
Int J Softw Tools Technol Transfer (2012) 14:567–588
DOI 10.1007/s10009-012-0250-1

SW-DIVERSITY

The ABS tool suite: modelling, executing and analysing
distributed adaptable object-oriented systems

Peter Y. H. Wong · Elvira Albert · Radu Muschevici ·
José Proença · Jan Schäfer · Rudolf Schlatte

Published online: 18 July 2012
© Springer-Verlag 2012

Abstract Modern software systems must support a high
degree of variability to accommodate a wide range of require-
ments and operating conditions. This paper introduces the
Abstract Behavioural Specification (ABS) language and tool
suite, a comprehensive platform for developing and analysing
highly adaptable distributed concurrent software systems.
The ABS language has a hybrid functional and object-
oriented core, and comes with extensions that support the
development of systems that are adaptable to diversified
requirements, yet capable to maintain a high level of trust-
worthiness. Using ABS, system variability is consistently
traceable from the level of requirements engineering down
to object behaviour. This facilitates temporal evolution, as
changes to the required set of features of a system are auto-
matically reflected by functional adaptation of the system’s
behaviour. The analysis capabilities of ABS stretch from
debugging, observing and simulating to resource analysis
of ABS models and help ensure that a system will remain
dependable throughout its evolutionary lifetime. We report
on the experience of using the ABS language and the ABS
tool suite in an industrial case study.

P. Y. H. Wong (B)
Fredhopper B.V., Amsterdam, The Netherlands
e-mail: peter.wong@fredhopper.com

E. Albert
Complutense University of Madrid, Madrid, Spain

R. Muschevici · J. Proença
Katholieke Universiteit Leuven, Leuven, Belgium

J. Schäfer
University of Kaiserslautern, Kaiserslautern, Germany

R. Schlatte
University of Oslo, Oslo, Norway

Keywords Formal modelling and analysis · Concurrency ·
Tool support · Variability · Software product line · Feature
modelling

1 Introduction

Diversity is prevalent in modern software systems in order
to adapt to their application contexts [53]. Additionally, soft-
ware systems must evolve to meet changing requirements
over time. This may require substantial changes to the soft-
ware and often results in quality regressions. After a change
in a software system, typically some work is needed in order
to regain the trust of its users. The HATS (Highly Adapt-
able and Trustworthy Software using Formal Models) project
aims at developing a formal model-centric software develop-
ment methodology [25,53] for engineering software systems
that are subject to frequent changes.

The HATS approach is centred around the Abstract Behav-
ioural Specification (ABS) modelling language [26] and an
accompanying ABS tool suite. ABS allows the precise mod-
elling and analysis of component-based distributed concur-
rent systems, focusing on their functionality while separating
from the concerns such as concrete resources, deployment
scenarios and scheduling policies. In particular, the language
of ABS provides modelling concepts for specifying variabil-
ity incrementally from the level of feature models down to
object behaviour. This permits large-scale reuse and rapid
product construction.

The contributions of this paper is twofold: (1) we present
the ABS language and the ABS tool suite and guide this pre-
sentation via an industrial case study; and (2) we report on
the experience of using the ABS language and the ABS tool
suite in an industrial case study.

123

568 P. Y. H. Wong et al.

The ABS tool suite consists of the following tools for assist
modeling in ABS:

Compiler front-end The ABS compiler front-end, which
takes a complete ABS model of the software system as
input, checks the model for syntactic and semantic errors
and translates it into an internal representation. The front-
end supports automatic product generation: variability of
the software system can be resolved by applying the corre-
sponding sequence of delta modules to its core ABS model
at compile time.
Code generation There are various compiler back-ends
that take the internal representation of ABS models and
generate to either executable programs in implementation
languages like Java and Scala, or rewriting systems in the
language of Maude for simulation and analysis. In this
paper, we focus on back-ends for Java and Maude.
ABS plugin There is an ABS plugin that extends the Eclipse
integrated development environment (IDE) (http://www.
eclipse.org) to provide an ABS IDE. The plugin offers an
Eclipse perspective that integrates with the compiler front-
end for navigating, editing, visualising, and type checking
ABS models. It also integrates with the mentioned back-
ends so that ABS models can be executed and simulated
directly from the IDE.
ABSUnit During software development in ABS, unit tests
are written to quickly validate the correctness of the method
implementations and detect regressions due to changes.
The ABS tool suite offers the ABSUnit testing framework
for writing, managing and executing unit tests in ABS for
ABS models.
Dependency management To support industrial collab-
orative development processes that focus on large-scale
reuse, the ABS tool suite provides a package system and
a dependency management system for ABS. A package
system helps aggregating related ABS modules into plat-
form-independent artifacts for efficient reuse, while the
dependency management system helps building, deploy-
ing, and reusing such artifacts.
Foreign function interface In industrial software develop-
ment environments, developers often use external software
systems to enhance functionalities of software via a set of
application programming interfaces (APIs). To leverage
rich APIs and third party libraries offered by popular pro-
gramming languages, the ABS tool suite offers a set of
small extensions to the ABS language, known as the ABS
foreign function interface (ABS-FFI), that allows ABS
modules to interact with programs written in other pro-
gramming languages. More importantly, ABS-FFI enables
critical parts of a large software system to be formally ana-
lysed and verified. This can be achieved by modelling crit-
ical parts of the system as ABS modules and connect them
to the rest of the system via ABS-FFI.

Visualisation Using the code generation back-ends, the
ABS tool suite offers the facility to visualise and to debug
running ABS models.
COSTABS One of the analysis techniques offered by the
ABS tool suite is resource analysis: COSTABS is a static
resource analysis tool for ABS [2]. It is an extension of
the COSTA system [1]. COSTABS can be applied to ana-
lyse ABS models (and, in particular, to analyse a fragment
of our case study) and infer precise information on their
resource consumption.

We guide the presentation of the ABS language and the
ABS tool suite via an on-going industrial case study based
on the Fredhopper Access Server (FAS), a distributed web-
based software system for Internet search and merchandis-
ing, developed by Fredhopper B.V. (http://www.fredhopper.
com). In particular, we consider the Replication System; the
Replication System ensures data consistency across the FAS
deployment. Based on our experience with the case study,
we consider the following requirements of ABS, discuss
how the ABS language and the ABS tool suite fulfil these
requirements and make suggestions on possible improve-
ments. These requirements stem from the activity conducted
within the HATS project [30]:

Usability We consider both the ABS language and the ABS
tool suite with respect to their overall usability. This means
software developers should be able to use the ABS lan-
guage and tool suite with reasonable effort.
Reducing manual effort We consider how the ABS tool
suite helps reducing manual effort and how some of the
automated processes offered by the tool suite help reduc-
ing the errors that might have been caused by manual oper-
ations.
Integrated environment support We consider how the ABS
language and tool suite are supported in an integrated envi-
ronment; specifically, a well-supported set of tools in an
integrated environment must have interoperable formats
and common visual representation between tools’ inputs
and outputs. Moreover tools offered must be able to handle
large code bases.

The paper is structured as follows: Sect. 2 introduces the
Fredhopper Access Server, and in particular the Replication
System that is used throughout this paper. Sects. 3 and 4
give an overview of the ABS language. Section 5 describes
how to execute ABS models using the ABS tool suite. In
this section, we also look at how to unit test ABS models
and how to integrate ABS models with foreign languages.
Section 6 describes the visualisation and resource analysis
facilities offered by the ABS tool suite. Section 7 discusses
the experience of using the ABS tool suite during the case
study and on how the ABS language and tool suite fulfil the

123

http://www.eclipse.org
http://www.eclipse.org
http://www.fredhopper.com
http://www.fredhopper.com

Modelling, executing, and analysing using the ABS tool suite 569

Live
Environment (1)

Live
Environment (n)

Data and Config
Updates

Configurations
changes

Staging
Environment

Data
Manager

Internet

...

Client-side
Web App

Client-side
Web App

Client-side
Web App

Data updates Live
Environment (2)... Load

balancer

Data and Config
Updates

Configurations
changes

...

Client-side
Web App

-

Data updates ...

Fig. 1 Example of FAS deployment

CheckPoint

Int cp in [1..10]
Seq -> cp < 5

Replication
System

Replication
Item

Dir Journal File

<<require>>

Job
Processing

Concur Seq

Load

Schedule

DSchedule JScheduleFSchedule

Int d in [1..5] Int f in [1..5] Int l in [1..5]

<<require>>

<<require>>

Client

Int c in [1..20]
Seq -> c < 10

JSched -> c >= 2

Fig. 2 Feature model of the Replication System

requirements identified in this section. Finally, Sects. 8 and
9 present related work and conclude this paper. A glossary
of important terms can be found in Appendix A.

2 Fredhopper case study

The Fredhopper Access Server (FAS) is a distributed con-
current object-oriented system that provides search and mer-
chandising services to e-commerce companies. Briefly, FAS
provides to its clients structured search capabilities within
the client’s data. To minimise the possible disruption caused
by data updates in a FAS installation, each FAS installation
is deployed according to the FAS deployment architecture.
Figure 1 shows an example setup. A FAS deployment
consists of a set of “environments”. In this case study
we focus on two types of environments: live and staging.
A live environment processes queries from client web
applications via web services. The staging environment is
responsible for receiving data updates in XML format, index-

ing the XML, and distributing the resulting indices across
all live environments according to the replication protocol.
A more detailed description of the Replication System can
be found in [57]. The replication protocol is implemented by
the Replication System. The Replication System consists of
a SyncServer at the staging environment and one SyncClient
for each live environment. The SyncServer determines the
schedule of replication, as well as the items of replication,
while each SyncClient is responsible for initiating communi-
cation with the SyncServer, receiving replication schedules
from the SyncServer, and scheduling replication jobs accord-
ing to those schedules to receive replication items.

2.1 Variability

There exist several variants of the Replication System. We
express these variants by features. A feature is a prod-
uct characteristic that is relevant to some stakeholder in
the development project. Features are organised in a fea-

123

570 P. Y. H. Wong et al.

ture model [19,43], essentially a set of logical constraints
expressing the dependencies between them. Feature mod-
els are usually represented graphically as feature diagrams.
Figure 2 shows the feature diagram of the Replication Sys-
tem. Specifically, the feature diagram defines a set of legal
feature combinations. They represent the set of valid Repli-
cation System variants that can be built from the given fea-
tures. A feature diagram is a tree structure in which each
node denotes a feature and is annotated with the name of
that feature. Relationships between a parent and its child
features are categorised as follows: child features with a
black dot attached denote mandatory features, while child
features with a white dot attached denote optional features.
The root node denotes the root feature and is by default man-
datory. If the edges from the parent to its child features are
shaded in black then one or more of the child features must
be selected if the parent feature is selected. If the edges are
shaded in white then exactly one of the child features must be
selected if the parent feature is selected. Otherwise, all of the
child features must be selected. Dotted lines between features
specifies orthogonal constraints between connected features.
Going back to the case study, the feature diagram of the Rep-
lication System shown in Fig. 2 has three main features:
Job Processing, Replication Item and Load.
Feature Job Processing offers one of sequential and
concurrent client job processing, feature Replication
Item offers various supports for different types of replica-
tion items, for example sub-feature File supports replicat-
ing a file set, whose files’ name matches a particular pattern,
and featureLoad offers supports to configure resources, rep-
lication schedules and the number of clients. Reader can find
more details of individual features in [57].

3 The core ABS language

In the HATS methodology the ABS language is used to pre-
cisely define the behaviour of distributed software systems.
ABS itself consists of a core called Core ABS, which is used
to model single software systems, and Full ABS, an exten-
sion on top of the core to support variability modelling. This
section describes Core ABS, whereas Full ABS is described
in Sect. 4.

Core ABS (or simply ABS in the following) is a concur-
rent, multi-paradigm modelling language. Syntax-wise, ABS
resembles standard programming languages like Java. In fact,
the syntax of ABS was deliberately designed to be as close as
possible to existing programming languages in order to lower
the entry barrier to use ABS. Nevertheless ABS is more a
modelling than a programming language, because the design
of ABS is strongly focused on providing a language that is
easy to analyse. High execution performance, for example,
is not a design goal of ABS.

Fig. 3 Layered language design of ABS

ABS combines functional, object-oriented, and concur-
rent programming in a single language. The design follows
a strict layered approach, where the properties from a lower
layer cannot be invalidated by a higher layer (see Fig. 3). In
addition, higher layers depend on lower layers but not vice
versa.

In the remainder of this section we describe each language
layer in more detail. A complete description of all ABS fea-
tures can be found in [7,38].

3.1 Sequential programming

ABS supports first-order functional programming with alge-
braic data types. Functional code is guaranteed to be free of
side effects. One consequence of this is that functional code
may not use object-oriented features. Having such a func-
tional core makes it possible to describe large parts of a soft-
ware system in a side-effect-free way to simplify reasoning.
For brevity, we omit details of the functional sub-language
and refer readers to [7,38] for its full descriptions.

ABS also supports class-based, object-oriented program-
ming with standard imperative constructs. ABS has a nominal
type system with interface-based subtyping. ABS does not
support class inheritance and overloading, and instead code
reuse can be achieved in ABS by using deltas, which are
described in Sect. 4.2.

3.1.1 Interfaces

Interfaces define types for objects. They are nominal, that is,
have a name, and define a set of method signatures, that is,
the names and types of callable methods. Syntactically, ABS
interfaces look like Java interfaces. ABS does not support
type parameters for interfaces, that is, generic interfaces are
not possible.

The following listings show some interfaces from the Rep-
lication System, namely a collection of interfaces to repre-
sent streams. FB<A> is an algebraic data type representing
the result of reading from and writing to an I/O stream. Val-
ues of this type can be constructed by either the constant
Ok, wrapping some value of type A using the constructor
Result or defining an error message using the constructor
Error.

123

Modelling, executing, and analysing using the ABS tool suite 571

data FB<A> = Ok | Result(A) | Error(String)
interface Reader { Int readInt(); }
interface Writer { Unit writeInt(Int i); }
interface Input { FB<Int> readInt(); }
interface Output { FB<Unit> writeInt(Int s); }
interface Stream extends Input, Output { ... }

Listing 1 Streams I/O

3.1.2 Classes

class ReaderImpl(InputStream i) implements Reader {
Int readInt() {

Fut<FB<Int>> ib = i!readInt();
FB<Int> fb = ib.get;
return result(fb);}}

Listing 2 Implementation of Reader

Classes define the implementation of objects. In contrast
to Java, for example, classes do not define a type. Classes can
implemented arbitrarily many interfaces, which then define
the type of a new instance of that class. A class has to imple-
ment all methods of all its implementing interfaces. In addi-
tion, a class can define private methods which do not appear
in any interface. Such methods can only be invoked on this.
Instead of constructors, classes in ABS have class parame-
ters and an optional init block.

Listing 2 shows the class ReaderImpl from the repli-
cation case study that implements the Reader interface.

3.1.3 Statements and expressions

ABS has standard statements and expressions known from
languages such as Java, with identical syntax. Beside
side-effect-free expressions on built-in data types, expres-
sions can be method invocations (x.m(a)), object creation
(new C(a)), and field and variable reads and assignments
(x = this.y). There is also a conditional statement, a
while loop, and the skip statement which does nothing.

3.2 Concurrent programming

ABS is especially designed for modelling concurrent and dis-
tributed systems. The concurrency model of ABS is based
on the concept of Concurrent Object Groups (COGs). A
typical ABS system consists of multiple, concurrently run-
ning COGs at runtime. COGs can be regarded as autono-
mous runtime components that are executed concurrently,
share no state and communicate via method calls. COGs can
reference objects of other COGs, however, these far refer-
ences can only be used as targets for asynchronous method
calls.

3.2.1 Concurrent object groups

A new COG is created by using the new cog expression.
It takes as argument a class name and optional parameters
and returns a reference to the initial object of the new COG.
The following line of code from the Replication System case
study shows the creation of a new ServerImpl COG. As
ServerImpl is an active class (it has a run method), it
also starts running concurrently to the creating COG.

new cog ServerImpl(...);

Location type system. To be able to statically distinguish
references to objects of other COGs (far references) from ref-
erences to objects of the same COG (near references), ABS
provides a pluggable type extension that introduces loca-
tion types (see [59] for details). The extension is realised
by using type annotations, which is a built-in mechanism
of ABS to extend the type system. A location type annota-
tion is either [Near], [Far], or [Somewhere], where
[Somewhere] means that the reference is either near or
far. An integrated type inference mechanism automatically
infers most location type annotations.

3.2.2 Asynchronous method calls

Communication between COGs may solely be done via asyn-
chronous method calls. The difference to the synchronous
case is that an asynchronous call immediately returns to the
caller without waiting for the message to be received and han-
dled by the callee. Asynchronous method calls are indicated
by an exclamation mark (!) instead of a dot and return a future
instead of a normal value (see Sect. 3.2.3). Listing 3 shows
partially the definition of the class ClientJobImpl that
models replication jobs and is used by the SyncClient for
communicating asynchronously with the SyncServer. Note
that we will refer back to the listing in Sect. 5.6.

3.2.3 Futures

Asynchronous method calls return futures. A future is a
place-holder for the result of the method call. Initially, a
future is unresolved. When the called method has terminated,
the future will be resolved (automatically) with the result
value of the call. The caller can thus later synchronise with
the future and obtain the result value of the method call.

A future in ABS is represented by the predefined data type
Fut<T>where the type parameterT corresponds to the return
type of the called method. To obtain the value from a future,
the get-expression (f.get) is used. It only returns the value
of the future when the future is resolved. If the future is

123

572 P. Y. H. Wong et al.

unresolved, the control flow is blocked until the future
is resolved. Hence, synchronous communication between
COGs can be simulated in ABS by performing an asynchro-
nous method call and waiting for the resolved future using
the get-expression. For example, thesetDbmethod in List-
ing 3 blocks the COG until the database has been retrieved
from the client.

class ClientJobImpl(Client c, ...) {
DataBase db;
Unit setDb() {

Fut<DataBase> fd = c!getDataBase();
db = fd.get; }

Unit run() {
this.setDb();
Bool connected = this.connect();
while (~connected) {

await duration(10,10);
connected = this.connect();

} ... }
Bool hasFile(Fn id) {

Fut<Bool> he = db!hasFile(id); await he?;
return he.get; }

Maybe<Size> processFile(Fn id) {
Maybe<Size> result = Nothing;
Fut<Set<Fn>> ff = db!listFiles();
await ff?; Set<Fn> fids = ff.get;
if (contains(fids,id)) {
Bool hf = this.hasFile(id);
if (hf) {

Fut<Content> fc = db!getContent(id);
await fc?; Content c = fc.get;
if (isFile(c))

result = Just(content(c)); } }
return result;}}

Listing 3 Partial implementation of ClientJobImpl

3.2.4 Cooperative multi-tasking

Each asynchronous method call results in a task in the COG
of the target object. Tasks are scheduled cooperatively within
the scope of a COG. Cooperative scheduling means that
switching between tasks of the same COG happens only at
specific scheduling points during program execution, which
are apparent in the source code, and that at no point two
tasks in the same COG are active at the same time. Hence,
the state of a COG can never be accessed by two tasks at
the same time and, in addition, interleaving points can be
syntactically identified and analysed.

The suspend statement introduces an unconditional
scheduling point, causing the running task to be suspended
and another task of the COG to be scheduled. With the await
statement, one can create a conditional scheduling point,
where the running task is suspended until after the specified
condition becomes true. The await statement can be used to
suspend a task until a future becomes resolved (inter-COG
synchronisation) or a Boolean condition over the object state

becomes true (synchronisation between tasks in the same
COG). While waiting for a future, other tasks can run. For
example, the processFile method in Listing 3 defines a
conditional scheduling point, suspending the running task to
wait for the content of a file, while allowing other tasks to
run in between.

A method for reasoning about absence of race conditions
in ABS is to inspect each suspend and await statement, and
check if the task at this point leaves the COG in an orderly
state (that is, establishes all the object invariants1). At all
other points, objects are implicitly protected against concur-
rent modifications of their fields.

3.3 Modules

An ABS Model is a set of modules, where each module is
defined in an ABS file, which typically ends with .abs. A
file can have multiple module definitions, but a single mod-
ule must be completely defined in one file. Modules define
named scopes for declarations which can be interfaces, clas-
ses, or data types, and provide name spaces and a means for
implementation hiding. All declarations defined in a module
are by default hidden and cannot be used by other modules. In
order to make declarations available to other modules, they
have to be explicitly exported. In order to use declarations
of other modules, they have to be explicitly imported. Like
Java packages, modules in ABS are flat. Even though module
names are often made hierarchical by using periods, such a
structure has no special meaning in ABS.

The following listing shows a module header from the
Replication System case study.

module ReplicationSystem.Streams;
export *; import * from Files; ...

4 Full ABS

The HATS methodology is geared towards modelling highly
configurable systems. Such systems have a high degree
of variability to accommodate different requirement and
deployment scenarios.

ABS provides language constructs and tools for mod-
elling variable systems following Software Product Lines
(SPL) [48] engineering practices. The Micro Textual Vari-
ability Language μTVL [28] is used to model all products
of an SPL by using features and feature attributes. A μTVL
model hence describes a feature model. A Product Selection
identifies individual products that are of particular interest.

1 An object invariant is a property about values of the object’s fields
that must be satisfied when the object is created, and before and after
any of its methods is invoked.

123

Modelling, executing, and analysing using the ABS tool suite 573

Fig. 4 Generation of a software product

Delta modules are reusable units of ABS code which can be
applied incrementally to an ABS model to adapt its behaviour
to conform to a particular product. Finally, the Configuration
associates features to delta modules, enabling us to generate
the ABS model for individual products by naming a product.
The Core ABS language (cf. Sect. 3) enriched with the above
extensions is called the Full ABS.

Figure 4 depicts the main steps required to build a software
product using ABS. The developer first selects the desired
features. This selection is then used to choose the relevant
delta modules. Each of these delta modules is applied in a par-
ticular sequential order to the core model. The application of
all relevant delta modules results in a software product with
the desired features.

The remainder of this section details the ABS language
constructs used for modelling software product lines. Sec-
tion 4.1 introduces feature models and describes how to select
valid products. The delta modelling approach is described in
Sect. 4.2, and the connection between features and deltas
is made in Sect. 4.3. We exemplify the approach, using the
case study, in Sect. 4.4. Finally, we describe our platform
and deployment model in Sect. 4.5. A complete reference of
ABS, including the constructs for modelling variability, can
be found in [7,28].

4.1 Feature model

Our example software product line of Replication Systems
is represented graphically by the feature diagram in Fig. 2.
Listing 4 shows how the underlying feature model is encoded
in ABS using the textual variability language μTVL.2

A μTVL feature model is encoded as integer and boolean
constraints over features and feature attributes. Each solu-
tion for these constraints represents a valid product of the
feature model. ABS allows the developer to name products
that are of particular interest, in order to easily refer to them
later when the actual code needs to be generated. Listing 5
shows examples of valid products. For example the product
DS selects the features Dir and Seq. The parent nodes of
these two features are automatically included.

Both products mentioned here are valid since they satisfy
the constraints associated with the feature model. In the prod-
uct DFSCCDF the feature Client must include an assign-
ment of all of its attributes; in this case c is initialised with

2 μTVL is based on the textual variability language TVL [20].

the value 2. The μTVL checker that comes with the ABS
tool suite can evaluate all product selections with respect to
the feature model and warn about invalid products.

root ReplicationSystem {
group allof {
JobProcessing {
group oneof { Seq, Concur } },
ReplicationItem {
group [1..*] {
Dir, opt Journal { require: Seq; }, opt File }}

opt Load {
group [1..3] {
Client {
Int clients in [1 .. 20];
Seq -> (clients < 10); },
CheckPoint { ... },
Schedule {
group [0..3] {
DSChedule { ... },
FSChedule { ... },
JSChedule { ... }}}}}}}

Listing 4 Feature model of the Replication System

product DS(Dir, Seq);
product DFSCCDF(Dir, DSchedule{d=1}, Client{c=2},
File, Seq, CheckPoint{cp=2}, FSchedule{f=1});

Listing 5 Product selections for the Replication System

4.2 Delta model

ABS supports delta-oriented programming [52], an approach
that aims at developing a set of programs simultaneously
from a single code base, following the SPL engineer-
ing approach [48]. In delta-oriented programming, features
defined by a feature model (as described in Sect. 4.1) are
associated with code modules that describe modifications to
a core model. These modules are called delta modules (or
deltas for short). Hence the implementation of a software
product line is divided into a core model and a set of delta
modules. The core model consists of the classes that imple-
ment a complete product of the corresponding product line.
Delta modules describe how to change the core model to
obtain new products. This is done by adding new classes,
modifying existing ones, or even removing some classes. The
choice of which delta modules to apply is based on a selec-
tion of desired features for the new product. Delta modules
are associated with features through application conditions.
Application conditions are logical expressions that evaluate
to either true or false, given a particular feature and attri-
bute selection. If a delta module’s application condition is
true, then the delta module is applied, meaning that the core
model is modified according to the changes described by the
delta module. By not associating delta modules directly with

123

574 P. Y. H. Wong et al.

features, a degree of flexibility is obtained, resulting in better
reuse of code and the ability to resolve conflicts caused by
delta modules modifying the code base in incompatible ways.

Delta modules’ granularity is at the level of methods and
fields. They can add new methods to classes, and remove or
modify existing methods. The example below shows a delta
module that modifies the class Main, which is assumed to
have been declared in the core.

delta DSchedule(Int s);
modifies class Main {
modifies List<Schedule> getSchedules() {
List<Schedule> ss = original();
return take(ss,s);}}

Listing 6 Delta module DSchedule

TheDScheduledelta module provides a new implemen-
tation for the method getSchedules() in class Main
by defining a so-called method modifier, introduced by the
modifies keyword. Adding and removing methods is also
supported using the adds and removes keywords. Calling
the special method original() makes it possible to access
the behaviour a method had before the application of the
delta, similar to the use of super to access superclasses in
Java. In addition to modifying object behaviour, ABS delta
modules allow adding or removing fields. New fields are
introduced using the adds keyword and removed using the
removes keyword. Finally, ABS also supports manipulat-
ing the list of interfaces that classes implement by a similar
addition and removal mechanism.

Delta modules define an optional list of parameters which
can be used to pass the values of feature attributes defined in
the product selections (Sect. 4.1) into the delta body. These
parameters must be immutable objects, such as integers, boo-
leans or strings. In the above example, any occurrence of the
integer variable s inside the delta is replaced with the con-
crete value of the feature attributeSSchedule.supon delta
application.

4.3 Software product line configuration

The ABS configuration language links feature models, which
describe the structure of an SPL (Sect. 4.1), to delta modules
(Sect. 4.2), which implement its behaviour. This link is illus-
trated in Fig. 5. The configuration defines, for each selection
of features satisfied by a product selection, which delta mod-
ules should be applied to the core model.

Features and delta modules are associated through appli-
cation conditions, which are logical expressions over the set
of features and attributes in a feature model. The collec-
tion of applicable delta modules is given by the application
conditions that are true for a particular feature and attribute
selection.

Feature
Model

Product
Selection

Configuration

ensures
satisfaction

Core

Deltas

Modules

Software
Product

as
so

ci
at

es

guides

C
od

e
G

en
er

at
io

n

Fig. 5 Variability modelling framework of ABS

A configuration block specifies the name of the product
line, the set of features it provides, and the set of delta mod-
ules used to implement those features.

productline ReplicationSystem;
features Dir, File, Journal, Seq, Concur, Client,
Schedule, CheckPoint, DSchedule,
FSchedule, JSchedule;

delta File when File;
delta Journal when Journal;
delta Concurrent when Concur;
delta Client(Client.c) when Client;
delta CP(CheckPoint.cp) when CheckPoint;
delta DSchedule(DSchedule.s) when DSchedule;
delta FSchedule(FSchedule.f)

after DSchedule when FSchedule;
delta JSchedule(JSchedule.l)

after FSchedule when JSchedule;

Listing 7 Product line configuration for replication items

The example in Listing 7 first names the set of features
from the feature model in Fig. 1 used to configure this prod-
uct line, followed by a set of delta configurations. Each
delta configuration contains at least the name of the delta
module to be applied and an application condition intro-
duced by the when keyword. For example, the delta config-
uration “Concurrent when Concur;” states that the
delta Concurrent is only applied if the feature Concur is
selected. Deltas can be parametrised and their arguments can
include attribute variables, as exemplified by the Client
delta configuration.

Finally, delta configurations can also include an after
clause to mediate conflicts, as shown in the configuration
of the FSchedule and JSchedule deltas. Two deltas are
in conflict if their specified modifications do not commute.
An after clause resolves conflict by imposing an order of
application for certain deltas. A more elaborate mechanism
for reconciling conflicting feature functionality in ABS has
been presented [34].

123

Modelling, executing, and analysing using the ABS tool suite 575

4.4 Product generation

class Directory(Fn q, DataBase db)
implements Item { ... }

class SnapshotImpl(DataBase db, Set<Schedule> ss)
implements Snapshot {
Set<Item> items = EmptySet;
...
// used by ’File’
Unit item_original(Schedule s) { ... }
// modified by ’File’
Unit item(Schedule s) { item_original(); ... }}

// added by ’File’
class FileSet(Fn q, String p, DataBase db)

implements Item { ... }

class Main {
...
// added by ’File’
Set<Schedule> files = ...
// modified by ’Client’ and ’CP’, respectively
Map<Int,String> getCids() { ... }
Map<CP,Map<Fn,Content>>> getDatas() { ... }
// modified by ’DSchedule’ and later by ’FSchedule’
Schedule getSchedules() { ... }}

Listing 8 Core ABS model for the product DFSCCDF

We now summarise the full process of generating a soft-
ware product from our example SPL. The Replication Sys-
tem modelled in ABS defines a feature model, a set of delta
modules, and a product line configuration. For each selec-
tion of features, a new Core ABS program is generated. In
the following we select the product DFSCCDF, introduced
in Listing 5, which includes the features Dir, File, Seq,
Client, CheckPoint, DSchedule and FSchedule.
The generation of the final software product proceeds as fol-
lows.

1. Check if the product is valid with respect to the feature
model. In this case the product DFSCCSF is valid.

2. Find all applicable delta modules. In this case the del-
tas modules with an application condition that holds are
File,Client(2),CheckPoint(2),DSchedule
(1) and FSchedule(1).

3. Linearise the application of deltas. The restriction here is
over the delta module FSchedule, which has to follow
theDSchedule delta. In this case, a valid order of appli-
cation is: File, Client(2), CheckPoint(2),
DSchedule(1) and FSchedule(1).

4. Apply the deltas sequentially. We start by applying the
File delta to the Core ABS model. We then apply the
Client(2) delta to the result of the previous applica-
tion, and proceed until all selected delta modules have
been applied.

The resulting software product is the Core ABS program
shown in Listing 8.

4.5 Platform and deployment modelling

ABS, being a modelling language, can be used to express
both functional and non-functional properties of systems. In
distributed systems, an important concept is that of locality,
that is, the physical location of parts of the system. This is
important, among other things, because communication cost
between objects, server load, memory use and runtime behav-
iour depend on the deployment configuration of the system.

ABS offers the notion of deployment components, which
is a way of expressing both the location of a COG and
an abstract view of the resources offered by that location.
A deployment component is created like a normal ABS
object, but has no methods or active behaviour. Hence, its
presence does not influence the functional behaviour of the
model. However, a new COG can be associated with a deploy-
ment component; this models that this part of the system runs
“on” that component.

class System(Map<CP,Map<Fn,Content>> is,
List<Schedule> ss, Map<Id,String> cids) {

Unit run() {
DeploymentComponent s =

new DeploymentComponent("s1",
set[URL("http://s1/"),CPUCapacity(8)]);

[DC:s] new cog ServerImpl(is,ss,keys(cids));

List<Id> keys = keyList(cids);
while (length(keys) > 0) {
Int id = head(keys); keys = tail(keys);

DeploymentComponent c =
new DeploymentComponent(intToString(id),
set[URL(lookup(cids,id)),CPUCapacity(4)]);

[DC:c] new cog ClientImpl(id,sp); }}}

Listing 9 System class

The example shown in Listing 9 is part of the Replication
System case study and defines a class that sets up a runtime
structure modelling the distributed Replication System run-
ning on machines with the specified amount of resources. The
SyncServer runs on a 8-core processor, while each SyncC-
lient requires an 4-core processor.

One of the code generation back-ends provided by the
ABS tool suite is the Maude back-end (c.f. Sect. 5.2). The
Maude back-end supports simulation of models under CPU
resource constraints, where the cost of executing a statement
(as specified by the modeller via annotations) influences the
time that is needed for the simulation to complete. This allows

123

576 P. Y. H. Wong et al.

reasoning about deployment architectures, such as the influ-
ence of a faster machine for a part of the system on the per-
formance of the whole system. More formal descriptions of
this work can be found in [12,41].

5 Tool support for ABS

Figure 6 gives an overview of the current ABS compiler
framework. The ABS compiler takes an ABS model as input,
which includes the feature model and product selection over
the feature model (Sect. 4.1), delta modules (Sect. 4.2), a
product line configuration (Sect. 4.3) as well as a Core ABS
model (Sect. 3).

Two different back-ends translate ABS models into either
Maude [24] or Java, which allow ABS models to be exe-
cuted and analysed on these platforms. The abstract syntax
tree (AST) is the cornerstone of tool integration: it is the
internal representation for ABS models, and tools will typi-
cally reason about one or more such models or produce them.
All tools will work on a common representation of the AST,
which has the following benefits:

– Reduced implementation costs individual tools need not
know about concrete model syntax and type-checking.

– Easier integration the output from one tool can be the
input to another, or several tools can cooperate to pro-
duce results in the same format.

Fig. 6 Overview of the ABS compiler framework

For simplicity Fig. 6 is not exhaustive; for example, it does
not describe our tools for resource analysis or debugging of
type-checked ASTs, discussed in the next section.

5.1 Modelling with the ABS tool suite

The ABS tool suite offers the ABS Eclipse IDE that integrates
most of our ABS-related tools. This plugin can be installed
as a bundle via its Eclipse update site tools.hats-project.eu/
update-site.

The ABS compiler front-end translates textual ABS mod-
els into an internal representation and checks the models for
syntax and semantic errors. This internal representation is
used by the analysis tools described in Sect. 6. The repre-
sentation of the feature model is further used to search valid
combinations of features and to validate the existing prod-
uct selections. The compiler back-end generates code from
the models, targeting some suitable execution or simulation
environment.

In this section we describe how to compile and run ABS
models, how to package ABS projects, and how to perform
unit tests. ABS models are compiled into Maude for simu-
lation and verification purposes, or into Java for integration
with existing systems. Furthermore, we explain how Java
programs generated from ABS models using the Java back-
end can interact with other existing Java libraries using a
ABS-FFI.

5.2 The Maude back-end

The ABS tool suite is able to translate ABS code to the format
of rewriting logic, which is executable on the Maude engine.
The AST of an ABS model is converted into Maude terms
that are then used for simulation by an interpreter written in
Maude. The translation can be done from the command line
or from within Eclipse or Emacs. The rationale behind the
Maude back-end is to have an execution platform that

1. allows for easy inspection of object and process states,
messages and COGs;

2. has an output that is accessible by visualisation and other
tools;

3. is easily extensible with additional semantics, e.g., for
simulating time, resource consumption or runtime vari-
ability;

4. has a formal semantics that is amenable to tool-based
analysis.

The Maude interpreter is designed for dynamic adapta-
tion of ABS models. This will allow to convert Full ABS
models, which include product selections, configurations and
deltas , into Maude terms. The Maude interpreter will sup-
port the runtime reconfiguration of models, that is, the ability

123

tools.hats-project.eu/update-site
tools.hats-project.eu/update-site

Modelling, executing, and analysing using the ABS tool suite 577

to reconfigure a model to represent a different product of a
given SPL, or to dynamically add and remove deltas from a
running product.

The result of running an ABS model on the Maude
interpreter is a plain-text representation of the state of the
entire model comprising classes, futures, COGs and object
instances with their state and process queue. This output can
be used for visualisation or analysis purposes.

5.3 The Java back-end

The Java back-end takes the type checked AST of an ABS
model and produces a collection of Java classes that encode
the ABS model. The rationale behind having a Java back-end
is to have an execution platform for ABS models that:

1. is more scalable to handle the execution and the testing
of very large ABS models;

2. is highly configurable for testing and applying different
scheduling strategies;

3. allows for easy observation and for integration of addi-
tional tools written in standard Java;

4. makes it possible to directly use generated code from
ABS models in systems that are written in standard Java.

In contrast to Maude code (Sect. 5.2), the generated Java
code cannot be easily used for analysis purposes, but it
includes hooks for tracing, scheduling and debugging, and
its execution speed is higher.

For every main block that exists in an ABS model, a cor-
responding Main class that contains a standard Java main
method is generated. Thus, the generated Java code can
be executed like any other standard Java code. The gener-
ated Java code relies on a runtime library (included in the
absfrontend.jar), which must be provided when exe-
cuting the system.

5.4 Foreign function interface

In industrial software development environments, developers
often use external software systems to enhance functional-
ities of software via a set of application programming inter-
faces (APIs). External software systems include third party
libraries and existing in-house software components.

Similarly, the Replication System integrates with external
software systems to provide the following functionalities:

– Real-time job scheduling,
– Distributed execution of SyncClients and SyncServer,
– Communication between SyncClient and SyncServer via

stream sockets,
– Read and write to physical file store,
– Read and write to standard output.

While it is possible to develop standard APIs to realise
these functionalities at the level of ABS, it is not possible,
for example, to anticipate formal specification of existing
third party libraries using ABS. As a result, the ABS tool
suite offers a set of small extensions to the ABS language,
known as the ABS ABS-FFI, that allows ABS modules
to interact with software systems written in other existing
programming languages. In addition, ABS-FFI enables crit-
ical parts of a large software system to be formally analysed
and verified. This can be achieved by modelling critical
parts of the system in ABS and connect the ABS defi-
nitions to the rest of the system via ABS-FFI. Currently
ABS-FFI supports communication between ABS and Java
classes.

interface In { FB<Int> readInt();}
interface Out{ FB<Unit> writeInt(Int s);}

Listing 10 Input and Output

As an example, we show how to use ABS-FFI to enable
stream sockets based communication between SyncClient
and SyncServer. Listing 10 shows two simple interfaces In
and Out for reading an integer from and writing an integer
to a stream.

We provide a base implementation in ABS that models
a stream. This is implemented by ABS classes Input and
Output shown in Listing 11, which uses the class Stream
that encapsulates a List to model the underlying imple-
mentation of a stream. This base implementation is also used
at runtime when no foreign implementation is provided, for
example in the Maude back-end.

module Stream; import * from ABS.FFI;

[Foreign] class Input(In s) implements In {
FB<Int> readInt() { return s.readInt(); }}

[Foreign] class Output(Out s) implements Out {
FB<Unit> writeInt(Int i) {

return s.writeInt(i);}}

class Stream implements In, Out {
List<Data> buffer = Nil;
FB<Int> readInt() {
FB<Int> fb = Error("Cannot read string");
if (isJust(int(last(buffer)))) {
Data e = last(buffer);
buffer = front(buffer);
fb = Result(fromJust(int(nt))); }

return fb; }

FB<Unit> writeInt(Int s) {
buffer = Cons(Int(s),buffer); return OK;}}

Listing 11 The Stream module

123

578 P. Y. H. Wong et al.

The ABS classes Input and Output are annotated
with a Foreign annotation. This means a foreign imple-
mentation can be provided. To provide a foreign imple-
mentation in the Java back-end, we subclass the generated
Java classes Input_c and Output_c and override the
methods whose name have the prefix ffi_, as shown in
Listing 12.

public class Input extends Input_c {
public FB<ABSInteger> ffi_readInt() {

try {
ABSInteger i = fromInt(stream.readInt());
return new FB_Result<ABSInteger>(i);

} catch (IOException e) {
ABSString s = fromString(e.getMessage());
return new FB_Error<ABSInteger>(s); }}}

public class Output extends Output_c {
public FB<ABSUnit> ffi_writeInt(ABSInteger s) {

try {
stream.writeInt(s.toInt());
return new FB_OK<ABSUnit>();

} catch (IOException e) {
ABSString s = fromString(e.getMessage());
return new FB_Error<ABSUnit>(s); }}}

Listing 12 Java Implementation of Input and Output

5.5 Dependency management

At the language level, ABS supports incremental develop-
ment and reuse via a combination of object composition,
module systems and delta modelling. As a result ABS is
very suitable for modelling adaptable and evolvable software
systems such as the Replication System. In order to support
industrial collaborative development processes that focus on
large scale reuse, the ABS tool suite also provides a pack-
age system and a dependency management system for ABS
code. A package system helps aggregating related ABS mod-
ules into a platform-independent artifact for efficient reuse,
while the dependency management system helps building,
deploying, and reusing artifacts.

5.5.1 ABS package

The ABS package format (APK), based on the Java Archive
(Jar) format, is an open source, platform-independent file
format. APK aggregates many (related) ABS modules into
a single unit and represents a single point of reference to
that unit. For example, we package the SyncClient-related
ABS modules containing classes such as ClientImpl and
ClientJobImpl into a APK file client.jar, while
we package the SyncServer-related ABS modules containing
classes such as ServerImpl and AcceptorImpl into a
APK file server.jar.

5.5.2 Package dependency

The Apache Maven tool (http://maven.apache.org) can be
employed to help managing dependencies between FAS com-
ponents as well as dependencies of third party libraries.

Maven is an open source Java-based tool that consists of a
project object model (POM), a set of standards, a project
lifecycle, and an extensible dependency management and
build system via plug-ins. To support industrial collabora-
tive development processes that are characterised by large
scale reuse, the ABS tool suite provides a Java-based plugin
that extends Maven to support the ABS language.

5.6 ABSUnit: unit testing with ABS

During the development of ABS models, unit tests are writ-
ten to quickly validate the correctness of class methods and
detect regressions. A unit test exercises a unit of functionality
of a system under test (SUT), which is usually at the level of
public class methods, and makes assertions about the state
of that system after the unit’s execution.

The ABS tool suite comes with the ABSUnit testing
framework for writing unit tests for ABS. This framework
is based on the original xUnit architecture [21] that inspires
many unit test frameworks such as JUnit (http://junit.org). It
consists of an ABS package and a test runner generator.

The ABS package contains modules that provide the nec-
essary mechanism to define fixtures, test cases, checks and
test suites. ABS annotations are used to declare which clas-
ses define the fixture, which methods define test cases and
which methods define test data.

Listing 13 shows the interface ClientJobTest.
The interface itself is annotated with Fixture, which
denotes that the implementations of this interface are to
be treated as fixtures and test cases. Methods of interface
ClientJobTest are also annotated. Implementations of
methods annotated with Test are to be executed as test
cases while implementations of methods annotated with
DataPoint return a list of test data that serve as input to
test methods that take input of the same type.

type Data = Map<Fn,Maybe<Size>>;
[Fixture] interface ClientJobTest {
[Test] Unit testProcessFile(Data ds);
[DataPoint] List<Data> getDatas();}

Listing 13 Interface ClientJobTest

Listing 14 shows a part of the class Suite that imple-
ments the methods testProcessFile and getDatas
from the interface ClientJobTest. The method
testProcessFile defines a test case on the method
processFile(Fn) of ClientJobImpl, which was
shown in Listing 3 (Page 572).

123

http://maven.apache.org
http://junit.org

Modelling, executing, and analysing using the ABS tool suite 579

interface Job {
Maybe<Size> processFile(Fn id);
Unit setDB(DataBase db);}

[Suite] class TestImpl implements ClientJobTest {
Set<Data> datas = ... ABSAssert aut = ...
Set<Data> getDatas() { return datas }
Job getCJ(DataBase db) { return null; }
Unit testProcessFile(Data ds) {
DataBase db = new cog TestDataBase(ds);
Job job = this.getCJ(db);
List<Fn> ids = keyList(ds);
while (length(ids) > 0) {
Fn i = head(ids); ids = tail(ids);
Maybe<Size> s = job.processFile(i);
Comparator cmp = ...;
aut.assertEquals(cmp); }}}

Listing 14 Defining test cases using ABSUnit

The class TestImpl uses a number of features from
moduleAbsUnit to assist defining test oracles. Specifically,
TestImpl has an instance ABSAssert from AbsUnit
that provides the methodassertEquals(Comparator).
This method takes a comparator (Comparator), which
knows how to compare two instances of a specific kind.

Some well-known problems are usually encountered when
trying to unit-test existing objects, namely inaccessible object
state and, in the case of ABS, uncontrollable active behavior.
Mock objects and test-first development are used to solve
these issues, but the delta mechanism of ABS can addition-
ally be used to make an object testable.

delta JobTestDelta;
modifies class ClientJobImpl adds Job {

removes Unit run();
adds Unit setDB(DataBase db) { this.db = db; }}

modifies class TestImpl {
modifies Job getCJ(DataBase db) {
Job cj = new ClientJobImpl(null);
cj.setDB(db); return cj;}}

Listing 15 Delta module JobTestDelta

Listing 15 shows the delta module JobTestDelta that
is used to modify the SUT such that ClientJobImpl
now implements an additional interface Job that provides
a method setDB(DataBase)) to access the field db.
Moreover the delta also removes run(). The delta mod-
ule JobTestDelta also modifies getCJ(Database)
method such that the method returns an instance of
ClientJobImpl with method’s input db being set to the
instance field db.

The test runner generator of the ABSUnit framework
is built into the ABS front-end. It takes the ABS model
for the SUT and the test suites, parses the files and type
checks the ABS definitions, and returns an ABS module
AbsUnit.TestRunner containing a main block that exe-
cutes all test cases from the test suites concurrently.

6 Visualising, debugging and analysing ABS

This section describes tools for visualising and analysing
ABS models.

6.1 Visualisation and observation

As ABS is a modelling language, it has no built-in I/O sup-
port. When not using the ABS-FFI (cf. Sec. 5.4), executing
an ABS model produces no visual output. Depending on the
used back-end, there are different ways for visualising and
observing ABS model executions. When using the Maude
back-end, it is possible to observe the final (or intermediate)
system states by looking at the Maude representation of the
system. When using the Java back-end, however, there is no
such representation. Instead, the Java back-end offers a flexi-
ble plugin mechanism for writing ABS observers in Java. The
ABS tool suite comes with a number of predefined observ-
ers. For example, theConsoleObserver prints a log trace
to the standard output, which can be used for debugging.
A more interesting observer is the UML sequence diagram
generator. During debugging or execution of the Java pro-
gram generated from an ABS model, The UML sequence
diagram generator can be started from Eclipse as a sepa-
rate application. The generator observes the execution and
generates UML sequence diagrams of the high-level com-
munication between COGs.

6.2 Interactive debugging

The ABS Eclipse plugin provides a debugging perspective
that can be used to interactively debug an ABS system. The
perspective offers several views for observing the current
state of the system, that is, the COGs and the stack trace
of each task. The user has full control over all scheduling
decisions, so that any possible execution path can be simu-
lated. Scheduling decisions can also be stored to a file to be
replayed later.

6.3 Resource analysis: COSTABS

One of the most important characteristics of a program is
its cost or resource consumption. The notion of resource is
generic and it can refer to time, number of executed instruc-
tions, memory usage, calls to a specific method, etc. Resource
analysis [58] aims at automatically bounding the resource
consumption of executing programs statically, that is, with-
out actually having to run them. The results of the analysis are
then valid for any possible input data value. Upper bounds
on the resource consumption provide guarantees that the pro-
gram will never exceed the amount of resources the analysis
infers. Lower bounds estimate the cost in the best case for all
possible executions. They can be used to decide whether it is

123

580 P. Y. H. Wong et al.

worth to execute a task remotely, as the costs of requesting
remote execution can actually be higher than just executing
the task locally.

Research on cost analysis to-date has mainly focused on
sequential programming languages. The COSTA system [1]
is a state-of-the-art cost and termination analyser for sequen-
tial Java (bytecode) programs. A recent extension of COSTA,
called COSTABS [2], extends the functionalities of COSTA
to analyse Core ABS models.3 The resulting extension is
the first static cost analyser for a concurrent and distrib-
uted language. Clearly, cost is often affected by the fact
that concurrent computations can be suspended and resumed
along an execution. This is because the execution state can
change when the processor is released (e.g., class fields can
be modified) and this in turn can influence the associated
cost (e.g., a loop can perform after the change a larger num-
ber of iterations). The techniques implemented in COSTABS
for handling such concurrent behaviour of ABS models are
described in detail in [2].

6.3.1 Cost models

The user of COSTABS must first select the cost model of
interest. The cost model determines the type of resource,
among the following ones:

– Termination it is the simplest cost model which simply
ensures that the resource consumption is bounded, but
does not provide a concrete bound.

– Steps it tries to approximate the number of executed
instructions, including both instructions of the impera-
tive and the functional part of the model.

– Memory the memory consumption estimates the size of
the terms constructed in the functional part of the lan-
guage. This is because objects are meant to be the con-
currency units while the data structures are constructed
using terms.

– Objects it counts the total number of objects created along
the execution. This provides an indication of the amount
of parallelism that might be achieved.

– Task level it estimates the number of tasks that are
spawned along an execution. This can be useful for find-
ing optimal deployment configurations.

6.3.2 Cost centres

The next option of COSTABS is whether the cost is split into
cost centres. Cost centres represent the different distributed
components of the system and allow us to obtain the cost
per component rather than a single cost expression which
accumulates the resource consumption of all components, as

3 The extension to Full ABS is currently under development.

in traditional analysers for sequential languages. The current
implementation of COSTABS assumes that objects of the
same type belong to the same cost centre, that is, they share
the processor. In future work, we plan to automatically infer
to which component each object belongs and then assign the
computational cost performed on each object to its corre-
sponding cost centre.

There is a third option which allows the user to choose the
size abstraction used in the analysis, which can either be Term
Size or Term Depth. We do not go into the details of these
two options here; interested readers can find out more in [2].
Once all options have been set up, we can proceed to analyse
the selected method (or function). COSTABS analyses it as
well as all code reachable from it.

As an example, let us show the results that COST-
ABS produces on a fragment of the Replication System
case study. Recall that the processFile method of
ClientJobImpl shown in Listing 3 on Page 572.

def Bool hasf(Dir d, Fn id) =
case snd(d) { Entry(e) => isJust(ffind(e,id);};

def Maybe<Either<File,Dir>> ffind(Entry f,Fn id)
=

case contains(keys(f),id) {
True => case lookup(f,id) {
Cnt(s) => mvalue(True,id,Cnt(s));
Entry(e) => mvalue(False,id,Entry(e)); };
False => case f {
InsertAssoc(Pair(i,Cnt(_)),fm) =>

ffind(fm,id);
InsertAssoc(Pair(i,Entry(g)),fm) =>
case ffind(g,id) {
Nothing => ffind(fm,id);
r => qualify(r,i); };

EmptyMap => Nothing; }; };

Listing 16 Implementation of function hasf

We want to analyse the method hasFile of DataBase
that is asynchronously invoked by processFile. The
implementation of the method hasFile is provided by the
class DataBaseImpl. The method hasFile takes a file
identifier i of type Fn and checks if there exists a file with
identifier i in the database. The Replication System ABS
model abstracts the physical implementation of a data base
using ABS algebraic data types. Specifically, the method
hasFile evaluates the expression hasf(r,i), where r
is a Dir value representing the top level directory of the
client’s file system. Listing 16 shows the definition of hasf.

After selecting the Instructions cost model, enabling the
Cost centres option and using the Term size abstraction,
COSTABS infers that the number of executed instructions is
asymptotically quadratic on the size of the directory which
is traversed, that is, O(Dir2). The upper bound is quadratic
because in function ffind invoked from hasf (which is
in turn invoked from method hasFile), we perform two

123

Modelling, executing, and analysing using the ABS tool suite 581

recursive calls to ffind which, as expected, lead to a qua-
dratic complexity.

Assuming that the option cost centre is enabled, as no
computation is performed when executing the analysed
method on objects of types DeploymentComponent or
main, their cost is zero. In the cost centre for objects of
type ClientJobImp, we have performed just 4 computa-
tion steps (which are due to the steps executed in method
hasFile of DataBase). The remaining cost is performed
in an object of type DataBaseImpl, as it appears at the
bottom.

Our example has shown that after selecting a method for
analysis, in order to approximate its cost, COSTABS analy-
ses the method as well as all methods and functions invoked
from it in a uniform and precise way.

6.3.3 Final remarks

The results obtained by COSTABS have been used to
strengthen the results obtained by the Maude simulator [12].
The main idea here is to analyse the functional part of the
model statically by using COSTABS. As the upper bounds
obtained consider the worst-case cost of the execution, they
strengthen the results obtained by the simulator which runs
the concurrent part of the model for a particular input.
Besides, we have also studied [4] the automatic generation
of proofs by using the Key verification tool, which formally
verifies that the results obtained by the COSTABS tool are
correct (since the implementation could contain bugs).

The resource analysis currently is not able to efficiently
handle variability. Each extension requires a whole re-anal-
ysis of the code. Incremental resource analysis [8] aims at
re-analysing only the fragments of the code whose resource
consumption is affected by the variation, instead of having
to re-analyse the whole program. However, the extension of
incremental resource analysis to the concurrent objects para-
digm still has not been studied, and it is subject to future work.

Also, we are studying the use of the results gathered by a
may-happen-in-parallel analysis [11] in order to improve the
bounds obtained by COSTABS. In particular, if we know that
two methods cannot be executing in parallel, we do not have
to consider potential interleaving in their executions. This
can greatly improve the quality of the bounds obtained by
COSTABS since otherwise all potential interleaving (maybe
useless) need to be considered by the analysis.

7 Discussion

In this section we discuss how the ABS language and the
ABS tool suite fulfil the requirements of usability, reducing
manual effort and supporting integrated environments. We
also provide suggestions where improvements can be made.

Table 1 Metrics about case study

Metrics Java ABS

No. of lines of code 6,400 5,000

No. of classes 44 40

No. of interfaces 2 43

No. of user-defined functions N/A 80

No. of user-defined data types N/A 17

No. of features N/A 15

No. of deltas N/A 15

No. of products N/A 96

7.1 ABS language

The case study described in this paper considered the Repli-
cation System, which is part of the Fredhopper Access Server
(FAS). The current Java implementation of FAS has over
150,000 lines of code.

Table 1 shows some metrics about the existing implemen-
tation and the ABS model of the Replication System. In par-
ticular, with 15 features, the Replication System generates 96
products (if feature attributes are ignored). We see that the
number of lines of the existing Java implementation and of the
ABS model are not very different. This is because the ABS
model describes additional model-level information such as
deployment components and simulations of external inputs,
which the Java implementation lacks. Also, the ABS model
includes scheduling information, file systems, and data bases,
while the Java implementation leverages third party libraries
and the Java API. These additional model-level information
accounts for over 1,000 lines of code.

On the other hand, some initial results from another case
study (currently under review for publication) point to the
effects of the variability constructs of ABS on existing sys-
tems. In that case study, an existing model written in Creol
[40] is being re-written using ABS. The original system
exhibits feature variability along multiple axes and uses a pre-
processor to extract a desired product from common code in a
somewhat ad-hoc fashion. Feature selection is implemented
via setting pre-processor values and #ifdef constructs in
the code. The corresponding ABS model (currently a work in
progress, but mostly feature-complete) is about half the size
of the old model, as measured in lines of code, and the code
is subjectively easier to understand since different features
are separated cleanly.

7.1.1 Variability modelling

We consider the usability aspect of the ABS language by
considering its practical expressiveness in modelling prob-
lem space variability.

123

582 P. Y. H. Wong et al.

ABS offers μTVL for modelling variability at a design
level. μTVL was used to specify the feature model of the
Replication System. The language provides a compositional
hierarchical view of the dependencies between features in
terms of sub-feature relationships, optional and mandatory
selections, and constraints between features and attribute
specifications of features. We found that μTVL provides
the necessary expressiveness to model the design space var-
iability of the Replication System. Using the ABS product
selection language, we could precisely express the feature
selection for each relevant product. In comparison, the exist-
ing Java implementation does not have an explicit, well-
defined feature model that captures the relationships and
constraints between system features. Features are informally
described in textual documents or declared through Java pref-
erence files. Unlike the ABS model, features are not modelled
explicitly and compositionally. As a result, we had to man-
ually harvest parts of the functionalities of the Replication
System and translate these functionalities into features.

At the object behaviour level, variability modeling in ABS
relies on delta modules, as explained in Sect. 4.2. The unit of
variability at that level a method, that is, it is not possible to
selectively modify parts of a method. In practice, this level
was not found to be too restrictive if the code followed good
object-oriented design criteria. The need to change only a part
of a method usually indicated that a method had more than
one purpose or mixed different abstraction levels. Apply-
ing the standard extract method refactoring technique led
to both cleaner code and to a delta that could be cleanly
applied.

7.1.2 Behavioural modelling

We consider usability aspects of the ABS language by con-
sidering its practical expressiveness in modelling solution
space variability:

Expressiveness The Delta modelling language offers the
expressiveness to specify variability at the level of object
behaviour. Together with product line configuration, prod-
uct selection and feature modelling facilities, the ABS
language offers a holistic approach to expressing variable
aspects of a program as features and relating them to object
behaviour.
Configuration We were able to use ABS to incrementally
and compositionally develop the Replication System that
yields members that are well-typed and valid with respect
to the system’s variability. We were able to systematically
and in a top-down fashion implement all features in the
feature model to obtain the Replication System. The exist-
ing Java implementation provides no explicit relationships
between features. Configuration and selection of features
are defined in terms of Java preference data. Moreover,

preference data only has an explicit connection to qualified
Java packages and class names, and not to object behav-
iour. As a result it is difficult to ensure that all combination
of features are considered every time a change has to be
made to the implementation.
Modularity The ABS module system allowed us to model
both the commonality and the variability of the Replication
System separately and incrementally. As future work we
aim to perform compositional analysis on delta definitions.
Reusability The delta modelling language provides a
mechanism to express variability at the level of behaviour.
Together with functional and object composition, the ABS
language thus provides a wide range of mechanisms for
code reuse. In particular, the combination of object compo-
sition and delta modelling allows us to achieve code reus-
ability similar to that of class inheritance. In addition, the
ABS module system also allows more generic definitions
such as data types and functions to be reused across the
ABS model of the product line. The existing Java imple-
mentation achieves code reuse via class inheritance and
object compositions.
Testability Using the delta modelling language and the
ABSUnit framework, we were able to define unit tests
in ABS. We were able to systematically modify existing
methods of the SUT in a type safe manner, and add setter
methods to obtain the initial state that satisfy the precon-
dition of the method to be tested. Moreover, as the objects
in ABS can only be typed by their interfaces, we were also
able to construct mock implementations as inputs for test
cases. In the existing Java implementation, neither of these
are possible in general. It is not possible to modify final
or private methods in a type safe manner4. Also objects
may be typed by their classes and this makes mock object
construction complex and some time impossible.

7.2 ABS front-end

7.2.1 Type checking

We have found that on-the-fly type checking provided by the
combination of the ABS type checker and the ABS eclipse
plugin removes the need to manually determine type correct-
ness of our ABS model. This reduces manual effort consid-
erably.

7.2.2 Location type checking

We use the ABS location type checker through the Eclipse
plugin to perform on-the-fly type checking if our model erro-
neously defines synchronous method invocations between

4 Unsafe modification of final or private methods in Java can be
achieved using the Java Reflection API.

123

Modelling, executing, and analysing using the ABS tool suite 583

objects residing in separate concurrent object groups. This
reduces manual effort considerably.

7.2.3 Product selection

We have found that the product selection allows us to gener-
ate products from the Replication System through the Eclipse
plugin run configurations. Product selection reduces manual
effort as it supports automatic application of delta modules to
ABS models. The ABS Eclipse plugin conveniently provides
the generation facility at the same level as the run configura-
tion of Eclipse Java Development Tool. Moreover, the current
ABS front-end provides information about the sequence of
deltas applied during product selections, which helps debug-
ging and other analyses.

7.2.4 Package dependency

We have found that the combination of Apache Maven, ABS
package system and tight Eclipse integrations eases the code
management of the Replication System ABS model as the
size of the model increases. Moreover, it enables us to pull
other ABS packages, such as those for ABS-FFI and ABS-
Unit, so that they can be used in the case study. It also enables
us to conduct our case study collaboratively.

7.2.5 Test runner generation

We have found the automatic test runner generation facility
indispensable for quickly simulating concurrent unit tests.
These are specified using ABSUnit in the same manner as
with other unit testing frameworks for sequential testing,
such as JUnit. Without the test runner generator, we would
have to write a test runner for every combination of unit test
cases we wanted to simulate.

7.3 Back-ends

7.3.1 Maude back-end

The Maude back-end is very useful for debugging runtime
error such as deadlocking. This reduces manual effort con-
siderably as it allows us to investigate the complete termi-
nating state of a Maude simulation. This would be extremely
difficult for the existing Java implementation as there is no
simulation support and the distributed setting in a real-time
execution makes it hard to access the complete terminating
state.

7.3.2 Java back-end

The Java back-end generates Java source code from ABS
models that can be executed in real time against physical

platforms. We have found that the Java back-end provides
the mechanism to specify choices in the presence of non-
determinism during the execution of the generated Java code
using the Eclipse debugger. This is useful because we are
able to explore many more execution paths, which help to
reveal unforeseen errors in the models.

7.3.3 Foreign function interface

We have used the combination of the Java back-end and the
ABS-FFI to simulate the Replication System in a distributed
setting. The existing implementation of the Replication Sys-
tem is deployed according to FAS deployment architecture,
and communication between SyncClient and SyncServer is
via IP sockets. By using ABS-FFI we need not implement
I/O and IP sockets directly at the level of ABS, but rather use
the existing support provided by Java.

7.4 Eclipse plugin

We have found that the ABS Eclipse plugin dramatically
increases the usability of the tools provided by the ABS tool
suite for modelling. We were able to leverage heavily on
the syntax highlighting, content completion and code nav-
igation provided by the ABS editing perspective. We were
also able to modularly organise our ABS model into sep-
arate ABS artifacts and use the Maven support for ABS
provided by the ABS Eclipse plugin to connect these arti-
facts. This allowed us to achieve a much better separation
of concerns within the ABS model. We believe the combi-
nation of this Eclipse plugin and Maven support increases
ABS’s applicability in the industry where collaborative soft-
ware development is prevalent and third party libraries are
heavily used.

7.5 Debugging and visualisation

We have used the ABS debugging perspective provided by
the ABS Eclipse plugin to step through Java execution of the
Replication System ABS model. We have found it particu-
larly useful when debugging failed unit tests defined using the
ABSUnit framework. Unlike the Maude simulation, using
the debugging perspective we were able to pinpoint the cause
of failed tests much quicker. Using the debugger, we were
also able to record and replay the failed test run to ensure
that the regression is fixed.

7.6 Resource analysis

We have found that resource analyses using COSTABS gave
us a better idea about the complexity of our model. For exam-
ple, the method hasFile analysed in Sect. 6.3 is a method
which is invoked for every file entry of a replication item.

123

584 P. Y. H. Wong et al.

This is a hot spot and has a quadratic complexity. These
results will allow us to (1) optimise our ABS model in con-
tinuation of the case study, (2) monitor changes to resource
bounds during the evolution of the ABS model (changes over
time), and (3) utilise the upper bound information to specify
resource usage when investigating the Replication System’s
underlying platform variability such as those introduced in
Sect. 4.5.

7.7 Summary

In this section we have provided a discussion on how the
ABS language and the ABS tool suite satisfy the require-
ments of usability, manual effort reduction and integrated
environments support.

8 Related work

The idea of using formal models, written down in formal
modelling languages, to describe software systems, goes
back a long time. One of the earliest examples of such a for-
mal language is VDM [22], which was originally (then under
the name VDL) developed in order to specify the semantics
of the IBM PL/I language and compiler [18]. VDM proved
to be useful beyond its original intended field and is still in
active use [44] and being extended with object-oriented and
real-time features [56]. Other formal modelling languages
in a similar, state-based style as ABS are Z [54] and B [6],
respectively, their object-oriented extensions.

Due to language features like asynchronous method calls
and COGs, ABS has a stronger focus on modelling distrib-
uted and parallel systems than the above languages. VDM++,
for example, implements a conventional threading model
where more than one process can execute within an object at
a time, relying on mutex annotations on atomic operations to
manually prevent race conditions. VDM-RT [36] adds static
deployment scenarios and asynchronous calls, albeit with-
out return values. ABS processes, in contrast, never leave the
scope of their object, create new processes upon procedure
calls, and synchronise with each other via explicit synchroni-
sation points. Hence, ABS methods are not necessarily exe-
cuted atomically, but processes cooperate within an object in
a transparent way that is obvious from the program source.
Seen from this perspective, the semantics of ABS are nearer
to the Actor model [33] and to process calculi like CSP [35]
and the Pi-calculus [45] (the asynchronous messages of ABS
can be implemented via processes in these calculi) than to lan-
guages derived from a sequential programming model. Due
to this simpler concurrency model, proof theories for ABS
(and its precursor Creol [40], which shares the same con-
currency model) exist [29,31] and have been prototypically

implemented [9,10] to allow verification of multi-threaded
ABS programs.

Although ABS is not currently used as a language for
application-level programming, Erlang [16] (itself inspired
by the Actor model) has shown that distributed systems con-
sisting of large numbers of active, message-passing entities
can be used at scale. ABS objects conceptually have the same
role as Erlang processes, once the well-known problems of
distributed systems [60] can be addressed in ABS—work
towards a distributed exception handling and recovery sys-
tem is outlined in [39].

Most existing approaches to express variability in model-
ling and implementation languages can be classified into two
main categories [42,55]: annotative and compositional.

Annotative approaches consider one model representing
all products of the product line, implementing features as
some form of annotations in the source code. Variant anno-
tations, e.g., using UML stereotypes in UML models [32] or
presence conditions [27], define which parts of the model
have to be removed to derive a concrete product model.
The orthogonal variability model (OVM) proposed in Pohl
et al. [48] models the variability of product line artifacts in
a separate model where links to the artifact model take the
place of annotations. Similarly, decision maps in KobrA [5]
define which parts of the product artifacts have to be mod-
ified for certain products. The architecture description lan-
guage EAST-ADL2 presents a compositional approach [50],
aligning features closely with the software architecture of the
product line (but the need to break modularity in the feature
model is acknowledged in the paper).

Compositional approaches, such as delta modelling [51],
associate distinct model fragments or modules with product
features. These distinct entities are composed for a particular
feature configuration. A prominent example of this approach
is AHEAD [23], which can be applied on the design as well as
on the implementation level. In AHEAD, a product is built by
stepwise refinement of a base module with a sequence of fea-
ture modules. Design-level models can also be constructed
using Aspect-oriented programming techniques [37,47,55].

Delta modelling has similarities with Aspect-oriented pro-
gramming as a concept of organising the various features
and concerns of a software system. Aspects provide a finer-
grained mechanism to arbitrarily insert code into existing
methods than delta modeling, whereas deltas support a more
extensive but coarser-grained mechanism, where classes and
methods can be added, modified and even removed. More-
over, the feature and delta modelling facilities of ABS pro-
vide a mechanism to model software product lines following
established principles. A more detailed comparison of the
usage of aspects and feature models has been presented by
Apel and Batory [3].

In feature-oriented software development (FOSD) [23],
features are considered on the linguistic level by feature

123

Modelling, executing, and analysing using the ABS tool suite 585

modules. Apart from Jak [23], there are various other lan-
guages using the feature-oriented paradigm, such as Featu-
reC++ [15], FeatureFST [13], or Prehofer’s feature-oriented
Java extension [49]. In [13,46], combinations of feature
modules and aspects are considered. In [14], an algebraic rep-
resentation of FOSD is presented. Feature Alloy [17] instan-
tiates feature-oriented concepts for the formal specification
language Alloy.

9 Conclusion

This paper presented the ABS language and its tool suite for
modelling distributed, adaptable, object-oriented software
systems. ABS is a statically typed, multi-paradigm language
with functional and object-oriented features. Its concurrency
model is based on concurrent object groups (COGs) which
form the unit of distribution in ABS. ABS has built-in support
for software product line engineering. Delta modules allow
the modeller to express variability on the ABS level. The
feature model of a product line is described using the μTVL
language. Product line configuration and product selection
then connect the feature model to the delta model to gain a
fully automatic way for generating ABS products from fea-
ture models.

The ABS language is supported by the ABS tool suite that
offers a comprehensive set of tools for developing, executing,
testing, debugging, analysing and visualising ABS models.
This includes a standard compiler front-end for parsing and
type-checking ABS models. This front-end is integrated into
an Eclipse plugin that supports standard features like syn-
tax highlighting, error reporting, outline views, auto-com-
pletion and a debugging perspective. In addition, the plugin
supports the execution of other ABS tools directly from the
IDE. There is no direct interpreter for the ABS language;
instead ABS models are translated to other languages like
Java, Scala and Maude. Unit testing in ABS is supported by a
unit testing framework based on annotations. ABS can inter-
act with software modules written in other languages (cur-
rently only Java) by using the ABS-FFI of ABS (ABS-FFI).
ABS models can be packed into ABS packages for manag-
ing module dependencies by using Maven. This is especially
interesting in the context of software product lines where
dependencies between different product artifacts can be auto-
matically managed. Product line engineering is further sup-
ported by tools for automatic consistency checking of fea-
ture models written in μTVL and product generation from
product line configurations and product selections. The ABS
language and its tools are being developed in tandem with
several case studies of which the largest one, the Replica-
tion System, is presented in this paper. The language and
the tools are thus constantly evaluated and improved when
needed.

Acknowledgments We gratefully thank the anonymous referees for
many useful comments and suggestions that greatly helped to improve
this article. This work was funded in part by the Information and Com-
munication Technologies program of the European Commission, Future
and Emerging Technologies (FET), under the ICT-231620 HATS pro-
ject, by the Spanish Ministry of Science and Innovation (MICINN)
under the TIN-2008-05624 and PRI-AIBDE-2011-0900 projects, by
UCM-BSCH-GR35/10-A-910502 grant and by the Madrid Regional
Government under the S2009TIC-1465 PROMETIDOS-CM project.

Appendix A

Glossary

μTVL See Micro textual variability language.
ABS Abstract Behavioral Specification language. An exe-

cutable class-based, concurrent, object-oriented model-
ing language based on Creol, created for the HATS
project.

ABS-FFI See ABS foreign function interface.
ABS foreign function interface A set of small extensions

to the ABS language to allows ABS models to interact
with programs written in other existing programming lan-
guages such as Java.

ABS package The ABS package, based on the Java Archive
(Jar) format, is an open source, platform-independent file
format. APK aggregates many (related) ABS modules
into a single unit and represents a single point of refer-
ence to that unit.

ABSUnit A unit testing framework for defining, managing
and executing unit tests for ABS models.

APK See ABS package.
Application condition A logical expression over features

and feature attributes, that evaluates to a Boolean value
with respect to a given feature selection.

COG See Concurrent object group.
Concurrent object group A unit of concurrency in ABS.

Consists of one or more objects. Within a cog, only one
process can be active at any one time.

Core A set of classes to which a delta is applied, resulting
in a new core.

Core ABS The behavioural functional and object-oriented
core of the ABS modeling language

Cost analysis Static analysis techniques which over approx-
imates the cost of executing a program for any value of
its input data.

Cost center A cost center represents a distributed compo-
nent to which its cost will be assigned.

Cost model A cost model defines the type of resource of
interest (e.g., time, steps, memory).

COSTABS A cost and termination analyser for ABS pro-
grams.

123

586 P. Y. H. Wong et al.

Delta A specification of modifications to core ABS classes
and interfaces.

Delta module see Delta.
Deployment The act of running a real system on a machine

or group of machines.
Deployment component A model of a location able to exe-

cute (parts) of a system. Deployment components can
be modelled with meta data describing the amount of
resources (e.g., CPU, memory) available to COGs exe-
cuting on a specific deployment component.

Deployment modelling The act of modelling non-functional
properties of a system, specifically the location of parts
of a system and the resources available at these locations.

FAS See Fredhopper access server
Fredhopper access server Fredhopper access server is

a component-based, service-oriented and server-based
software system, which provides search and merchandis-
ing IT services to e-Commerce companies such as large
catalog traders, travel booking, managers of classified,
etc.

Feature A characteristic of a software system that is relevant
to some stakeholder in the development project

Feature attribute A way to characterise a feature more pre-
cisely. A feature attribute has a type, which defines the
set of values it can assume

Feature model A model that specifies the feature combina-
tion that are valid

Feature selection A set of features
Full ABS Core ABS language plus extensions supporting

SPL engineering
Future See Future variable.
Future variable A handle on an ABS process, also the value

of an asynchronous method call expression. Futures are
used to synchronise with and get the result from a pro-
cess. Futures are first-class values and can be passed as
parameters.

Live environment A live environment in the FAS deploy-
ment architecture is responsible for processing queries
from client web applications via the Web Services tech-
nology.

Lower bound Under-approximation of the best case cost
Maven An open source Java-based tool that consists of a

project object model (POM), a set of standards, a project
lifecycle and extensible dependency management, and
build systems via plug-ins.

Maude A rewriting logic interpreter and toolkit that is used
to specify the semantics of ABS and to simulate execu-
tion of ABS models.

Micro textual variability language The HATS Variability
Modeling Language that expresses variability on the level
of feature models.

Modifier A fragment of a delta that specifies how a class,
method, or field should be modified

Module A language construct in ABS that introduces a
name space. Modules define the scope of unqualified
identifiers.

Process A unit of execution in ABS. Processes are created
in response to asynchronous method calls and run in the
scope of one object.

Product A single software system
Product selection A set of products that is of particular inter-

est to the developer
Replication system The Replication System in the FAS

deployment architecture synchronises the configurations
and data from the staging environment to multiple live
environments. Specifically the Replication System con-
sists of the synchronisation server (SyncServer) and one
or more clients (SyncClient).

Resource analysis See Cost analysis
Scheduling point A location in the source code where a COG

is allowed to suspend the running process and choose
another enabled process to run. Scheduling points can be
unconditional (via the suspend statement) or conditional
(via the await statement).

SPL See Software product line
SPL configuration A set of directives associating features

with delta modules
Software product line A set of software systems that share

some commonality, but also differ in some well-defined
ways. The systems of an SPL are developed together from
the same code base.

Staging environment A staging environment in the FAS
deployment architecture is responsible for receiving cli-
ent data updates in XML format, indexing the XML, and
distributing the resulting indices across all live environ-
ments using the Replication System. See Replication Sys-
tem.

Upper bound Over-approximation of the worst case cost

References

1. Albert, E., Arenas, P., Genaim, S., Puebla, G.n, Zanardini, D.:
COSTA: Design and Implementation of a Cost and Termination
Analyzer for Java Bytecode. In: Proceedings of FMCO’07, vol.
5382 LNCS, pp. 113–133. Springer, Berlin (2008)

2. Albert, E., Arenas, P., Genaim, S., Gómez-Zamalloa, M., Puebla,
G.: Cost analysis of concurrent OO programs. In: The 9th
Asian Symposium on Programming Languages and Systems
(APLAS’11). Springer, Berlin, December (2011) (to appear)

3. Apel, S., Batory, D.: When to use features and aspects? A case
study. In: International Conference on Generative Programming
and Component Engineering, GPCE ’06, pp. 59–68. ACM Press
(2006)

4. Albert, E., Bubel, R., Genaim, S., Hähnle, R., Puebla, G., Román-
Díez, G.: Verified resource guarantees using COSTA and KeY. In:
ACM SIGPLAN Workshop on Partial Evaluation and Semantics-
based Program Manipulation (PEPM’11). ACM Press (2011)

5. Atkinson, C., Bayer, J., Muthig, D.: Component-based product line
development: The KobrA approach. In: SPLC (2000)

123

Modelling, executing, and analysing using the ABS tool suite 587

6. Abrial, J.-R.: The B-Book—Assigning programs to mean-
ings. Cambridge University Press, Cambridge (2005)

7. The ABS language specification. (2011) http://tools.hats-project.
eu/download/absrefmanual.pdf

8. Albert, E., Correas, J., Puebla, G., Román-Díez, G.: Incremental
resource usage analysis. In: ACM SIGPLAN Workshop on Partial
Evaluation and Program Manipulation (PEPM 2012), pp. 25–34.
ACM Press, January 2012

9. Ahrendt, W., Dylla, M.: A verification system for distributed
objects with asynchronous method calls. In: Breitman, K., Caval-
canti, A. (eds.) Formal methods and software engineering, interna-
tional conference on formal engineering methods (ICFEM’09), vol.
5885, Lecture Notes in Computer Science, pp. 387–406. Springer,
Berlin (2009)

10. Ahrendt, W., Dylla, M.: A system for compositional verification of
asynchronous objects. Sci. Comput. Program. (2011)

11. Albert, E., Flores-Montoya, A., Genaim, S.: Analysis of May-
Happen-in-parallel in concurrent objects. In: 14th IFIP WG 6.1
International Conference FMOODS 2012 and 32nd IFIP WG 6.1
International Conference FORTE 2012, Stockholm, Sweden, pp.
13–16 June, 2012, Proceedings, IFIP-LNCS. Springer, June 2012

12. Albert, E., Genaim, S., Gómez-Zamalloa, S., Johnsen, E.B.,
Schlatte, R., Tapia Tarifa, S.L.: Simulating concurrent behaviors
with worst-case cost bounds. In: Butler, M., Schulte, W. (eds.)
Proceedings of 17th International Symposium on Formal Meth-
ods (FM 2011), vol. 6664, Lecture Notes in Computer Science,
pp. 353–368. Springer, Berlin (2011)

13. Apel, S., Lengauer, C.: Superimposition: A language-independent
approach to software composition. In: Software Composition, vol.
4954, Lecture Notes in Computer Science, pp. 20–35. Springer,
Berlin (2008)

14. Apel, S., Lengauer, C., Möller, B., Kästner, C.: An algebraic foun-
dation for automatic feature-based program synthesis. Sci. Comput.
Program. (SCP) 75(11), 1022–1047 (2010)

15. Apel, S., Leich, T., Rosenmüller, M., Saake, G.: FeatureC++: On
the symbiosis of feature-oriented and aspect-oriented program-
ming. In: GPCE, vol. 3676, Lecture Notes in Computer Science,
pp. 125–140. Springer, Berlin (2005)

16. Armstrong, J.: Erlang. Commun. ACM, 53(9), 68–75 (2010)
17. Apel, S., Scholz, W., Lengauer, C., Kästner, C.: Detecting Depen-

dences and interactions in feature-oriented design. In: IEEE Inter-
national Symposium on Software Reliability Engineering (ISSRE)
(2010)

18. Bekic, H., Bjørner, D., Henhapl, W., Jones, C.B., Lucas, P. : On
the formal definition of a PL/I subset (selected parts). In: Jones,
C.B. (ed.) Programming Languages and Their Definition, vol. 177,
Lecture Notes in Computer Science, pp. 107–155. Springer, Berlin
(1984)

19. Batory, D., Benavides, D., Ruiz-Cortes, A.: Automated analysis
of feature models: challenges ahead. Commun. ACM 49(12), 45–
47 (2006)

20. Boucher, Q., Classen, A., Faber, P., Heymans, P.: Introducing
TVL, a text-based feature modelling language. In: Proceedings
of the Fourth International Workshop on Variability Modelling of
Software-intensive Systems (VaMoS’10), Linz, Austria, January
27–29, pp. 159–162. University of Duisburg-Essen, January 2010

21. Beck, K.: Simple smalltalk testing: with patterns. Smalltalk Report,
4(3), October 1994

22. Bjørner, D., Jones, C.B. (eds.) The Vienna Development Method:
The Meta- Language, vol. 61, Lecture Notes in Computer Science,
Springer, Berlin (1978)

23. Batory, D.S., Sarvela, J.N., Rauschmayer, Axel.: Scaling step-wise
refinement. IEEE Trans. Softw. Eng. 30(6) (2004)

24. Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N.,
Meseguer, J., Talcott, C.L. (eds.): All About Maude—A high-
performance logical framework, how to specify, program and verify

systems in rewriting logic, vol. 4350, Lecture Notes in Computer
Science. Springer, Berlin (2007)

25. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Puebla, G.,
Weitzel, B., Wong P.Y.H.: HATS: A Formal software product line
engineering methodology. In: Proceedings of International Work-
shop on Formal Methods in Software Product Line Engineering,
September 2010

26. Clarke, D., Diakov, N., Hähnle, R., Johnsen, E.B., Schaefer, I.,
Schäfer, J., Schlatte, R., Wong, P.Y.H.: Modeling Spatial and Tem-
poral Variability with the HATS Abstract Behavioral Modeling
Language. In: Bernardo, M., Issarny, V. (eds.) Formal methods
for eternal networked software systems, vol. 6659, Lecture Notes
in Computer Science, pp. 417–457. Springer, Berlin (2011)

27. Czarnecki, K., Helsen, S., Eisenecker, U.: Formalizing cardinality-
based feature models and their specialization. Softw. Process
Improv. Pract. 10(1), 7–29 (2005)

28. Clarke, D., Muschevici, R., Proença, J., Schaefer, I., Schlatte, R.:
Variability modelling in the ABS language. In: Formal Methods
for Components and Objects, vol. 6957 of LNCS. Springer, Berlin
(2011)

29. Din, C.C., Dovland, J., Johnsen, E.B., Owe, O.: Observable behav-
ior of distributed systems: Component reasoning for concurrent
objects. J. Logic Algebr. Program. (2012) (to appear)

30. Requirement Elicitation, August (2009) Deliverable 5.1 of project
FP7-231620 (HATS). http://www.hats-project.eu

31. Dovland, J., Johnsen, E.B., Owe, O. : Observable behav-
ior of dynamic systems: Component reasoning for concurrent
objects. In: Goldin, D., Arbab, F. (eds.) Proceedings of Workshop
on the Foundations of Interactive Computation (FInCo’07) vol. 203
of Electronic Notes in Theoretical Computer Science., pp. 19–34.
Elsevier, Amsterdam (2008)

32. Gomaa, Hassan: Designing Software Product Lines with
UML. Addison Wesley, Boston (2004)

33. Hewitt, C., Bishop, P., Steiger, R.: A universal modular actor for-
malism for artificial intelligence. In: IJCAI, pp. 235–245 (1973)

34. Helvensteijn, M., Muschevici, R., Wong, P.Y.H. : Delta model-
ing in practice: a Fredhopper case study. In: Eisenecker, U.W.,
Apel, S., Gnesi, S. (eds.) International Workshop on Variability
Modelling of Software-Intensive Systems (VaMoS)., pp. 139–148.
ACM Press, New York (2012)

35. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall, Englewood Cliffs (1985)

36. Hooman, J., Verhoef, M. : Formal semantics of a vdm extension
for distributed embedded systems. In: Dams, D., Hannemann, U.,
Steffen, M. (eds.) Concurrency, Compositionality, and Correct-
ness, vol. 5930, Lecture Notes in Computer Science, pp. 142–161.
Springer, BErlin (2010)

37. Heidenreich, F., Wende, C.: Bridging the gap between fea-
tures and models. In: Aspect-Oriented Product Line Engineering
(AOPLE’07) (2007)

38. Johnsen, E.B., Hähnle, R., Schäfer, J., Schlatte, R., Steffen, M.:
ABS: A core language for abstract behavioral specification. In:
Aichernig B., de Boer F.S., Bonsangue M.M. (eds.) Proceedings
of 9th International Symposium on Formal Methods for Compo-
nents and Objects (FMCO 2010), vol. 6957 of LNCS, pp. 142–164.
Springer, Berlin (2011)

39. Johnsen, E. B., Lanese, I., Zavattaro, G.: Fault in the future.
In: Meuter W.D., Roman G.-C. (eds.) Proceedings of 13th Inter-
national Conference on Coordination Models and Languages
(COORDINATION 2011), vol. 6721, Lecture Notes in Computer
Science, pp. 1–15. Springer, Berlin (2011)

40. Johnsen, E.B., Owe, O.: An asynchronous communication model
for distributed concurrent objects. Softw. Syst. Model. 6(1), 35–
58 (2007)

41. Johnsen, E.B., Owe, O., Schlatte, R., Tapia Tarifa, S.L.: Vali-
dating timed models of deployment components with parametric

123

http://tools.hats-project.eu/download/absrefmanual.pdf
http://tools.hats-project.eu/download/absrefmanual.pdf
http://www.hats-project.eu

588 P. Y. H. Wong et al.

concurrency. In: Beckert, B., Marché, C. (eds.) Proceedings
of International Conference on Formal Verification of Object-
Oriented Software (FoVeOOS’10), vol. 6528 Lecture Notes in
Computer Science, pp. 46–60. Springer, Berlin (2011)

42. Kästner, C., Apel, S., Kuhlemann, M.: Granularity in software
product lines. In: ICSE pp. 311–320 (2008)

43. Kang, K.C., Cohen, S., Hess, J., Nowak, W., Peterson, S.: Feature-
oriented domain analysis (FODA) feasibility study. Technical
Report CMU/SEI-90-TR-021, Carnegie Mellon University Soft-
ware Engineering Institute (1990)

44. Larsen, P.G., Battle, N., Ferreira, M.A., Fitzgerald, J.S., Laus-
dahl, K., Verhoef, M.: The Overture initiative integrating tools for
VDM. ACM SIGSOFT Softw. Eng. Notes. 35(1), 1–6 (2010)

45. Milner, R.: Communicating and Mobile Systems: the π -Calculus.
Cambridge University Press, Cambridge (1999)

46. Mezini, M., Ostermann, K.: Variability management with feature-
oriented programming and aspects. In: SIGSOFT FSE, pp. 127–
136. ACM, New York (2004)

47. Noda, N., Kishi, T.: Aspect-Oriented Modeling for Variability Man-
agement. In: SPLC (2008)

48. Pohl, K., Böckle, G., Van Der Linden, F.: Software Prod-
uct Line Engineering: Foundations, Principles, and Tech-
niques. Springer, Berlin (2005)

49. Prehofer, C.: Feature-oriented programming: A fresh look at
objects. In: European Conference on Object-Oriented Program-
ming (ECOOP’97), vol. 1241, Lecture Notes in Computer Science,
pp. 419–443. Springer, Berlin (1997)

50. Reiser, M.-O., Kolagari, R.T., Weber, M.: Compositional
variability—concepts and patterns. In: HICSS, pp. 1–10. IEEE
Computer Society (2009)

51. Schaefer, I., Bettini, L., Bono, V., Damiani, F., Tanzarella, N.:
Delta-oriented programming of software product lines. In: Pro-
ceedings of 14th Software Product Line Conference (SPLC 2010),
September 2010

52. Schaefer, I., Bettini, L., Damiani, F., Tanzarella, N.: Delta-oriented
programming of software product lines. In: Proceedings of the
14th International Conference on Software Product Lines: Going
Beyond, SPLC’10, pp. 77–91. Springer, Berlin (2010)

53. Schaefer, I., Hähnle, R.: Formal methods in software product line
engineering. IEEE Comput. 44(2), 82–85 (2011)

54. Spivey, J.M.: The Z notation—a reference manual. Prentice
Hall, Englewood Cliffs (1989)

55. Völter, M., Groher, I.: Product line implementation using aspect-
oriented and model-driven software development. In: SPLC, pp.
233–242 (2007)

56. Verhoef, M., Larsen, P.G., Hooman, J. : Modeling and validating
distributed embedded real-time systems with VDM++. In: Misra,
J., Nipkow, T., Sekerinski, E. (eds.) FM, vol. 4085, Lecture Notes
in Computer Science, pp. 147–162. Springer, Berlin (2006)

57. Wong, P.Y.H., Diakov, N., Schaefer, I.: Modelling distributed
adaptable object-oriented systems using hats approach: A fred-
hopper case study. In: Beckert, B., Damiani, F., Gurov, D. (eds.)
2nd International Conference on Formal Verification of Object-
Oriented Software, vol. 7421 of LNCS. Springer, Berlin (2012)

58. Wegbreit, B.: Mechanical program analysis. Commun. ACM 18(9)
(1975)

59. Welsch, Y., Schäfer, J.: Location types for safe distributed object-
oriented programming. In: 49th International Conference on
Objects, Models, Components and Patterns (TOOLS Europe 2011),
LNCS, pp. 194–210. Springer, June 2011

60. Waldo, J., Wyant, G., Wollrath, A., Kendall, S.C.: A note on distrib-
uted computing. In: Vitek, J., Tschudin, C.F. (eds.) Mobile Object
Systems, vol. 1222, Lecture Notes in Computer Science, pp. 49–64.
Springer, Berlin (1996)

123

	The ABS tool suite: modelling, executing and analysing distributed adaptable object-oriented systems
	Abstract
	1 Introduction
	2 Fredhopper case study
	2.1 Variability

	3 The core ABS language
	3.1 Sequential programming
	3.1.1 Interfaces
	3.1.2 Classes
	3.1.3 Statements and expressions

	3.2 Concurrent programming
	3.2.1 Concurrent object groups
	3.2.2 Asynchronous method calls
	3.2.3 Futures
	3.2.4 Cooperative multi-tasking

	3.3 Modules

	4 Full ABS
	4.1 Feature model
	4.2 Delta model
	4.3 Software product line configuration
	4.4 Product generation
	4.5 Platform and deployment modelling

	5 Tool support for ABS
	5.1 Modelling with the ABS tool suite
	5.2 The Maude back-end
	5.3 The Java back-end
	5.4 Foreign function interface
	5.5 Dependency management
	5.5.1 ABS package
	5.5.2 Package dependency

	5.6 ABSUnit: unit testing with ABS

	6 Visualising, debugging and analysing ABS
	6.1 Visualisation and observation
	6.2 Interactive debugging
	6.3 Resource analysis: COSTABS
	6.3.1 Cost models
	6.3.2 Cost centres
	6.3.3 Final remarks

	7 Discussion
	7.1 ABS language
	7.1.1 Variability modelling
	7.1.2 Behavioural modelling

	7.2 ABS front-end
	7.2.1 Type checking
	7.2.2 Location type checking
	7.2.3 Product selection
	7.2.4 Package dependency
	7.2.5 Test runner generation

	7.3 Back-ends
	7.3.1 Maude back-end
	7.3.2 Java back-end
	7.3.3 Foreign function interface

	7.4 Eclipse plugin
	7.5 Debugging and visualisation
	7.6 Resource analysis
	7.7 Summary

	8 Related work
	9 Conclusion
	Acknowledgments
	Appendix A
	Glossary

	References

