A Simple Approach to Shared Storage Database Servers’

Luis Soares
Computer Science and Technology Center
University of Minho
los@di.uminho.pt

ABSTRACT

This paper introduces a generic technique to obtain a shared-
storage database cluster from an off-the-shelf database man-
agement system, without needing to heavily refactor server
software to deal with distributed locking, buffer invalidation,
and recovery from partial cluster failure. Instead, the core
of the proposal is the combination of a replication proto-
col and a surprisingly simple modification to the common
copy-on-write logical volume management technique: One
of the servers is allowed to skip copy-on-write and directly
update the original backing store. This makes it possible to
use any shared-nothing database server software in a shared
or partially shared storage configuration, thus allowing large
cluster configurations with a small number of copies of data.

Categories and Subject Descriptors
C.2.4 [Distributed Systems]: Distributed databases

General Terms

Reliability, Performance

Keywords

Shared-storage clusters; database replication.

1. INTRODUCTION

Provisioning a clustered server for a database management
system must consider both performance and dependability.
On one hand, one must ensure enough nodes to provide the
required CPU bandwidth, while at the same time configur-
ing disks in parallel, often in a stripping configuration, to
handle the required storage bandwidth. For instance, the
backend for popular web sites requires hundreds of servers
to deliver the needed processing bandwidth. On the other

*This work was partially supported by project “PASTRAMY:
Persistent and highly Available Software TRansactional
MemorY” (PTDC/EIA /72405/2006).

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

WDDDM °09, March 31, 2009, Nuremberg, Germany

Copyright 2009 ACM 978-1-60558-462-1/09/03 ...$5.00.

21

José Pereira
Computer Science and Technology Center
University of Minho
jop@di.uminho.pt

hand, one must ensure that several physical copies of data
exist to cope with disk failure. This ranges from a couple
copies in a mirroring RAID configuration to a few copies in
data centeres scattered in different continents for disaster
recovery.

A shared-storage cluster such as Oracle RAC[7] allows
maximum configuration flexibility: One uses as many nodes
as required for processing the workload and to ensure the
desired availability, while the storage is configured solely
according to the desired storage bandwidth and disk re-
silience. Unfortunately, a shared-storage approach based on
distributed shared memory and distributed locking raises
a number of problems, which make such solutions costly
to develop and deploy. Anedoctal evidence for this is that
none of the mainstream open source database servers pro-
vide this option. Most commercial database servers also lack
a shared-storage configuration.

In contrast, there have been a number of proposals for
shared-nothing database server clusters based on consistent
replication [11, 6, 2, 4, 5]. All these share the same basic ap-
proach: Updates are ordered and propagated before replying
back to the client, thus ensuring that no conflicts arise af-
ter the transaction commits. The resulting performance and
scalability is very good, especially, with currently common
mostly read-only workloads.

The main problem is that in a shared-nothing cluster a
separate physical copy of data is required for each node.
Therefore, even if a only few copies are required for depend-
ability, a large cluster with hundreds of nodes must be con-
figured also with sufficient storage capacity for hundreds of
copies of data. The goal of the approach outlined in this pa-
per is this to combine the configuration flexibility provided
by shared-storage clusters with the scalability and ease of
implementation of shared-nothing clusters.

It might look simple at first sight to extend the shared-
nothing protocol to cope with shared storage: If all replicas
perform exactly the same write operations, database state
would be identical and thus could be shared. A designated
writer could then be elected to update the shared copy.
Unfortunately, this simple approach rests on an extremely
strong assumption: Data layout is deterministically set from
commit order. In fact, even if the replication mechanism is
logically a replicated state machine, hence deterministic, the
mapping from logical to physical layer is not. For instance,
even if different replicas deterministically add the same tuple
to a table, it is likely that such tuple ends up being stored
in different disk blocks due to internal concurrency.

In this paper we solve this problem with the introduc-



tion of a novel approach to shared-storage database server
clusters that builds on a shared-nothing replicated database
server. In contrast to previous shared-storage techniques,
it can be obtained from shared-nothing replicated database
server software without a profound refactoring of locking,
buffer management, and recovery mechanisms. The required
modification reduces to intercepting and redirecting file I/O
system calls. The isolation and durability guarantees of the
replicated DBMS are preserved. When compared to the
baseline shared-nothing DBMS server, only one node writes
to persistent storage to commit a transaction. Other nodes
don’t ever need to invoke sync, unless when taking over as
designated writer after a failure.

The rest of the paper is structured as follows. In Section 2,
we explain our base assumptions and clearly state the prob-
lem. Section 3 outlines the proposed approach, namely, how
it deals with node failure. Section 4 concludes the paper,
discussing work in progress to evaluate the resulting per-
formance as well as potential applications of the proposed
technique.

2. BACKGROUND

In this section we discuss our baseline assumptions on
replicated DBMS server software and on shared-storage clus-
ters. We conclude by clearly identifying why combining
them is a hard problem.

2.1 Shared-Nothing Software

The first base assumption is the availability of replicated
DBMS server software [11, 6, 2, 4, 5]. The usual resulting
shared-nothing cluster that can be built with such software is
depicted in Fig. 1(a). In detail, each node keeps a full copy
of the the data in a separate non-shared volume. Update
transactions are propagated to all replicas by a replication
protocol. Update propagation can be performed within the
DBMS server [11, 6, 5] or at the middleware level [2, 4]. De-
pending on the desired consistency, read-only queries can
often be executed and answered by a single replica to im-
prove performance [10].

The cluster is overseen by a cluster manager that coordi-
nates replica failover and recovery with the replication pro-
tocol. Namely, when one replica comes back on-line it will
catch up with the rest of the cluster. Such cluster manager
can be centralized in one of the nodes [2] or distributed [11,
6, 4, 5]. The resulting consistency criterion is therefore de-
fined by the combination of replication, load-balancing, and
cluster management mechanisms. Note that the number of
actual physical copies of data is lower bounded by the num-
ber of cluster nodes. Disk failure is taken care by leveraging
such redundancy.

Although the proposed approach is compatible with such
variations, to simplify presentation, the reader might want
to assume a centralized replication, load-balancing, and clus-
ter management mechanism such as C-JDBC [2] throughout
the rest of the paper.

2.2 Shared-Storage Hardware

The second base assumption is the availability of shared-
storage cluster hardware and an appropriate operating sys-
tem. These would commonly be used to support a shared-
storage DBMS such as Oracle RAC as depicted in Fig. 1(b).
In this case, all nodes are attached to the storage enclosure
using a storage area network (SAN). A shared volume can

22

then be mounted by all cluster nodes, using a shared cluster
file-system providing POSIX semantics such as OCFS2. A
shared-storage DBMS will take advantage of this setup by
using a distributed shared memory (DSM) mechanism for
buffering and a distributed lock manager (DLM) for concur-
rency control [7], thus providing a single system image.

Again, the cluster is overseen by a cluster manager that co-
ordinates replica failover and recovery with the buffer man-
agement and distributed locking mechanism. Since there is
only a single logical copy of data, an appropriate RAID con-
figuration must be used for redundancy. Note however that
the number of physical copies is independent of the number
of cluster nodes.

2.3 Problem Statement

The challenge is thus to make the DBMS software of
Fig. 1(a) take advantage of the hardware in Fig. 1(b), thus
sharing data and decoupling the number of physical copies
from the number of nodes.

Unfortunately, if all replicas are naively configured with
the same storage volume, data corruption ensues. Consider
the following example: Concurrent transactions insert tuples
a and b in the same table in different replicas. Assume also
that the commit order, in both replicas, is the same. After
updates are propagated, databases are logically consistent
containing both a and b. At a physical level, one replica al-
locates space for a, before being propagated, and then space
for b. The other replica does the same in the reverse order,
ending up with b and then a in storage.

Avoiding this would be quite expensive, as it prevents
concurrent processing of updates, as well as a number of
other useful optimizations, such as background compaction
of storage pages.

3. APPROACH

At the core of our approach is an additional layer under-
neath a replicated DBMS when running in a shared-storage
cluster, as shown in Fig. 1(c). This layer intercepts all file
1/0 operations issued by the DBMS server and provides it
the abstraction of multiple non-shared physical copies be-
low. The net result is a shared-storage cluster with minimal
changes to existing DBMS software, where a single copy of
the data, indistinguishable from what a single DBMS in-
stance would create, is shared.

In detail, one of the nodes (1), the writer, is allowed to
write back to shared-storage. Other nodes (2), the copiers,
perform copy-on-write locally to volatile storage (3), e.g., a
RAM disk, when necessary to ensure that future read oper-
ations will not observe pages modified elsewhere. This tech-
nique is reminiscent of the usual snapshot management with
copy-on-write that exists in most logical volume managers.

In the remainder of this section we outline how our pro-
posal tackles several key issues: How do we ensure that each
node gets a consistent view of data? How are local copies
prevented from growing unbounded? Finally, we describe
how to deal with nodes entering and leaving the cluster.

3.1 Normal Operation

During normal operation, all nodes try to update the
shared volume as they commit replicated updates. One
makes sure that updates by each copier are not visible else-
where by storing a local copy of the page in volatile storage,
and using it for subsequent reads. Updates by the writer



Cluster Management

Cluster Management

Node

Cluster Management

Node
DSMDL*

Replicatign

Stability

Replicatign

SAN

Shared storage

Shared storage ‘

(a) Shared-nothing DBMS cluster. A (b) Shared-storage DBMS on a typi- (¢) Proposed architecture: (1) Writer
separate volume is used for each node. cal shared-storage cluster. The same I/O interceptor; (2) copier I/O inter-

volume is shared by all nodes.

ceptor; (3) small volatile local storage.

Figure 1: DBMS server cluster architectures.

can only proceed after ensuring that the page is stable, i.e.,
that all other nodes, the copiers, have a local copy of that
page.

Stability is ensured by the following protocol: When the
writer node issues a write request, it is blocked and all nodes
requested to fetch the previous value of the data from shared
storage and store it as a local copy. Upon receiving replies
from all nodes, the write request can proceed. Read and sync
requests are not intercepted at the writer. This needs to be
done only once for each block, thus reducing the number of
distributed interactions required.

Write requests from copier nodes are directly routed to the
copy without any distributed interaction whatsoever. Read
requests are first served from the local copy and if unavail-
able, because yet unwritten, from the shared storage. Sync
requests are ignored, since there is no persistent storage in-
volved.

In short, as only the writer replica performs actual write
and sync operations, the aggregate disk bandwidth required
should be approximately the same as that of a single replica.
This is in sharp contrast to the shared-nothing scenario in
Fig. 1(a), in which the same disk bandwith is required at
each of the replicas.

3.2 Garbage Collection

The protocol of the previous section by itself has one un-
fortunate consequence: Volatile copies become increasingly
large, as pages are updated by different nodes and copies
need to be created. If nothing is done to remove pages from
local copies, they will grow larger and larger, defeating the
goal of having a single shared-storage. In fact, it would even-
tually default back to replicated shared-nothing scenario of
Fig. 1(a).

Unfortunately it is not possible to remove individual pages
from local copies, as inconsistencies could be created as ex-
plained in Section 2.3. The only way to discard some pages
from a local copy is, in fact, to discard them all at once
and invalidate all buffers, restarting from the consistent data
available currently in the shared-storage. By doing this, a
node forgets its own view of physical data layout and adopts
the writer’s view, which is physically distinct but equally
consistent, and logically equivalent due to replication.

The easy way to do this without further changes to the
DBMS software is as follows: First, the the server process
is stopped, implicitly clearing the local volatile copy. The

23

server process is then restarted, implicitly creating a fresh
empty copy. A key issue here is that when a copier starts, it
does not need to synchronize on transaction boundaries with
the writer. If partially written transactions are found on the
storage, the database recovery mechanism will rollback (or
forward) as required. All that is needed is that the storage
contains a valid prefix of write operations executed by the
writer, thus ensuring transactional consistency.

This needs also that the recovery mechanism that is in
place for replication, as explained in Section 2.1, is able to
efficiently catch up with the rest of the cluster, as some up-
dates might have been lost or rolled back while restarting.
In fact, this requirement fits exactly to what recovery mech-
anisms in replicated DBMS already have to do after brief
partitions or node failures and is widely satisfied by existing
systems [8].

The last remaining issue is whether the impact of such
periodic restarts on performance is acceptable. This depends
mainly on the impact of a missing node in the cluster, which
should be relatively smaller as clusters grow larger, and how
fast local copies grow relatively to database size with typical
workloads.

3.3 Node Failure and Recovery

Finally, one has to consider the effect of a failed node.
Namely, when a copier fails it will block the stability proto-
col by not replying and thus prevents the writer from mak-
ing progress. On the other hand, a failed writer should also
block transaction commit, as storage is not updated and
durability might be ensured. This depends on the replica-
tion protocol used. For instance, C-JDBC uses an additional
persistent log at the middleware level to recover without
blocking [2]. Protocols on group communication [6, 4] will
block until reconfigured when using an uniform or safe mul-
ticast primitive [3].

Dealing with a failed copier is straightforward. One needs
only to remove it from the cluster configuration, such that
the writer does not wait for further replies from it. Recover-
ing from a failed writer is as follows: First, after the previous
writer is found crashed, the new writer starts by syncing its
copy to disk and updates the shared storage from its local
copy, using the normal stability protocol to push all relevant
pages into other replicas local copy and finally invokes sync.
It then erases the local copy and enters normal operation as
a writer.



All operational replicas are active during this procedure,
although some operations at the writer will block. Reducing
such recovery time boils down to electing as writer the node
with a smaller local copy, i.e., the one that is closer to the
previous writer.

4. DISCUSSION

This paper addresses the issue of database cluster scalabil-
ity, specifically, in decoupling the amount of disk space and
bandwidth required from the number of processing nodes,
without requiring a profound refactoring of the DBMS server
to accommodate shared-storage or large restrictions on the
workload to cope with partial replication. Our approach
leverages a shared-nothing replicated DBMS server, without
needing profound changes to server software. The only re-
quirement is that file I/O operations can be intercepted. In
short, it works by using a variation of the common copy-on-
write logical volume management technique, in widespread
use today in many operating systems.

Current work focuses on experimental evaluation to de-
termine the overhead of the stability and garbage collection
mechanisms. A proof-of-concept implementation based on
MySQL 5.1 is available at http://holeycow.org. Prelim-
inary results obtained with the TPC-W benchmark [9] in-
dicate that indeed the overhead of the stability protocol is
negligible. By measuring the growth of local copies, one can
also conclude that garbage collection by periodical restarts
should be feasible [12].

The contribution presented here also opens up a number
of interesting future work possibilities. Namely, to explore in
detail what are the key performance factors and scalability
limits and how it compares to a traditional shared-storage
approach. First, one might consider multiple writer nodes
with a few copiers each to further improve resilience and scal-
ability, mainly, when using multiple data centers. Also, the
combination of the proposed approach with asynchronous
or certification-based replication protocols is particularly in-
triguing. Moreover, one should also be able to use the same
technique with a virtual shared storage such as the Amazon
Elastic Block Storage (EBS) to obtain an elastic database
service from an existing shared nothing replicated database
server. This is currently a a challenging research goal [1].

The containment of each replica by its local copy-on-write
file should also provide important resilience guarantees in
face of faults, such as software bugs in the DBMS server,
that lead to memory and disk corruption. Moreover, the
limited dependency on shared structures introduced by our
approach should also be advantageous to enable on-line up-
grade of the DBMS server to a new version.

5. REFERENCES
[1] M. Brantner, D. Florescu, D. Graf, D. Kossmann, and

T. Kraska. Building a database on S3. In SIGMOD
’08: Proceedings of the 2008 ACM SIGMOD
international conference on Management of data,
pages 251264, New York, NY, USA, 2008. ACM.

[2] E. Cecchet, J. Marguerite, and W. Zwaenepoel.
Partial replication: Achieving scalability in redundant
arrays of inexpensive databases. Lecture Notes in
Computer Science, 3144:58-70, July 2004.

[3] G. V. Chockler, I. Keidar, and R. Vitenberg. Group
Communication Specifications: a Comprehensive
Study. ACMCS, 33(4):427-469, Dec. 2001.

24

[4] R. Jimenez-Peris, M. Patino-Martinez, B. Kemme,
and G. Alonso. Improving the scalability of
fault-tolerant database clusters. In 22nd International
Conference on Distributed Computing Systems
(ICDCS), pages 477-484, Washington - Brussels -
Tokyo, July 2002. IEEE.

[5] A. C. Jr., J. Pereira, and R. Oliveira. AKARA: A
flexible clustering protocol for demanding
transactional workloads. In Proc. Intl. Conf. on
Distributed Objects, Middleware and Appocations
(DOA), 2008.

[6] B. Kemme and G. Alonso. Don’t be lazy, be
consistent: Postgres-r, a new way to implement
database replication. In VLDB ’00: Proceedings of the
26th International Conference on Very Large Data
Bases, pages 134-143, San Francisco, CA, USA, 2000.
Morgan Kaufmann Publishers Inc.

[7] T. Lahiri, V. Srihari, W. Chan, N. Macnaughton, and
S. Chandrasekaran. Cache fusion: Extending
shared-disk clusters with shared caches. In P. M. G.
Apers, P. Atzeni, S. Ceri, S. Paraboschi,

K. Ramamohanarao, and R. T. Snodgrass, editors,
VLDB, pages 683-686. Morgan Kaufmann, 2001.

[8] W. Liang and B. Kemme. Online recovery in cluster
databases. In EDBT ’08: Proceedings of the 11th
international conference on Fxtending database
technology, pages 121-132, New York, NY, USA, 2008.
ACM.

[9] D. A. Menascé. Tpc-w: A benchmark for e-commerce.

IEEE Internet Computing, 6(3):83-87, 2002.

R. Oliveira, J. Pereira, J. Afranio Correia, and

E. Archibald. Revisiting 1-copy equivalence in

clustered databases. In SAC ’06: Proceedings of the

2006 ACM symposium on Applied computing, pages

728-732, New York, NY, USA, 2006. ACM.

F. Pedone, R. Guerraoui, and A. Schiper. The

database state machine approach. Distributed and

Parallel Databases, 14(1):71-98, 2003.

L. Soares and J. Pereira. Implementation and

evaluation of the HoleyCoW proof-of-concept.

http://holeycow.org, 2009.

(10]

(11]

(12]





