syntactic check ensures that, when considering only the features from
the core net, the arcs connecting it to the delta net will never be active.

Theorem 1. Let D = (Sd,Td,Rd, M0d7Fd7 fd, S],T]) be a delta net, N = (S, T,
R, My, F, f) a feature net, and Ry C Ry be the set of arcs connecting interface
nodes (StUTy) to non-interface nodes. The behaviour of N is preserved by N& D
for the features in F (Criterion) if:

V(z,y) € R : YVFS € F;UF : FSE f(z,y) — FSN(F,\F)#0. (1)

A proof for this theorem can be found in the accompanying technical report [19].
In both our examples of delta applications, that is, adding payment to a coffee
machine and adding milk to the resulting net, the condition in Equation () holds.
The intuition is that, for example, when the Payment feature is not available,
the Coffee feature net is detached from the Payment feature net in the combined
net. Hence its behaviour is not affected by the Payment net and is preserved.

5.3 Preservation of the Delta Behaviour for the Combined Features
We now define the second correctness criterion.

Criterion 2 (preservation/delta/combined). Let N = (S,T,R, My, F, f)
be a core net and D = (Sq, Ta, Ra, Moa, Fa, fa,S1,Tr) a delta net. We say that
N @ D preserves the behaviour of D with respect to features from the combined

net iff
VESC FUFy : Beh(D | FS) =7, Beh(N @ D |FS).

As with the correctness Criterion [l we present a sufficient condition that guar-
antees the preservation of the Criterion 2l However, as opposed to the previous
case, this condition is based on a semantic property of the the interface and the
core net.

Theorem 2. Let D = (Sd,Td,Rd,MOd,Fd,fd,S[,T[) be a delta net, N] =
(S1,Tr, R, Mop, Fu, fa) be the interface of D, N = (S,T,R, F, f) a (core) fea-
ture net, and Rg C Ry denote the arcs connecting interface to non-interface
nodes. The behaviour of D is preserved by N @ D (Criterion[d) if N ~ N1 and
there is a weak bisimulation B C (My x M) U (Th x Ty) such that:

{(t,t) | teTNT;} CB, (

Vs e SNSr, (M,M") € B:M(s)=M(s), (3

V(s,t) € Rg,s € S;,(M,M')eB : (M —{s—1}) B (M —{s—1}) (
V(t,s) € Rp,s € S;,(M,M")eB : (M+{s—1})B (M +{s—1}) (

For Equation [{@l) we assume that, if M (s) = M'(s) = 0, then subtracting {s — 1}
does not change the markings.

330 R. Muschevici, J. Proenga, and D. Clarke

The proof for Theorem [2 can be found in the accompanying technical report [19].
Recall our running examples. As explained in the end of Section [5.1], there is a
weak bisimulation between the interface of the delta net for payment P and the
core net for coffee C. This simulation obeys Equation () because the shared
transitions are related by B, Equation (B because there places of C and P are
disjoint, and Equation (@) because, in this case, dom(R) NSy = (. Hence the
composition CP = C' @ P is correct with respect to Criterion [2l Consider now
the application of the delta net for milk M to the previously obtained core CP.
A possible weak bisimulation between CP and the interface of M relates equal
markings of the places READY in CP and READY in M, as well as of the places
WAIT and I-WAIT. Note that, in order to use Theorem 2] we need to include
markings for any number of tokens in READY, because of Equations) and (&).
Hence, Equation (2] trivially holds, and our specific bisimulation relation also
captures Equation (B]). We conclude that the composition CP @ M is also correct
with respect to Criterion

5.4 Safety of the Core Behaviour for the Combined Features

Our last correctness criterion compares the core net with the combined net with
respect to all features, as opposed to the first criterion that only considered the
features of the core net. When including the features in the delta net, we consider
it safe to inhibit traces that were initially possible, provided that no new traces
are introduced. We formalise safety using trace inclusion.

Criterion 3 (safety/core/combined). Let N = (S, T, R, My, F, f) be a core
net and D = (Sq, T4, Ra, Moa, Fu, fa,S1,Tr) a delta net. We say that N & D is
safe with respect to D and to the combined features iff

VFSC FUF, : Beh(N|FS) D7 Beh(N & D | FS).

We claim that, when applying a delta net connecting only places from the inter-
face to the rest of the delta, the delta net application is safe with respect to D
and the combined features.

Theorem 3. When applying a delta net D = (Sq, Ta, Ra, Mop, F4, fa,S51,T1) to
a core net N, we guarantee that N ® D is safe with respect to D and the combined
features if:

VSES},tGTd\T[: (S,t)¢RD. (6)

The theorem is easily justified by the fact that the core net will only be connected
to the rest of the delta net through transitions. When the application of a delta
net respects Equation (6)), we are increasing the pre- and post-sets of these
transitions, thereby further restricting when they can be fired.

We exemplify the application of two delta nets in this paper: the Payment and
the Milk nets (Fig. Bk and Bb). The first net obeys the condition in Theorem [B]
hence the correctness Criterion [holds. The second delta net has arcs connecting
places from the interface to a non-interface transition, invalidating Equation (@l).
However, in this case the safety criterion is preserved, because a token that exits
the core when firing ADD MILK is transported back to its origin in the same step.

Modular Modelling of Software Product Lines with Feature Nets 331

6 Related Work

Our research relates to Petri net based formalisms, and to the behavioural speci-
fication of software product lines. We highlight the most relevant works in these
areas. Petri net composition and decomposition strategies that preserve some
properties of the initial net(s) have been studied thoroughly [4123/22/12]. In Open
Petri Nets [2], places designated as open represent an interface towards the en-
vironment. Open nets are composed by fusing common open places, and the
composition operation is shown to preserve behaviour with respect to an inverse
decomposition operation. Our Petri net model uses a similar notion of interface,
which includes an abstraction of the net that will be matched during application.
We use an incremental approach using application of deltas instead of a symmet-
ric composition operation, guided by the intuition that larger systems are build
by extending more fundamental systems. The main focus of open Petri nets is
the study of properties in a category of nets, while we have a more practical focus
on the incremental development of nets. Various formalisms have been adopted
for specifying the behaviour of software product lines, with the aim of providing
a basis for analysis and verification of such models. A survey of formal methods
for software product lines has recently been published [5]. UML activity diagrams
have been used to model the behaviour of SPL by superimposing several such
diagrams in a single model [7]. Attached to the activity diagram’s elements are
“presence expressions,” which are similar to application conditions. Compared
to activity diagrams, Petri nets have a stronger formal foundation, with a larger
spectrum of analysis and verification techniques, although, several studies have
expressed the semantics of UML diagram using Petri nets (e.g. [10]). Gruler et
al. extended Milner’s CCS with a product line variant operator that allows an
alternative choice between two processes [14]. The PL-CCS calculus includes in-
formation about variability: by defining dependencies between features, one can
control the set of valid configurations [I3]. Variability is often modelled using
transition systems enhanced with product-related information. Modal transition
systems (MTS) [15] allow optional transitions, lending themselves as a tool for
modelling a set of behaviours at once [I1]. Generalised extended MTS [9] intro-
duce cardinality-based variability operators and propose to use temporal logic
formulas to associate related variation points. Asirelli et al. encode MTS us-
ing propositional deontic logic formulas and provide a framework for reasoning
about behavioural aspects [I]. Modal I/0 automata [16] are a behavioural for-
malism for describing the variability of components based on MTS and 1/0
automata. Mechanisms for component composition are provided to support a
product line theory. These approaches do not relate behaviour to elements of
a structural variability model. Featured transition systems (FTS) [6] are an ex-
tension of labeled transition systems. Similar to feature nets, transitions are
explicitly labeled with respect to a feature model, and a feature selection deter-
mines the subset of active transitions. In FTS, transitions are mapped to single
features. Transition priorities are used to deal with undesired non-determinism
when selecting from transitions associated to different features. With application

332 R. Muschevici, J. Proenga, and D. Clarke

conditions, priorities are no longer required because we can negate the features
in other transitions to obtain the same effect.

7 Conclusion and Future Work

This paper introduces a modular framework for modelling systems with a high
degree of variability, addressing an important challenge in software product line
engineering. The modelling formalism used is feature nets, a lightweight Petri net
extension in which the presence of arcs is conditional on the presence of certain
features through application conditions. We present an approach to composing
behavioural models from separately engineered models of individual features.
Three correctness criteria for such compositions are also presented.

Feature nets capture the behaviour of entire product lines in a single, concise
model, opening the way for efficient analysis and verification. We will follow this
direction in future work, applying model checking techniques to our models and
studying the question of verification. The practical applicability of our proposed
approach will be examined in a future study, which will also determine how well
the approach scales, considering that features are not always independent.

References

1. Asirelli, P., ter Beek, M.H., Gnesi, S., Fantechi, A.: A deontic logical framework
for modelling product families. In: Benavides et al. [3], pp. 37-44

2. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional semantics for open
Petri nets based on deterministic processes. Mathematical Structures in Computer
Science 15(01), 1-35 (2005)

3. Benavides, D., Batory, D.S., Grinbacher, P. (eds.): International Workshop on
Variability Modelling of Software-Intensive Systems (VaMoS), vol. 37. Universitat
Duisburg-Essen (2010)

4. Berthelot, G.: Transformations and decompositions of nets. In: Brauer, W., Reisig,
W., Rozenberg, G. (eds.) APN 1986, Part 1. LNCS, vol. 254, pp. 359-376. Springer,
Heidelberg (1987)

5. Clarke, D.: Quality Assurance for Diverse Systems, ch. 5, pp. 27-37. Deliv-
erable 1.2 of the EternalS Coordination Action (FP7-247758), supported by
the 7th Framework Programme of the EC within the FET scheme (2011),
https://www.eternals.eu/sites/default/file/D1_2_TF1_state0fTheArt.pdf

6. Classen, A., Heymans, P., Schobbens, P.Y., Legay, A., Raskin, J.F.: Model checking
lots of systems: Efficient verification of temporal properties in software product
lines. In: International Conference on Software Engineering, pp. 335-344. IEEE
Press, Los Alamitos (2010)

7. Czarnecki, K., Antkiewicz, M.: Mapping features to models: A template approach
based on superimposed variants. In: Gliick, R., Lowry, M. (eds.) GPCE 2005. LNCS,
vol. 3676, pp. 422-437. Springer, Heidelberg (2005)

8. Desel, J., Esparza, J.: Free choice Petri nets. Cambridge University Press, New
York (1995)

9. Fantechi, A., Gnesi, S.: Formal modeling for product families engineering. In:
International Software Product Line Conference, pp. 193-202. IEEE Press, Los
Alamitos (2008)

https://www.eternals.eu/sites/default/file/D1_2_TF1_stateOfTheArt.pdf

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

Modular Modelling of Software Product Lines with Feature Nets 333

Farooq, U., Lam, C.P., Li, H.: Transformation methodology for UML 2.0 activity
diagram into colored Petri nets. In: Advances in Computer Science and Technology,
pp. 128-133. ACTA Press (2007)

Fischbein, D., Uchitel, S., Braberman, V.: A foundation for behavioural confor-
mance in software product line architectures. In: International Workshop on the
Role of Software Architecture in Analysis and Testing, pp. 39-48. ACM Press, New
York (2006)

Girault, C., Valk, R.: Petri Nets for System Engineering: A Guide to Modeling,
Verification, and Applications. Springer, Secaucus (2001)

Gruler, A., Leucker, M., Scheidemann, K.: Calculating and modeling common parts
of software product lines. In: International Software Product Line Conference, pp.
203-212. IEEE Press, Los Alamitos (2008)

Gruler, A., Leucker, M., Scheidemann, K.: Modeling and model checking software
product lines. In: Barthe, G., de Boer, F.S. (eds.) FMOODS 2008. LNCS, vol. 5051,
pp. 113-131. Springer, Heidelberg (2008)

Larsen, K., Thomsen, B.: A modal process logic. In: Third Annual Symposium on
Logic in Computer Science, pp. 203-210. IEEE Press, Los Alamitos (1988)
Larsen, K., Nyman, U., Wasowski, A.: Modal I/O automata for interface and
product line theories. In: De Nicola, R. (ed.) ESOP 2007. LNCS, vol. 4421, pp.
64-79. Springer, Heidelberg (2007)

Murata, T.: Petri nets: Properties, analysis and applications. Proceedings of the
IEEE 77(4), 541-580 (1989)

Muschevici, R., Clarke, D., Proencga, J.: Feature Petri Nets. In: International Soft-
ware Product Line Conference, vol. 2, pp. 99-106. Lancaster University (2010)
Muschevici, R., Proenca, J., Clarke, D.: Modular modelling of software prod-
uct lines with feature nets. Tech. Rep. CW 609, KU Leuven, Belgium (2011),
http://wuw.cs.kuleuven.be/publicaties/rapporten/cw/CW609.abs.html

Pohl, K., Bockle, G., van der Linden, F.: Software Product Line Engineering.
Springer, Heidelberg (2005)

Schaefer, 1.: Variability modelling for model-driven development of software prod-
uct lines. In: Benavides, et al. [3], pp. 85-92

Schnoebelen, P., Sidorova, N.: Bisimulation and the reduction of Petri nets. In:
Nielsen, M., Simpson, D. (eds.) ICATPN 2000. LNCS, vol. 1825, pp. 409-423.
Springer, Heidelberg (2000)

Souissi, Y., Memmi, G.: Composition of nets via a communication medium. In:
Rozenberg, G. (ed.) APN 1990. LNCS, vol. 483, pp. 457-470. Springer, Heidelberg
(1991)

http://www.cs.kuleuven.be/publicaties/rapporten/cw/CW609.abs.html

	Modular Modelling of Software Product Lines with Feature Nets
	Introduction
	Software Product Line Modelling Challenge
	Feature Nets
	Modular Modelling
	Feature Net Composition

	Correctness
	Mathematical Preliminaries
	Preservation of the Core Behaviour for the Original Features
	Preservation of the Delta Behaviour for the Combined Features
	Safety of the Core Behaviour for the Combined Features

	Related Work
	Conclusion and Future Work

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Remove
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 290
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 290
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.03333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 800
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f0064007500630065007300200062006f006f006b00200069006e006e006500720077006f0072006b0020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f0072002000680069006700680020007100750061006c0069007400790020007000720069006e00740069006e0067002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e000d>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

