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Abstract

Semantic Reliability is a novel correctness criterion for multicast protocols based on
the concept of message obsolescence: A message becomes obsolete when its content or
purpose is superseded by a subsequent message. By exploiting obsolescence, a reliable
multicast protocol may drop irrelevant messages to find additional buffer space for new
messages. This makes the multicast protocol more resilient to transient performance per-
turbations of group members, thus improving throughput stability.

This paper describes our experience in developing a suite of semantically reliable pro-
tocols. It summarizes the motivation, definition and algorithmic issues and presents perfor-
mance figures obtained with a running implementation. The data obtained experimentally
is compared with analytic and simulation models. This comparison allows us to confirm
the validity of these models and the usefulness of the approach. Finally, the paper reports

the application of our prototype to distributed multi-player games.
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1 Introduction

In the context of reliable distributed computing one is often faced with the need to provide ser-
vices that offer not only strong consistency guarantees but also good performance. Conciliating
these two goals is usually a difficult task. When considering multicast communication, strong
reliability can be expressed informally in the following way: If a message m is delivered to
a correct process, m is delivered to every correct process. To enforce this property, a reliable
multicast protocol is required to store messages until they are stable, i.e., until their reception
has been acknowledged by all group members. Under high loads, a single slow member may
prevent messages from becoming stable at the same pace they are being produced. This quickly
leads to buffer space shortages and to global performance degradation due to flow control, lim-
iting the applicability of reliable multicast [28].

This problem can be circumvented by relaxing the reliability of multicast, for instance, by
not delivering all messages to perturbed processes [5]. Unfortunately, when strong reliability
is lost, most of the simplicity that was gained at the application level is also lost. We have
recently proposed an alternative approach to tackle this problem using a novel correctness cri-
terion called Semantic Reliability [25, 26, 27]. The proposed model is based on the concept of
message obsolescence: A message becomes obsolete when its content or purpose is superseded
by another message. This knowledge is used by a semantically reliable protocol to selectively
discard some messages from buffers in the presence of overload conditions. By allowing ob-
solete messages to be discarded, the system tolerates better the occurrence of performance
perturbations without demanding the allocation of additional resources. Still, slow processes
are guaranteed to receive all the non-obsolete information, thus approaching the convenience
of full reliability.

The set of protocols that we have designed includes Semantically Sender-Reliable Multi-
cast (S-SM) [25], Semantically Reliable Multicast (S-RM) [26], and Semantically View Syn-
chronous Multicast (S-VSM) [27], combined with ordering guarantees [24]. The current paper
summarizes the motivation and definition of semantically reliable protocols, as well as the al-
gorithmic issues arising in their implementation. In addition, it makes the following contribu-

tions: i) It describes a prototype implementation of the protocols and presents the performance



measurements obtained with it. The data collected experimentally is compared with analytic
and simulation models, confirming their validity. ii) The prototype implementation allows also
to draw conclusions on the overhead and scalability of protocol mechanisms required for se-
mantic reliability. ii7) Finally, the paper reports the application of our prototype to distributed
multi-player games.

The paper is structured as follows: In Section 2 we address the issue of multicast flow con-
trol and its role in the performance of heterogeneous multicast groups. Section 3 introduces the
concept of message obsolescence and shows how it can be expressed by the application at the
protocol interface. Section 4 summarizes specifications and algorithms for semantically reli-
able protocols. Sections 5 describes analytical and simulation models as well as the prototype
implementation. Section 6 compares performance results and discusses system configuration
issues. Section 7 illustrates the protocol using a concrete application. Section 8 compares our

proposal with related work and Section 9 concludes the paper.

2 Motivation

The problem of achieving and sustaining high multicast throughput is intrinsically related to
flow control in multicast protocols. A multicast system, composed of a sender, intermediate
network (links and routers), and receivers, can be described as a pipeline. Each stage of the
pipeline has a maximum capacity, determined by characteristics such as processing power,
memory or bandwidth. If input continually exceeds the capacity of any given stage, that stage
becomes overloaded and its performance degrades, affecting the entire message flow. For in-
stance, when overloaded, a network can exhibit a much lower bandwidth than its maximum
capacity [17].

Flow control mechanisms in network protocols ensure that the source does not produce
more messages than any recipient or network component can handle, thus enabling full but
safe use of available resources. This is commonly achieved by dynamically evaluating re-
source availability and adapting to it, namely, using the classical window-based mechanism as

in TCP/IP [17]. Individual stages of the pipeline tolerate transient performance perturbations
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Figure 1: Throughput degradation of reliable multicast when a single receiver is perturbed.

by temporarily buffering messages. When storage space becomes exhausted they propagate
this information to the previous stage. Eventually, the source is reached and forced to dimin-
ish its sending rate. Back-pressure on the preceding stage can be established through explicit
messages or implicitly, for instance by not acknowledging the reception of previous messages.

In the context of multicast communication all recipients and links to recipients are part
of a common pipeline rooted at the multicast source. Regardless of the specific flow control
mechanism used, a single slow recipient eventually forces the source to slow down, degrading
overall group performance. This behavior can be illustrated by perturbing a single element of
a multicast group and observing the throughput achieved by other members.

Figure 1 shows the average throughput in messages per second (y axis) for increasingly
greater perturbations introduced to one of the receivers (x axis) as measured by an unperturbed
receiver. We use another unperturbed element of the group as the sender, producing messages
at most at a constant rate of 200 msg/s. Since at this point we are merely trying to motivate our
work, a detailed description of the experimental conditions is postponed to Sections 5 and 6.

Figure 1(a) shows the effect of introducing delays upon delivery of each message. Fig-
ure 1(b) illustrates the consequences of delaying network packets. In Figure 1(c) the network
bandwidth of the perturbed receiver is reduced and the message payload is incresed from 4 to
1000 bytes. Notice that for each kind of perturbation, there is a point beyond which the per-

turbation is too large for the receiver to to keep up with the sender, thereby forcing it to wait



and affecting all other receivers as well. In addition, when the system is congested buffers are
full. Transient performance degradation conditions within a single stage of the pipeline will
immediately affect the whole system. Namely, the variability of the interval between messages
grows because it becomes dependent on the retransmission and stability detection mechanisms.

Naturally, if reliability is strictly required, i.e., if all recipients must eventually deliver all
messages, either the sender adjusts to the slowest receiver or messages indefinitely accumulate
for delivery within the system. Another solution would be to exclude the slowest process
from the group. Unfortunately, transient problems by different machines may induce the same
behavior as a consistently slow single node [28, 4].

An alternative path to address the problem is to weaken reliability requirements, so that
slower receivers are not required to deliver all messages and thus do not need to slow down the
sender. However, pure unreliable protocols, that randomly drop messages, are of little use to
many applications. Even if some mechanism is implemented to notify the receiver that some
messages have been dropped [9], the application might be unable to take any corrective measure
since it has no knowledge of that message’s content.

It has been proposed the parallel use of two multicast protocols: An unreliable protocol
used for payload and a reliable protocol used to convey meta-data describing the content of
data messages sent on the payload channel [30]. Using this information, the receiver may eval-
uate the relevance of lost messages and explicitly request retransmission when needed. Our
approach is inspired on this principle, but exploits the semantic knowledge at the sender side
instead. As we will explain later in the text, this allows us to make the same optimizations with-
out requiring the maintenance of two parallel communication channels and without requiring

the involvement of the application in managing retransmissions.

3 Message Obsolescence

The basic idea behind our approach is that in a distributed application some messages overwrite
or implicitly convey the content of other messages sent in the past, therefore making them irrel-

evant. If a message that has not yet been delivered to the application is recognized as obsolete



after the arrival of a more recent message, it can be safely purged without compromising the
application’s correctness. Notice that when the system is congested this is likely to happen as
buffers in the path to the slower component will be full and thus contain messages sent some
time ago. Over time, if enough messages can be purged, back-pressure is avoided thus sus-
taining a high throughput. If not, purging some messages at least ensures that back-pressure is
weaker, minimizing upstream congestion.

The resulting reliability model is Semantic Reliability, as all the information is eventually
delivered in spite of not delivering all messages. In order to use this concept we must identify
which applications exhibit message obsolescence and show that it is possible to express this

property in a generic form. In the remainder of this section we will address these two issues.

3.1 Applications with Message Obsolescence

Applications embodying operations with overwrite semantics, in particular, applications man-
aging read-write items are the most obvious example of applications that exhibit message ob-
solescence. In these applications, any update of a given item is made obsolete by subsequent
update operations. Recognizing this fact, some applications deal with obsolescence directly.
For instance, distributed file-systems, such as NFS, cache write operations in the client to mini-
mize network traffic [33]. Other examples include weakly consistent distributed shared memory
systems, where a sequence of memory operations is bounded by synchronization primitives to
delay distribution of updates [31].

However, it is not possible to implement these optimizations at the application level when
using multicast protocols. In order to timely update faster receivers, the application should
forward updates to the protocol as soon as possible. At that point, the message becomes out
of reach of the application and cannot be discarded even if it becomes obsolete shortly after-
wards. Slower receivers are thus forced to deliver already obsolete messages. Typical examples
are applications such as on-line trading systems, where new quotes have to be continuously
disseminated to a large number of recipients [25] or distributed multi-player games, in which
frequently updated game state is disseminated to a group of replicas (see Section 7).

Not only applications with read-write semantics exhibit the obsolescence property. For



instance, many distributed algorithms are structured in logical rounds and, when the algorithm
advances to the next round, messages from previous rounds become obsolete. Recognizing
this property, the notion of stubborn channel in which reliability has to be ensured just for
the last messages has been proposed [13]. Notice that the number of rounds is not bounded.
It has been shown how the fundamental problem of distributed consensus can be solved in
asynchronous distributed systems augmented with failure detectors and stubborn channels [13,
22]. A stubborn channel can be seen as a particular case of obsolescence in which each message

obsoletes all predecessors.

3.2 Expressing Obsolescence

In order to be useful for a wide range of applications, obsolescence must be expressed at the
protocol interface in a generic way. Furthermore, the interface must not be tied to message
content, to ensure that protocol and application implementations can be kept separate. We
are interested in general purpose techniques that can be applied to a wide range of systems in
an efficient manner. Therefore, we exclude solutions such as requiring special formatting of
messages [7] or enriching the messages with code [36].

All the protocol requires to determine obsolescence is a binary relation on messages. The
obsolescence relation is a strict partial order (i.e. anti-symmetric and transitive) and a subset
of causal ordering of events. In this text, the fact that a message m is obsoleted by a message
m' is expressed as m C m/'. The intuitive meaning of this relation is that if m C m/ and m/ is
delivered, the correctness of the application is not affected by omitting the delivery of m. The
notation m C m/ is used as a shorthand form C_ m' V. m = m/'.

The obsolescence relation can then be encoded by the application and be conveyed to the
protocol. Upon multicast of a message m, the protocol is informed, using an appropriate data
structure, of messages that become obsolete. The representation technique must be compact,
as annotations need to be stored in buffers and transmitted over the network. Representation
should also favor time and space efficient algorithms and data structures to manipulate protocol
buffers and determine obsolete messages. Finally the encoding should be able to represent a

large subset of possible obsolescence relations. This is somewhat simplified by the representa-



tion not needing to be complete to ensure application correctness: even if some messages are
not recognized as obsolete, only purging efficiency is lost.

The technique proposed here exploits the fact that purging is mainly applied to pairs of
messages that are close to each other in the message stream and works as follows. Each message
explicitly enumerates which of the k preceding messages multicast by the same process it
makes obsolete. This information can be stored in a bitmap of k bits. If the n™ position of
the bitmap is set to true, the message makes obsolete the n'" preceding message. This is not
only extremely compact but also makes it very easy to compute the representation of transitive
obsolescence relations using only shift and binary “or” operators. It also makes it very easy
to compute, using the same efficient operators, the representation of the obsolescence relation
when a message makes several other obsolete.

We have used this representation in the experimental evaluation performed in later sections
of this paper and show how to select parameter k. Other techniques for representing obsoles-
cence are discussed in [27]. The proposed technique can also be applied to represent obso-
lescence relations among totally ordered messages from different senders, using the bitmap to

identify previous delivered messages which have become obsolete [24].

4 Semantically Reliable Multicast Services

In this section we present the specification of two representative semantically reliable multicast
protocols: Semantically Sender-Reliable Multicast (S-SM) and Semantically Reliable Multi-
cast (S-RM). The first is a simple protocol, in which purging can be implemented with minimal
additional effort, while the second illustrates the main issues that emerge when implementing

a semantically reliable protocol suitable for fault tolerant programming.

4.1 System Model

The specification is presented in the context of an asynchronous message passing system [15].
Briefly, the distributed system is modeled as a set of sequential processes. In each step a process

can: send a message; receive a message; perform local computation; and crash. A distributed



computation is characterized by the set of the steps of all processes ordered by the causality
relation [20]. No assumptions are made on relative execution speed of processes or on the
existence of synchronized clocks. Processes can only fail by crashing and do not recover, thus
excluding byzantine faults. A process that does not crash is correct. We assume that at most f
processes can crash.

Processes are fully connected by an asynchronous network of point-to-point message pass-
ing channels. Asynchrony means that there is no bound on the time that a message takes to be
transmitted. A channel connecting process p to process ¢ is used through primitives send(m, q)
and receive(m, p). Briefly, reliability means that if both the sender and receiver processes are
correct, the message is eventually received. Additionally we assume that channels are FIFO
ordered. Assumptions on reliability and FIFO order are actually not strictly required, but used
to simplify the presentation of the algorithms. In fact, channels can be reduced to fair-lossy
channels [3].

The multicast service is used through primitives multicast(m) and deliver(m) [15]. If dur-
ing a computation a process executes multicast(m) (resp. deliver(m)) it is said to “multicast
message m” (resp. “deliver message m”). The obsolescence relation is used as described in

Section 3.2.

4.2 Definition

Semantically Sender-Reliable Multicast (S-SM), a simple protocol that does not enforce con-
sistency upon failure of a sender [25], is defined in Figure 2. Both protocols described in this
section enfore FIFO order, mainly to illustrate how to combine semantic reliability and purging
with order constraints. The intuitive notion that a message can be substituted by another that
makes it obsolete is captured in the previous definition by the statement “deliver some m’ such
that m C m/”. If a message m never becomes obsolete, the protocol is required to deliver m
itself. Therefore, if the obsolescence relation is empty the protocol defaults to conventional
reliability.

On the other hand, if there is an infinite sequence of messages 1y, mo, . .. such that m; C

m;11 the protocol may omit all these messages, as captured by the statement “there is a time



Sender Reliability: If a correct process multicasts a message m and there is a time after which
no process multicasts some m” such that m C m”, then all correct processes deliver some

m/ such that m C m/.

Integrity: For every message m, every process delivers m at most once and only if m was

previously multicast by some process.

FIFO Order: If a process multicasts a message m before it multicasts a message m/, no pro-

cess delivers m after delivering m/.

Figure 2: Definition of Semantically Sender-Reliable Multicast (S-SM).

after which no process multicasts m” such that m C m"”

. It may seem awkward at first that
such occurrence is allowed. However, it should be noted that the application, by a judicious
definition of the obsolescence relation, can easily prevent such sequences from occurring. Ac-
tually, the application can decide exactly which is the most appropriate length of any sequence
of messages related by obsolescence. If the protocol was forced to deliver messages from a
possibly infinite sequence (by omitting the statement above from the definition), the protocol
designer would be forced to make an arbitrary decision of which messages to choose from
that infinite sequence (e.g., one out of every k messages). It is clearly preferable to leave this
decision to the application.

Notice that the Sender Reliability property holds only when the sender of a message is
correct. When a sender crashes, S-SM is allowed to deliver messages to some but not all desti-
nations even if not obsolete, making it unsuitable for fault-tolerant programming. Nevertheless,
it makes possible to have simple implementations in which each process is required to buffer
and retransmit just its own messages. Besides illustrating the concept of semantic reliability,
such protocol is useful as a building block [27] or for information dissemination applications
with less stringent consistency requirements [25].

Semantically Reliable Multicast (S-RM) provides the required consistency guarantees even

when a sender fails can be used for replication in fault-tolerant systems [26] and is defined in

Figure 3. Agreement ensures that even when the sender crashes, all receivers deliver the same



Validity: If a correct process multicasts a message m and there is a time after which no process

multicasts some m” such that m T m”, then it delivers some m’ such that m T m/.

Agreement: If a correct process delivers a message m and there is a time after which no
process multicasts m” such that m  m”, then all correct processes deliver some m’

such that m T m/.
Integrity and FIFO Order: (as shown in Figure 2 for S-SM)

FIFO Completeness: If a process multicasts a message m before it multicasts a message m’
and there is a time after which no process multicasts m"’ such that m C m/”, no correct

process delivers m’ without delivering some m” such that m C m”.

Figure 3: Definition of Semantically Reliable Multicast (S-RM).

set of non-obsolete messages. In addition, FIFO Completeness ensures that a replacement for
all obsolete predecessors of some message m are guaranteed to be delivered for m to be also
delivered.

The usefulness of S-RM for fault-tolerant replication can be illustrated by a simple example.
Consider a replicated server using the primary-backup approach [6] managing a set of data
items in which S-RM is used to update replicas. Each update message carries the value of
an item and obsoletes previous messages regarding the same item. If the primary fails, the
Agreement property ensures that the same set of non-obsolete updates is delivered by all backup
replicas which therefore have the same state. FIFO Completeness ensures that only obsolete
predecessors of the last message delivered have been omitted, and therefore that the state of

backup replicas is the same as the state of the primary at some point in time [26, 27].

4.3 Algorithms

The correctness of an implementation of S-SM is straightforward: When a message is multicast,
it is sent to each of the destinations. Both the sender and the receivers can purge obsolete

messages found in local buffers. This makes it easy reuse mechanisms that exist to improve the



Initially:
for all p: to-send[p] = empty queue
for all p: received[p] = ()
to-deliver = empty queue

func new(Message m) =
V p: m & received|[p]

func safe(Message m) =
|p: m’” € received[p]A\ m C m’| > f

t2 : upon to-send[p]# 0 do
m <—removeFirst(to-send[p], m)
send(m,p)

t3 : upon receive(m,q) do
if new(m) then
forall p € destinations: p # self do
addToTail(to-send[p], m)
addToTail(to-deliver, m)

purge_d(to-deliver)
addTo(received[p], m)
addTo(received[self], m)
forall p € destinations do

purge_r(to-send[p])

proc purge_r(Q) do
while 3m, m’ € Q: m C— m’ A safe(m’) do
remove(Q, m)

proc purge_d(Q) do
while im, m’ € Q: mC m’ do
remove(Q, m)

t4 : upon to-deliver # () do
m <removeFirst(to-deliver, m)
addToTail(delivered, m)

t1 : upon multicast(m) do deliver(m)

addToTail(to-send[self], m)

Figure 4: Algorithm for Semantically Reliable Multicast (S-RM).

performance and scalability of multicast protocols [12].

An algorithm for S-RM is outlined in Figure 4. The notation used is as follows: Each
upon/do clause is assumed to be executed atomically. When several clauses are enabled, i.e.,
their pre-condition is true, one of them is chosen non-deterministically to be executed (fairness
assumptions are presented in the text). Sets and queues are used as auxiliary data structures.
The usual notation is used for sets in addition to procedure addTo(S, e), that inserts an element
e in the set variable S. Queues are used with procedures addToTail(Q, e), that inserts ele-
ment e in the queue variable (), and remove((Q, e), that removes element e from (). Procedure
removeFirst(()) removes and returns the first element of ().

As in reliable multicast, ensuring Agreement requires that all processes are able to relay
received messages [15]. Each destination keeps track of messages already received in order
not to deliver them more than once. The protocol has to take additional precautions not to
violate FIFO Completeness when purging obsolete messages. Consider the following scenario
and sequence of events: A process p multicasts messages mq, ms, ms such that only m; C

mg; p purges m; due to mg; ms is transmitted from p to some process q; g delivers m; p



crashes. Clearly, this sequence violates FIFO Completeness. The problem is that m; was
purged before ensuring the eventual delivery of ms. A message is guaranteed to be eventually
delivered as soon as it has been received by f + 1 processes, where f is the maximum number
of processes that may fail. When this condition holds, we say that the message is safe. In the
particular sequence above, violation of FIFO Completeness could be avoided if purging of m;
was delayed until m3 was known to be safe.

Both these issues are addressed by keeping track of which messages have been received
from each process in received|p] and captured in functions new(m) and safe(m) in the algo-
rithm presented in Figure 4. Notice that purging of the delivery queue does not need to be
restricted to safe messages and thus different procedures are used to purge retransmission and
delivery queues.

In detail, the algorithm works as follows: Upon multicast (1) the message is queued and
(t2) later sent only to the sender process itself. The message is then relayed to all destinations
(except to the sender itself) and queued for delivery upon reception for the first time (¢3).
Messages that are never purged are eventually delivered (¢4). This implies that transitions
t2 and t4 are weakly fair, i.e., cannot be enabled forever in a correct process without being
eventually executed [21]. Notice also that transition ¢3 is also weakly fair, according to the
assumption of reliable channels. No fairness assumption is required on ¢1, as an application
that never multicasts messages is still correct. Purging of the delivery queue is performed
upon reception (¢3) only if a message has been queued. The retransmission queue is purged
regardless of no new message having been queued for retransmission, as an existing message
might have become safe and thus made purging possible. Notice that there is no point in purging
to-send in t1, as the new message is guaranteed not to be safe yet as it is still waiting to be sent

to the sender itself.

4.4 Order and View Synchrony

In this text we have shown the application of semantic reliability to a FIFO ordered reliable
multicast protocol. We have also studied other orders as well as view synchrony [24]. In

this section, we only address briefly some selected aspects related to the provision of these



additional services.

Causal Order [15] requires the definition of Causal Completeness, similar to FIFO Com-
pleteness but considering all causal predecessors of a message instead of only those multicast
by the same process. An implementation of S-RM with FIFO can easily be extended to ad-
dress this[24]. The definition of View Synchrony has to be modified to consider obsolete
messages [27]. Nevertheless, modifying an implementation of view synchrony for semantic
reliability is straightforward, as purging can be performed independently by each process. On
the other hand, Total Order as defined for reliable multicast is directly useful with semantic
reliability. Modifying a protocol based on a consensus protocol [8] is also feasible: Purging

can be done both on messages waiting to be proposed as well whose order has already been

decided [24].

S Implementation versus Analytical and Simulation Models

In order to assess the performance of semantically reliable multicast protocols we are interested

in using three complementary techniques, namely:

A simple analytical model. The purpose of this model is to provide to application designer a
simple method to configure some protocol parameters, such as buffer sizes and to assess

the expected purging rate given a concrete obsolescence pattern.

A detailed simulation model. The purpose of this model is to estimate the performance of the

protocol in complex settings before it is actually implemented.

Collection of experimental data from the implementation. This method allows us to mea-

sure the performance of the protocol in a real system.

Naturally, we would like to have the analytical model as simple as possible but still close to
reality. Similarly, we are interested in having a simulation model that closely approximates the
real implementation, such that performance estimates are accurate. Therefore, it is interesting

to compare the output of both techniques, in particular to verify if there are some parameters



that are not taken into consideration in the simulation model but affect the performance in the

real implementation.

5.1 Analytical Model

To derive our analytical model we consider a simplified system model constituted by a single
sender, a fast receiver and a slow receiver. The sender produces messages at rate 7. For each
receiver, messages are placed in a buffer with capacity for N messages. If a message cannot
be inserted in one of the buffers, the sender blocks until buffer space becomes available. A fast
receiver removes messages from its buffer as soon as they become available. On the other hand,
the slow receiver removes messages from its buffer at rate 7,.. Considering 7, < T}, the slow
receiver’s buffer eventually fills up. When this happens, the protocol searches the buffer for
obsolete messages, freeing space to store arriving messages. If the system remains overloaded
for a long period, the buffer will eventually be filled just with unrelated messages. Therefore,
new messages can only be accepted if they obsolete one of the messages in the buffer.

The estimation of performance thus depends on knowing the distance in the input stream
between related messages. Unless obsolescence is strictly periodic, this is a random variable.
Let D be the distance between each message and the latest message obsoleted by it, and f(z) =
P(D = z) the probability mass function of D. Value f(0) is assumed to be the probability of
not existing any obsoleted predecessor message.

The probability of a message being obsoleted by a new message is thus given by R, =
> e>1 f(), which is an estimate of maximum ratio of messages that can be purged by the
protocol under continued congestion. However, this is not a good estimate of how the protocol
would behave, as it implicitly assumes an unbounded amount of previous buffered messages.

Knowing that when the system is congested buffers are full, a more reasonable assumption
is to consider that buffer size determines the maximum distance between two related messages
such that one of them can be discarded. Making the simplifying assumption that the buffer
holds messages sent immediately before, total probability of an obsoleted predecessor exist-
ing in the buffer is thus R = 21353 ~ f(z), where N is the maximum number of messages

buffered for each receiver. This gives an estimate of the ratio of messages that can be purged



by the protocol under continued congestion. Using R and given maximum sender and receiver
throughputs 7 and 7., it is possible to derive the effective throughputs 7" (departing from the

sender and being consumed by a fast receiver) and 7" (being consumed by the slower receiver):

. T,
T = min(T5, - R) (1)
T = min(T, T,) 2)

Naturally, if probability accumulates at low values of distance, i.e., if the probability of a mes-
sage being made obsolete by a close subsequent message is high, the purging procedure is very
effective. On the other hand, if the distance is large, it is likely that the buffers become ex-
hausted before any message has the chance to become obsolete. It is also clear that, for the

same obsolescence distribution, the algorithm performs best for larger buffer sizes.

5.2 Simulation Model

The analytical model does not take into consideration several issues that may affect the effi-
ciency of the algorithm. To start with, it does not consider the effect of the purging procedure
itself in the content of the buffer, which means that even if exactly /V messages are stored, they
are likely not to be the last /N messages. Thus the buffer might hold any N previous messages
or even some posterior messages. Additionally, in a real system we have two buffers, one at
the sender and the other at the recipient, where purging may be applied. If obsolete messages
are purged in the sender’s buffer, there is the possibility that some obsolete information never
reaches recipients. On the other hand, there is less load imposed downstream. By using a sim-
ulation model, we can confirm the validity of the analytical model despite its simplicity and to
explore the impact of system parameters in performance of purging in more complex models.
A discrete-event simulation model [18] works by keeping a queue of events ordered by
their scheduled time. The simulation progresses by removing and executing the event in the
head of the queue. The scheduled time of the event is considered the current time during the
execution. Executing an event may change the state of the model and schedule further events
to a posterior time. Simulation terminates when the event queue is empty or the time reaches a

pre-established maximum.



The system state is composed by a pair of FIFO buffers with configurable size NV, one for the
fast and one for the slow receiver. Events are periodically scheduled to produce and consume
messages according to at most 7 and 7,.. The obsolescence relation can either be generated
according to a random distribution or replay a profile obtained from a real application. The
obsolescence relation is represented using a bitmap. The simulation logs the time when each
message is produced, enters each buffer, leaves each buffer, and is consumed. Statistics are

then computed from the logs.

5.3 Prototype Implementation

The prototype is implemented in C++ and uses the ACE framework [34] as an operating system
abstraction layer. The protocol code is event-driven and executes in a single thread. Events
can be triggered by arrival of messages, by timeouts or explicitly queued by event-handlers.
Buffering by processes other than the sender and purging can be conditionally compiled, thus
obtaining S-SM, S-RM and corresponding reliable multicast protocols for comparison.

Upon multicast, a message is immediately optimistically disseminated using IP multicast
and then buffered. An optional upper bound on the bandwidth consumed by multicast can be
imposed to avoid congesting the network. Upon reception, messages are queued for deliv-
ery. Reliability is ensured by a receiver initiated mechanism [29]. Each receiver keeps a queue
of messages discovered to be missing which it requests using negative acknowledgment mes-
sages. Retransmission requests are controlled by a variable window which uses the TCP/IP
algorithm [17].

Garbage collection of buffers is based on a scalable stability detection algorithm [14]. This
algorithm uses gossiping to determine which is the last message that has been received by all
processes. Intermediate control messages of this protocol are used by receivers as hints in the
discovery that the last message sent by some process has been lost.

Flow control is performed by imposing a limit on the total number of messages buffered by
the protocol (i.e., for retransmission and for delivery) at each process. Therefore, if a process
is consuming messages slower than they arrive, messages accumulate in its buffers. Eventually

this process ceases to accept further data messages from the network which makes the stabil-



ity detection algorithm block in the latest message stored by such process. Being unable to
remove messages from its buffers, the sender protocol ceases to accept further messages from
the application. Care is taken not to cause deadlocks with FIFO order.

Upon the arrival of a new message to a buffer, it is determined if any existing messages
become obsolete and can later be purged by storing and updating a semantic index of the mes-
sage buffer. By representing the obsolescence relation with a bitmap in the message, this index
reduces to maintaining the latest messages stored in the buffer from each sender as a bitmap.
Upon arrival, a logical “and” of both bitmaps (after the appropriate shift operations) is per-
formed. Each remaining set bit represents a message that is known to be obsolete. Notice that
iterating the resulting bitmap, even without resorting to bitmap operations existing on modern
microprocessors, is reasonably fast as this bitmap is small. Messages known to be obsolete in
a delivery buffer can be purged immediately. Purging the retransmission buffer requires that
the safety of messages to be determined. This is achieved by running a global safety detection
algorithm, which determines which messages have been queued for delivery by f + 1 pro-
cesses and delaying purging accordingly. This algorithm is a modified version of the stability
detection [14] algorithm requiring only f + 1 votes (instead of n) to make progress.

It may happen that a message is purged from all processes capable of retransmitting it
before it has been delivered to all destinations. Processes that have not received a purged
message must realize that this message can be removed from the negative acknowledgment
queue and skipped. The mechanism used to do this is the stability detection algorithm. If a
process purges a message from its retransmission queue, it fakes the stability of that message.
Eventually, processes that have not received it discover that it has became stable, regardless of
not having been locally received, and therefore conclude that the message is not missing but

has been purged and should be skipped.

5.4 Centralized Simulation Model

The evaluation of the prototype implementation can be improved by using a centralized simu-
lation model [1]. This combines a real implementation of the protocol code with discrete-event

simulation models of the application and the network and has been shown to accurately re-



produce timing properties of real systems. In detail, centralized simulation allows that single-
threaded event-driven code to be run side-by-side with simulated system components. The
execution of each event handler is timed using a profiling timer and the result used to update a
simulated time-line.

By running all processes under control of the centralized simulation runtime within a single
workstation, it becomes possible to obtain measurements with large numbers of processes to
study the scalability of the protocol. It also becomes possible to perform observations that
depend on a global clock, and, by stopping the clock, also to perform detailed accounting
of various system parameters without disturbing the results. Centralized simulation has also
simplified testing and debugging of the protocol implementation, by allowing the automation
of regression tests with fault-injection. This configuration of the model has been validated both
by micro-benchmarks for individual parameters (e.g., overhead of the kernel network stack and
scheduling latency) and by comparing results of protocol executions with results of the real

system when possible (e.g., distribution of round-trip times).

6 Performance Evaluation

In this section we study the performance of semantically reliable protocols and discuss how it
is affected by different system, configuration and implementation parameters. Whenever possi-
ble, the values obtained from the analytical model are compared with the simulation results and
with the data collected from the implementation. We concentrate on evaluating the performance

of the protocol during steady operations (i.e., when the membership is not changed).

6.1 Experimental Conditions

Simulations and prototype executions shown in the following section use traffic generated with
constant intervals. Destination processes consume messages from the receiver queue also at a
constant rate. To exercise system models and the prototype implementation we have selected
the following pattern of message obsolescence: Message traffic consists of two distinct types

of messages: i) independent messages that do not make other messages obsolete and that are



not made obsolete by any other message; and ii) overwrite messages that obsolete their pre-
decessors and are made obsolete by their successor with a given probability. The resulting
probability distribution of D, the distance between related messages in the message stream, is

characterized as follows:

fra(z) = (3)

r(l=5"1t <z>0
This distribution is interesting because it is easily generated for simulation and because pa-
rameters r and d directly determine the characteristics of the traffic. The parameter » models
the relative distribution of independent and overwrite messages: On the average, a ratio 7 of
messages has overwrite semantics. Thus, r directly establishes an absolute upper bound on
purging. The parameter d represents the diversity of overwrite messages, dictating the proba-
bility of two overwrite messages being related and thus sensitivity to buffer size /N. With this
distribution we can explore boundary conditions that limit the performance of our protocol.
Measurements of the prototype implementation were obtained with a network of 3 Pentium
I1I/1Ghz workstations over a switched 100 Mbits Ethernet. One of the workstations is used as
the sender. Another is used as a slow receiver, by sleeping an amount of time between deliv-
eries. The sender and the third receiver do not introduce additional delays between deliveries,
therefore consuming messages as soon as available. Unless otherwise noted the protocol used
is FIFO S-RM. Initial measurements in each run are discarded, in order to obtain results only
after the system is stationary. The operating system used in all workstations is RedHat Linux
7.1 and the protocol is compiled using the default GNU C++ 2.96 compiler with optimization
turned on. As the ACE toolkit uses the select () system call for timing in Linux, the clock
has a 10 ms resolution which limits the granularity of the sample. For instance, we used 10 ms
as the period of the sender. Nevertheless, the low resolution of the timer prevents obtaining
measurements for higher message rates despite the observer low processor and network usage.
Measurements using the centralized simulation model were obtained in one of the same
workstations simulating groups with up to 64 elements. The performance of simulated proces-
sors is determined by the performance of the host processor. The model used for the network

assumes 10 us delay for each traversal of the UDP/IP stack within the operating system (as



measured in Linux) and 100 Mbits duplex switched network. Applications do not consume
processor time. We have not simulated the 10 ms granularity of Linux timers, which allows
us to get finer-grained results. On the other hand, we modeled the scheduling latency of the
operating system in order to be able to realistically reproduce round-trip measurements.

The prototype implementation is configured with bitmap size £ = 32 and a buffer size of
40 messages at each node. A low amount of buffering is used to show that semantic reliability
is practicable without large buffers as well as to reduce the time required to reach steady state
required for measurements. As a consequence, stability and safety detection are aggressively
configured with a period of 30 ms and a fanout of 3. In practice, larger buffer sizes and larger

periods can often be used to reduce overhead.

6.2 Purging Efficiency

Throughput stability The effectiveness of purging protocol buffers, introduced by seman-
tically reliable protocols, is measured mostly by the ability to accommodate a slower receiver
within the group without disturbing the sender. This allows the resources of fast receivers to
be fully used. Figure 5(a-c) presents the sustained incoming throughput (75) as a function of
the processing delay of a single slow receiver. When purging is not applied, processing delays
larger than 10 ms prevent a delivery throughput of more than 100 msg/s, thereby reducing the
input that can be accepted. For instance, with 20 ms only 50 msg/s are accepted. By generating
traffic with parameter d = 1 and a sufficiently large buffer size, parameter r directly determines

the amount of traffic that can be purged. Using a semantically reliable protocol we observe that:

e When the amount of messages that can be purged is enough to accommodate the dif-
ference among 7 and 7.., the sender is undisturbed. For instance, with » = 0.5 half of
the messages eventually become obsolete and can be purged. Therefore, the receiver can

exhibit up to twice the delay (20 ms) without disturbing the sender.

e When the amount of messages that can be purged is not enough to accommodate the
difference between 7 and 7., such as with 7 = 0.25 and a delay of 20 ms, although the

sender is disturbed the input allowed is still higher than without purging (i.e., 75 msg/s
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versus 50 msg/s).

These results are explained by the amount of messages that are purged and thus are not delivered
to the slower receiver as shown in Figure 5(d-f). These results confirm that the maximum
expected purging rate and consequent improvement in throughput can in fact be observed in
practice.

Notice that with the prototype implementation it has not been possible to achieve an input of
100 msg/s. This happens because the test application tries to sleep for 10 ms between sending
messages. However, due to the lack of accuracy of the operating system timer, it is often
scheduled later, therefore reducing the input rate. This also means that measurements were

obtained only for delays multiple of 10 ms which reduces the detail of Figures 5(c) and 5(f).

Configuration parameters The possibility of purging messages depends on recognizing
pairs of related messages within a buffer. This is affected by the size of the buffer, the rep-
resentation of the obsolescence relation and the characteristics of the traffic. Using simulation
we can easily observe the behavior of the protocol when such parameters are varied. Figure 5(g-
i) shows the impact of varying buffer size and maximum representable obsolescence distance
k with several values of r and a low value for d. This makes the ratio of independent messages
the limiting factor. Notice that the analytical model is somewhat optimistic. This happens be-
cause measurements were taken after the system is congested for a long time which means that
buffers fill up with messages that never become obsolete. On the other hand, if the limiting fac-
tor is d, the diversity of traffic, all messages eventually become obsolete although related pairs
of messages are far apart. As shown in Figure 5(j-1) the analytical model accurately describe
the limitation that can be incurred when parameter & of the obsolescence encoding is too low.
The analytical model is however too pessimistic when describing the impact of a small buffer.
This is explained because in reality purging makes related pairs of messages which otherwise

would be too far in the message stream closer, after purging other messages in between.



Buffer N=20 compared with N=10+10 (r=1, d=20).
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6.3 Implementation Issues

Eager and lazy purging In the analytical model we have also assumed that purging happens
only when the buffer is full, thereby yielding a constant buffer size. This is a lazy purging
strategy. In contrast, an eager purging strategy where purging is always applied can also be
considered. Using the simulation model, it can be observed that similar purging rates and that
neither results in messages being purged in the path to a fast receiver or when the system is
not congested. However, buffer usage while purging is effective is lower with eager purging.
Therefore eager purging results in better latency and better response to short congestion peri-
ods without otherwise impacting performance. As searching for obsolete messages does not

represent a major overhead we consider only eager purging.

Single and split buffer Figure 6(c-e) shows simulation results for a scenario where both

the sender and the recipients have a buffer size of N = 10 and purging is performed at both



ends and compares this with both a single buffer of N = 10 and N = 20. Notice that, since
congestion propagates back from the bottleneck, purging is first performed exclusively at the
receiver until the buffer fills up with unrelated messages. After that, back-pressure is exercised
and messages start being purged also at the sender side. Although the result is better than a
single buffer, it is not comparable with a buffer with twice the size. Nevertheless, it is important
to allow purging in both buffers as it allows the system to cope also with network congestion in

addition to slower receivers.

Safety detection The requirement of determining safety prior to applying purging in retrans-
mission buffers, which is implicit in FIFO Completeness, also affects purging, as messages can
not be used for purging immediately as they enter the buffer. The resulting effect is similar to
reduced buffer size, varying with the relation between safety latency and buffer latency. Fig-
ure 6(c) shows how throughput is reduced with an increasing safety detection time. Figure 6(d)
presents end-to-end latency which is also greater as a consequence of increased buffer occu-
pancy. Notice that when the system is congested, end-to-end latency becomes dependent on
the throughput of the slower receiver, as any message entering the buffer has to wait for the

consumption of all earlier messages before being itself delivered.

6.4 Resource Usage and Scalability

Processor and network usage Using the centralized simulation model it is possible to ob-
serve the behavior of the prototype implementation with a larger number of processes. Fig-
ure 7(a-b) shows processor and network usage of both protocols as measured at the sender with
small messages (4 bytes of payload). Processor usage includes time spent both in the protocol
and in the operating system, but excludes the application. When the system is not congested
(Ts < T.), most of the overhead of the reliable protocol is attributable to stability detection.
When the system is congested (7 > ;. in general and 7 = 37, here), most of the overhead at
the sender is due to retransmitting messages and therefore grows with the number of processes
involved. In both situations, the overhead of searching bitmaps for obsolete messages is negli-

gible and is not presented. On the other hand, safety detection produces comparable overhead
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to stability detection and thus represented a fixed amount of overhead regardless of the system
being congested. It is thus interesting to consider disabling safety detection when the system
is not congested, which is easily done by observing buffer occupancy. Network usage shows
outgoing traffic only. As expected, when the system is not congested, safety detection doubles
the overhead of the protocol. When the system is congested, traffic grows with the number of

nodes due to message retransmission.

Safety detection Figure 7(c) presents the average latency of stability and safety detection
when the system is not congested. As safety detection latency is quite large compared to stabil-
ity detection latency, purging of retransmission buffers is harder. This is not critical, as when
the system is not congested purging is only used to accelerate garbage-collection. Figure 7(d)
presents similar results with a single congested receiver. Stability detection latency becomes

dependent on the slower receiver. In this experiment safety detection is not affected because



200 ]

160 |- .

msg/s)

120 - s o

120 | N\ A

80 | = 80 [ . 80

3 procs

Throughput (msg/s)
Throughput (i

3 procs

Throughput (msg/s)

32 procs ------- L 32 procs ------- _ L 32 procs -------
40 I 64 procs -+ 7 40 64 procs -------- 40 64 procs -------
reliable 3 procs greliable) 3 procs (reliable)
O L L L 0 L L L L L 0 L L
0 5 10 15 0 10 20 30 40 50 60 70 2500 2000 1500 1000 500
Processing delay (ms) Packet delay (ms) Bandwidth (kbps)
(a) Processing delay upon deliv- (b) Packet delay in the network (c) Network link bandwidth

ery

Figure 8: Performance improvements with semantic reliability (r = 0.5,d = 5).

there is a single slow receiver, thus purging opportunities can be fully exploited and greatly
reduce stability latency in the semantic protocol. This is true as long as the number of fast

receivers is greater than f.

6.5 Discussion

We have analyzed the performance of our protocol using different approaches, namely using
an analytical model, simulation and a concrete implementation. This experience allows us to
draw conclusions about the validity of these approaches and identify the most relevant issues
in the performance of semantically reliable protocols.

The overall effectiveness of the approach is summarized by Figure 8, which shows perfor-
mance improvements with S-RM when compared to Figure 1. We have also observed that the
results from the prototype are sufficiently close to the simulation model to allow reliable esti-
mations to be extracted from simulations. In addition, results show that the simple analytical
model is useful in predicting the behavior of the system from the characteristics of the traffic.
Therefore it can be used by application developers as a configuration tool. This avoids having
to use the more complex simulation model or configure the system by trial and error.

We have identified the following critical parameters in the performance of the protocol
which have to be adjusted to the characteristics of the traffic: buffer size, maximum repre-

sentable obsolescence distance and latency of safety detection. Configuration of the system



can thus be done in two steps: i) a description of the traffic as a probability mass function
of the distance between related messages is determined, either analytically or by profiling the
application; ii) if probability of finding related pairs of messages accumulates in low values of
distance, buffer size /N and maximum obsolescence distance k can be selected as the minimum
value which enables a sufficiently large share of related message pairs to be found. Safety de-
tection latency is independent of the traffic and it was observed that it suffices to use the same

configuration that was chosen for stability detection.

7 Case Study: Distributed Multi-Player Games

The purpose of this section is to illustrate the performance of the prototype under a real traffic
pattern, in the current case, the traffic required to replicate the server of a distributed multi-
player game. We believe that this is a relevant application scenario where stringent performance
and consistency requirements meet. Although these applications are not typically supported by
group communication services, this scenario is bound to change as the number of multi-player
games hosted by commercial services as well as the number of players and spectators in each
game are growing. Therefore it would be convenient to use standard protocols for dissemination
of game information. Also as a result of this trend, long lived games have been appearing in an
attempt to keep players loyal to a server. In such systems, the need to preserve the server state
and offer continuous service becomes an important concern. Therefore, it is extremely relevant
to find abstractions that ease the task of replicating this type of servers in an efficient manner.
The performance numbers presented here were obtained running the prototype implemen-
tation on the experimental setting described in Section 6.1. Before presenting the performance

results we describe the traffic profile used for the experiment.

7.1 Traffic Characterization

We have inspected the code of Quake™ [16], an open-source multi-player game, to extract
concrete obsolescence relations. The state of the game is modeled as a set of items. An item is

any object in the game with which players can interact. The background is described separately



as it is immutable. Each item is represented by a data structure that stores its current position
and velocity in the 3D space. The same data structure may also hold additional type specific
attributes, such as the players remaining strength.

The game advances in rounds which correspond to frames that are displayed in players
screens. Although the server tries to calculate 30 frames each second, this number can be
reduced without loss of correctness. However, this degrades the perceived performance of the
game hence the need to sustain a stable throughput. During each round the server gathers input
from clients and re-calculates the state of the game. In each round, besides being updated, items
can be created and destroyed. For instance, when a bullet is fired an item has to be created to
represent it, and if a player is later hit, both the items of the bullet and the player have to be

removed. The transmission of the updated state includes:

e Updated values of items, for instance, as their position is altered. These make previous

values of updates obsolete as they convey newer values.

e Destruction and creation of items. These must be reliably delivered in order to ensure

that items are kept consistent.

We have instrumented the game server to record obsolescence patterns from real gaming
sessions. We detect which items are changed at each round by monitoring internal functions
used to update the system state and to disseminate changes to clients. The results presented
in this paper have been observed during a session with 5 players lasting for approximately 6
minutes and allowing us to record a total of 11696 rounds. This particular run was selected due
to its length with a constant number of players.

From the traffic generated it was observed that a share of 41.88% of the messages never
became obsolete. The obsolescence pattern of the remaining messages is related to the item
update pattern. Although an average of 42.33 items were recorded active in each round, only
an average of 1.39 items were modified. In addition, the results of Figure 9(a) show that a
small number of items was modified frequently, while some items have not been modified at
all during the measurement period. Therefore, consecutive updates of the same item are likely

to be found close in the message stream. This is confirmed by Figure 9(b), which shows the
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Figure 9: Case study.

distribution of distance between related messages. Notice that related pairs are usually close
together (often within 10 messages of each other). All items are represented by the same data
structure, which is 52 bytes long. This is the size of message payload. Reliable messages have
variable size depending on what happened in the round. Most were less that 32 bytes in size.
We have also collected data with other numbers of players. It can be observed that when
more players join the game the message rate increases, the share of messages that never become
obsolete decreases, but the distance between related messages increases. This suggests that
higher purging rates would be possible that those presented here, although at the expense of

larger buffer sizes.



7.2 System Configuration

This application is a good example of a case where the reliability constraints conflict with other
system requirements, in this case, that of timeliness. The notion of message obsolescence may
provide the means to achieve a reasonable trade off in this setting. Instead of introducing an
arbitrary loss of messages, that could lead to loosing information about some entities, obsoles-
cence allows to introduce a selective purge of messages during congestion periods.

Using the prototype implementation it is possible to observe the impact of purging in
throughput stability. Figure 9(c) shows that semantic reliability allows the processing delay
at the receiver can grow from 10ms to 30 ms and be accommodated without impacting the
sender. This is explained by being able to purge up to 60% of traffic as shown in Figure 9(d).
No purging is observed by fast receivers, because messages are rapidly delivered before a sub-
stituting messages exists. Fast receivers are thus completely unaffected by congestion.

Although the application eventually receives a message that obsoletes every purged mes-
sage, this information is received with some additional delay. This means that when semantic
reliability is used to disseminate the information to clients, slower receivers will receive up-
dates less often. We have measured this by counting the number of game rounds that an item
is outdated until the substituting message is received. This metric avoids the requirement of
synchronized clocks. When no purging exists, all modified items are updated within the round
of modification. When the delay is 10 ms, 78% of modified items are updated within the same
round and 94% within 10 rounds. Results when purging is higher are presented in Figure 9(e).
Therefore, players with slower machines (or connections) will observe the game with less de-
tail, which is clearly not as good has receiving all the information but certainly better than being
excluded from the game or lagging behind the remaining players.

On the other hand, this effect is not a problem when the multicast protocol is being used to
update backup servers for fault-tolerance. In fact, in this case all that matters is that eventually

all servers are consistent, which is ensured by the protocol.



8 Related Work

To our knowledge, multicast protocols that address the issue of balancing high efficiency with
adverse conditions such as congestion, variable message delays or network omissions rely on a
mixture of accepting message loss and exploiting application-level semantic knowledge [5, 9,
2, 32].

The specific problem of ensuring stable throughput of reliable multicast has been addressed
before [4, 5]. The proposed solution, Bimodal multicast, offers probabilistic reliability guaran-
tees. In contrast, our approach is not probabilistic. Instead, we require the sender to selectively
mark which messages can be purged by the protocol in overload conditions. Bimodal multicast
does not require the sender to make this selection but requires the receiver to take corrective
measure whenever a message is delivered to only some members of the group. If the loss com-
promises correctness the receiver may be forced to exclude itself from the group and rejoin
later in order to get a correct copy of the state.

Application Level Framing [9] (ALF) requires the receiver to explicitly request retransmis-
sions of lost messages that are considered relevant. As we have noted in Section 2, it may
be hard to assess the relevance of a dropped message when its content is unknown. In the
context of reliable process groups ALF seems to force too much complexity into applications,
compromising the simplicity of the programming model. Our work is also inspired in the A-
causal [2] and deadline constrained [32] causal protocols. These protocols however can only
use real time to select which messages to purge, allowing timing constraints to be met at the
cost of discarding delayed messages.

Message semantics has often been used to relax the ordering of messages. For instance
lazy replication [19] relies on message semantics to relax causal order. Generic broadcast [23]
is a relaxation of total order based on message semantics captured as a binary relation. It
would be interesting to combine these approaches with our proposal. An analysis of the impact
of relaxing ordering in the performance of multicast protocols is presented in [10]. Semantic
information about messages has also been used for other purposes. For instance, the Bayou [36]
replication system is sensitive to semantics of update messages. However, it relies on programs

embedded in the updates which makes the implementation much more complex. In contrast,



our proposal uses a simple mechanism that fits general purpose communication protocols. The
work on Optimistic Virtual Synchrony [35] also uses semantic information to alleviate the cost
of view changes by relaxing the ordering of views relatively to ordinary messages.

A primary-backup protocol which discards messages and provides real-time guarantees has
also been proposed [37], although offering only a weak consistency model. In contrast, our
proposal based on semantic reliability provides strong consistency [27] and a generic multicast
primitive which can be used for other purposes other than primary-backup replication. The
concept of semantic reliability in multicast protocols appears to be also useful outside the scope

of group communication. Namely, it is being proposed for messaging in wireless networks [11].

9 Conclusions

Semantic Reliability is a novel correctness criterion for multicast protocols that makes use of
the notion of message obsolescence. A message becomes obsolete when its content or purpose
is superseded by a subsequent message. This paper offers an integrated perspective over a suite
of protocols based on this notion.

The performance of the core aspects of these protocols is analyzed using three complemen-
tary approaches: an analytical model (whose purpose is to help application designers to quickly
assess the impact of semantic reliability in their application), simulation (that allows to estimate
the performance of the protocol in complex scenarios) and using a real implementation.

From this work we conclude that concrete applications requiring high throughput exhibit
message obsolescence and that semantically reliable multicast protocols do in fact result in an
improvement of throughput stability in spite of receivers with performance perturbations. Our
work shows also how mechanisms of the implementation and configuration parameters affect

the performance of semantic reliability, thus enabling effective deployment of these protocols.
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